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Zinc oxide (ZnO) is one of the best transparent conducting oxide (TCO) materials with a wide bandgap 

and good electrical and optical properties. Its low cost, nontoxicity and transparency in the optical region of 

the electromagnetic spectrum make it very promising candidate for solar cell applications. In this work, 

zinc acetate precursor was used to grow a ZnO thin film by using sol-gel spin-coating technique. The sur-

face morphological study using scanning electron microscope (SEM) was carried out to confirm the growth 

pattern and crystal distribution. The optical properties, transmission (T), reflection (R), optical bandgap 

(Eg), refractive index (n), and extinction coefficient (k) were extracted and investigated to be used in the 

simulation of ZnO/Cu2O heterostructure solar cell, where ZnO thin film plays a double role: as the TCO 

window, as well as the emitter of the n-p junction. However, the solar cell showed weak external quantum 

efficiency (EQE) compared to those prepared by using zinc nitrate and diethyl zinc precursors. TCAD numer-

ical simulation was used to clarify the origin of this weak EQE by taking into account two parameters. The 

first studied parameter is the root-mean-square interface roughness, RMS, in Haze modeling approach, H, 

which describes how much of incident light is scattered at the interface. The second studied parameter is the 

density of defects in the ZnO bulk with continuous distribution of states in its bandgap similar to an amor-

phous semiconductor made of tail bands and Gaussian distribution deep level bands. Consequently, and by 

adjusting and investigating the effect of the RMS and the constituents of the bandgap states, we were able to 

obtain a good agreement between simulated and measured EQE characteristics of the solar cell. 
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1. INTRODUCTION 
 

II-VI thin films such as ZnO, CdO, ZnS, CdS and 

CdTe are used for many optoelectronic applications 

such as transparent conducting oxides (TCOs) and 

window layers in photodiodes and solar cells [1-6]. ZnO 

is one of the II-VI promising material which has been 

studied in recent years due to its unique properties 

such as wide-band gap and high transparency [6]. It is 

an n-type semiconductor without doping and is widely 

studied because of their low fabrication cost, nontoxici-

ty, and its abundance on earth. 

Cuprous oxide (Cu2O) is a direct-bandgap semicon-

ductor with a bandgap (Eg) of about 2.1 eV. This mate-

rial usually shows p-type conductivity without inten-

tional doping [7]. The optical absorption coefficients of 

this material are above 104 cm – 1 near the band edge 

[8]. In addition, Cu2O can be prepared by low-cost 

methods such as oxidation of Cu sheets, [9], and elec-

trodeposition from aqueous solutions of copper sulfate 

and lactic acid [10-12]. These features indicate that 

Cu2O is a promising material for an absorber layer of 

thin-film solar cells, and Cu2O heterojunction solar 

cells using ZnO emitter layer [13]. 

Firstly, we prepare a ZnO thin film by sol-gel spin-

coating technique then extract the optical parameters 

to be used in modeling the ZnO/Cu2O heterojunction 

solar cell. The sol-gel delivered ZnO/Cu2O solar cell 

which was fabricated by zinc acetate precursor shows a 

weak EQE [1]. In this work, TCAD numerical simula-

tion was used to model the solar cell and to explain its 

weak EQE. 

 

2. EXPERIMENTAL DETAILS 
 

ZnO thin film was developed by sol-gel spin coating 

method. Before forming a ZnO layers on the glass sub-

strate, the native oxide on the front surface of the sub-

strate was removed in HF solution, then, the wafer was 

rinsed in DI water. To obtain the sol, the precursor Zinc 

acetate dehydrate was first dissolved into 2-methoxy-

ethanol as a solvent and by adding a stabilizer. The 

molar ratio to zinc acetate was maintained at 1:1 and 

the concentration of zinc acetate was 0.6 M. After stir-

ring for 1h, a homogeneous solution was obtained. The 

substrate was placed on the sample holder and was 

rotated at a speed of 3000 rpm for 30 s. After each spin 

coating the substrate was dried in a furnace at 300 C 

for 10 min to evaporate the solvents. After this process 

was repeated 10 times, thermal treatment was carried 

out at 450 C for 1 h to decompose completely the or-

ganic component from the film. 
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3. DEVICE SIMULATION 
 

