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We study theoretically the deterministic dynamics of single-domain ferromagnetic nanoparticles in di-
lute ferrofluids, which is induced by a time-varying gradient magnetic field. Using the force and torque
balance equations, we derive a set of the first-order differential equations describing the translational and
rotational motions of such particles characterized by small Reynolds numbers. Since the gradient magnetic
field generates both the translations and rotations of particles, these motions are coupled. Based on the de-
rived set of equations, we demonstrate this fact explicitly by expressing the particle position through the
particle orientation angle, and vice versa. The obtained expressions are used to show that the solution of
the basic set of equations is periodic in time and to determine the intervals, where the particle coordinate
and orientation angle oscillate. In addition, this set of equations is solved approximately for the case of small
characteristic frequency of the particle oscillations. With this condition, we find that all particles perform
small translational oscillations near their initial positions. In contrast, the orientation angle oscillates near
the initial angle only if particles are located in the vicinity of zero point of the gradient magnetic field. The
possible applications of the obtained results in biomedicine and separation processes are also discussed.
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1. INTRODUCTION

The suspended single-domain ferromagnetic nano-
particles have interesting physical properties and po-
tential biomedical applications such as cancer hyper-
thermia therapy, magnetic resonance imaging, targeted
drug delivery and cell separation (for a recent review
see, e.g., Refs. [1-4]). These applications are based on
specific physical properties, which are mainly caused
by the magnetic and mechanical (both translational
and rotational) dynamics of such nanoparticles.

One of the most general approaches to the theoreti-
cal description of the coupled magnetic and mechanical
dynamics uses the concept of the total angular momen-
tum of nanoparticles. In particular, it has been used to
study some features of the coupled magnetic and rota-
tional dynamics arising from the interaction between
the magnetic and lattice subsystems [5-8]. If the ani-
sotropy magnetic field is large compared to the external
fields, then the nanoparticle magnetization can be con-
sidered as “frozen” into the particle body [9]. In this
case, the magnetization dynamics is completely deter-
mined by the nanoparticle rotation, and many of its
characteristics in a circularly polarized magnetic field
can be calculated analytically [10, 