Atlas TCAD software was used in this study. It is a 

physically-based two and three dimensional device simu-

lator. It predicts the electrical behavior of a specified 

structure and the internal physical mechanisms in-

volved. It solves a set of fundamental equations, which 

link together the electrostatic potential and the carrier 

densities, through Poisson’s equation, the carrier conti-

nuity equations and the transport equations [14]. 

The structure and band diagram of the modeled so-

lar cell device are shown in Fig. 1. 

The parameters of each material used to simulate 

the ideal ZnO/Cu2O solar cell are presented in Table 1. 
 

 
 

Fig. 1 – The structure and band diagram of the ZnO/Cu2O 

solar cell device. EC, EV and EF are the minimum conduction 

band energy, maximum valence band energy and Fermi level, 

respectively 
 

Table 1 – The parameters of each material used to simulate 

the ideal ZnO/Cu2O solar cell 
 

Parameter ZnO Cu2O 

Thickness 0.5 m [1] 2.7 m [1] 

Bandgap Eg  3.305 eV 

[Extracted] 
2.1 eV [9] 

Electron affinity 4.5 eV [14] 3.2 eV [15] 

Donor concentra-

tion, ND 
1  1019 cm – 3 [14] 0 

Acceptor concentra-

tion, NA 
0 5  1015 cm – 3 [16] 

CB effective density 

of states, NC 

2.2  1018 cm – 3 

[14] 
2.43  1019 cm – 3 [15] 

VB effective density 

of states, NV 

1.8  1019 cm – 3 

[14] 
1.34  1019 cm – 3 [15] 

Electron mobility 100 cm2/Vs [14] 100 cm2/Vs [14] 

Hole mobility 25 cm2/Vs [14] 61 cm2/Vs [17] 

 

3.1 ZnO/Cu2O Interface 
 

In the simulator direct, non-scattered, light is ana-

lyzed in terms of coherent electromagnetic waves, 

whereas for scattered light tracing of incoherent rays is 

used. The main input parameters of the simulator are: 

the number of layers in the structure, layer thickness-

es, wavelength-dependent complex refractive indexes 

for each layer, root-mean-square interface roughness, 

RMS, illumination spectrum and others. 

Among them, realistic scattering parameters are 

most difficult to be determined. In our study, we use 

Haze, H, modelling approach which describes how 

much of incident light is scattered at an interface and it 

has to be defined for reflected and transmitted light at 

a rough interface. In general, this parameter is depend-

ent on the morphology of the rough interface and optical 

properties of the media (layers) forming the interface 

and the type of incident light. Experimentally, H param-

eter can be determined only outside the solar cell. In 

simulation, it can be determined for internal interfaces 

following calibrated equations of scalar scattering theo-

ry, [18, 19], by using reflected, HR, and transmitted light, 

HT, at a rough interface in the solar cell 
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,(2) 

 

where RMS is the root-mean-square roughness of the 

interface, n1 and n2 are the refractive indexes of the 

incident and transmitted sides of the interface respec-

tively, 1 and 2 are the incident and outgoing angles of 

the light beam respectively, NR and NT are the power 

factors for HR and HT, respectively,  is the optical 

wavelength, cR(, RMS) and cT(, RMS) are the correc-

tion functions that are introduced to make the equa-

tions applicable to the random morphologies present at 

the interfaces in thin-film solar cells [19]. 

The default parameters HR and HT used in this 

work to simulate the ZnO/Cu2O solar cell interface are 

presented in Table 2 [14]. 
 

Table 2 – The default parameters of HR and HT used to simu-

late the ZnO/Cu2O interface 
 

CR CT NR NT 

1 0.5 2.0 3.0 
 

Main simulation results in this study are the EQE 

and charge carrier generation rate profile as a function 

of RMS in the ZnO/Cu2O interface under AM1.5. 

 

3.2 ZnO Bulk Defects 
 

Most of thin films are non-crystalline materials. 

Therefore we can assume that the polycrystalline or 

amorphous nature of these films give rise defects their 

lattices; which, will give rise to different types of ener-

gy levels in the band gap of the material [20, 21]. 

In amorphous semiconductors, the density of states 

(DOS) is composed of four bands: two tail bands (a do-

nor-like valence band and an acceptor-like conduction 

band) and two deep level bands (one acceptor-like and 

the other donor-like). The firsts are modeled as decay-

ing exponentials from the band edge, while the latter 

are modeled using a Gaussian distribution. The density 

is then given by: 
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where EV(C) is the valence (conduction) band edge, 

GTD(A)(cm – 3Ev – 1) is the effective density at EV(C), ED(A) 

is the characteristic slope energy of the valence (con-

duction) band-tail states, GGA(D)(cm – 3eV – 1) is the total 

density, D(A) is the standard deviation and EGD(A) is 

the peak energy of the Gaussian distribution. The sub-

scripts G and T are for Gaussian and tail, respectively, 

while A and D are for acceptor and donor, respectively. 

The parameters of the DOS used to simulate the 

ZnO bulk of the ZnO/Cu2O solar cell are presented in 

Table 3. 

Furthermore the default values of capture cross-

sections for majority and minority carriers are 1  10 – 14 

and 1  10 – 16 cm2 respectively for all states [14]. 

Main simulation results are the EQE as a function of 

acceptor-like defects DOS in the ZnO bulk under AM1.5. 
 

Table 3 – The parameters of the DOS used to simulate the 

ZnO bulk of the ZnO/Cu2O solar cell. 
 

Parameter Value 

Standard deviation of the deep accep-

tors A (eV) 
0.025 [14] 

Standard deviation of the deep donors 

D (eV) 
0.05 [14] 

Peak energy of deep acceptors EGA (eV) 1.5 [22] 

Peak energy of deep donors EGD (eV) 0.75 [22] 

Characteristic slope energy of the va-

lence band-tail states EA (eV) 
0.1 [14] 

Characteristic slope energy of the con-

duction band-tail states ED (eV) 
0.1 [14] 

 

4. RESULTS AND DISCUSSION 
 

4.1 Morphology Properties 
 

The surface morphological study from scanning 

electron microscope (SEM) was carried out to confirm 

the growth pattern and the crystal distribution. Fig. 2 

shows a profile of the surface on a nanoscale of ZnO 

prepared by sol-gel spin coating method. The SEM im-

age, which was evaluated at 1.47 K magnification 

with 50 µm resolution, revealed a rough surface topog-

raphy with small and average particle sizes with ran-

dom structure includes rods, granules, slots and worm-

like shapes. The image, also, shows the ZnO thin film 

crystallinity study by using the energy dispersive X-ray 

analysis (EDXA), which was generated by the incident 

electron beams. It was achieved to investigate the ZnO 

thin film composition and to determine the ZnO crystal 

phase and average grain size. EDXA pattern for sol-gel 

spin-coated ZnO thin film indicates a polycrystalline 

structure, with peaks revealed that it is, mainly, com-

posed of zinc (Zn) and oxygen (O) atoms. The diffraction 

pattern matches the ZnO hexagonal wurtzite structure, 

without any secondary phase impurities in the films. 

 

4.2 Optical Characterization of ZnO Thin Film 
 

Fig. 3 shows the optical transmittance (T) and re-

flectance (R) spectra as a function of wavelengths from 

250 nm to 1000 nm for ZnO thin film. The material 

transmittance spectra are generally determined by the 

thickness, surface roughness, and absorption coeffi-

cient. The transmittance values of ZnO thin film, in the 

 
 

Fig. 2 – The SEM micrograph and EDXA of the ZnO thin film 
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Fig. 3 – Optical transmittance (T) and optical reflectance (R) 

as function of wavelength 
 

visible range, were found to be T  87-91 %. The reflec-

tance values of ZnO thin film decrease as the wave-

lengths increase, i.e. the energy decreases, in the range 

of 375 nm to 1000 nm. High transmittance and low 

reflectance values in UV/VIS region of this film make it 

a suitable candidate as a TCO in solar cell applications. 

Considering that the interfaces are related to the thin 

film thickness in practical experiments, the transmit-

tance and reflectance of the ZnO-based materials obey 

the following equation [23]: 
 

  
2

1 expT R d     , (4) 

 

where d is the thickness of the thin film,  is the ab-

sorption coefficient. Thus,  can be calculated using the 

following equation: 
 

  
21

ln / 1T R
d

    
  

. (5) 

 

The optical bandgap (Eg) value of the thin film was 

calculated from a plot using the absorption coefficient 

as shown in Fig. 4. The presence of a single slope in the 

plot suggests that the film has direct and allowed tran-

sition. The band gap energy is obtained by extrapolat-

ing the straight line portion of the plot to zero absorp-

tion coefficient. The band gap value of ZnO thin film is 

found to be Eg  3.305 eV. The absorption coefficient of 

ZnO thin film is found to be neglected in forbidden en-

ergy region and it is found to increase rapidly with the 

decrease in wavelength beyond energy band gap. Ne-
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glected absorption coefficient values of ZnO thin film in 

the visible range of spectrum make it suitable as win-

dow layer in solar cells. 

Fig. 5 shows the refractive index (n) and extinction 

coefficient (k), respectively, for the ZnO thin film pre-

pared using the sol-gel spin-coating method. The 

knowledge of the dispersion of the refractive indices of 

any semiconductor materials is important to model and 

optimize, accurately, the optical properties. The com-

plex refractive index of a semiconductor material can 

be expressed by [24]: 
 

 ˆ ( )+ ( )n n ik  , (6) 
 

where n and k represent the real and imaginary parts 

respectively. The real part quantifies the phase velocity 

of light whereas the imaginary part quantifies the ab-

sorption of light in the material. The refractive index of 

a semiconductor material can be calculated using the 

following relation [25]: 
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2

2

1 4

1 1

R R
n k

R R

 
   
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, (7) 

 

where k  /4 is the extinction coefficient, which can 

be calculated from the optical transmittance of the ma-

terial. 
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Fig. 4 – The optical band gap energy of the ZnO thin film 
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Fig. 5 – Refractive index (n) and extinction coefficient (k) as 

function of wavelength 

4.3 The Effect of the Root-mean-square  

Roughness of ZnO/Cu2O Interface 
 

The root-mean-square roughness (RMS) values of the 

ZnO/Cu2O interface under AM1.5 spectrum were varied 

from 40 nm to 80 nm while the defect density of states 

in the ZnO bulk kept constant at default values of an 

amorphous semiconductor [14]. The simulation results 

show that the RMS influences the EQE of the solar cell 

significantly as shown in Fig. 6. The increasing of the 

RMS leads to higher average values of the EQE at wave-

lengths above 450 nm, i.e. scattering of long wavelength 

light at higher RMS is more efficient on the photon ab-

sorption which lead to an increase in the photogenerated 

carrier rate at the ZnO/Cu2O interface as shown in Fig. 7. 
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Fig. 6 – The External Quantum Efficiency (EQE) as function 

of wavelength for different values of root-mean-square rough-

ness (RMS) in ZnO/Cu2O interface 
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Fig. 7 – The generation rate profile at ZnO/Cu2O interface for 

different values of root-mean-square roughness (RMS) 

 

4.4 The Effect of Defects in ZnO Bulk  
 

Fig. 8 and Fig. 9 show the EQE as function of wave-

lengths for different values of defect density in ZnO bulk. 

In the first case, we varied the defect density of tail 

states, NTA, in ZnO bulk from 1018 to 1  1022 cm – 3, 

while the values of defect density with Gaussian distri-

bution and RMS kept constants in ZnO bulk and 

ZnO/Cu2O interface respectively. The cell performance is 

quite sensitive to the presence of defects of tail states in 

ZnO bulk. The density of defects higher than 1019 cm – 3 

produces a fall in the EQE as shown in Fig. 8. 
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Fig. 8 – The External Quantum Efficiency (EQE) as function 

of wavelength for different values of the defect density of tail 

states (NTA) in ZnO bulk 
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Fig. 9 – The External Quantum Efficiency (EQE) as function 

of wavelength for different values the defect density with 

Gaussian distribution (NGA) in ZnO bulk 
 

The effect indicates that the defects act as dopants, 

modifying the doping profile and reducing the space 

charge zone of the junction. The decrease of EQE can 

be understood from the fact that the photogenerated 

carriers are captured by dense defects located near the 

conduction band. 

In the second case, we varied the defect density 

with Gaussian distribution, NGA, of ZnO bulk from 1018 

to 7  1019 cm – 3, while the values of tail defects and 

RMS kept constant in ZnO bulk and ZnO/Cu2O inter-

face respectively. The cell performance is affected by 

the presence of defects in ZnO bulk. The density of de-

fects higher than 1019 cm – 3 produces a fall in the EQE 

as well as shown in Fig. 9. 

The defects with Gaussian distribution located near 

the middle of the gap and thereby act as recombination 

centers where the increased density makes the recombi-

nation phenomena more significant and causes fewer pho-

togenerate carriers and subsequently decreasing EQE. 

 

4.5 Comparison between Simulation and  

Measurements of EQE of ZnO/Cu2O Solar Cell 
 

Simulation of the effect of root-mean-square inter-

face roughness and the tail and Gaussian defect on the 

ZnO/Cu2O solar cell has led to comparable values be-

tween simulation and measurement for EQE. The com-

parison results were obtained with the following val-

ues: RMS  69 nm, GTA  3  1021 cm – 3/eV, and 

GGA  1  1019 cm – 3/eV. As it is very clear, there is a 

good agreement and the extracted parameters gave 

almost a perfect match between simulation and meas-

urements as shown in Fig. 10. 
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Fig. 10 – Comparison of simulated and measured EQE char-

acteristics of the ZnO/Cu2O solar cell 

 

5. CONCLUSIONS 
 

ZnO thin film was prepared by sol-gel spin-coating 

technique using zinc acetate precursor. The film was 

characterized by using optical measurements. The opti-

cal parameters, bandgap (Eg), refractive index (n) and 

extinction coefficient (k) to be used in simulation were 

extracted from the optical transmittance and reflec-

tance spectra. 

ZnO/Cu2O heterojunction solar cell, which was fab-

ricated by sol-gel method using zinc acetate precursor, 

showed weak EQE compared to those fabricated by zinc 

nitrate and diethyl zinc. Numerical simulation using 

Silvaco ATLAS software was used to model the solar 

cell and to explain its weak EQE. Several possible cases 

were considered. In this work, the effect of root-mean-

square roughness (RMS) of ZnO/Cu2O interface, the 

presence of defects, tail (GTA) and Gaussian (GGA) states 

in the ZnO bulk were studied. As was supposed, these 

parameters were found to mainly affect the EQE of the 

solar cell. Good comparison between experimental and 

simulation results was obtained with these values: 

RMS  69 nm, GTA  3  1021 cm – 3/eV, and 

GGA  1  1019 cm – 3/eV. These values produced a good 

agreement in EQE study. 
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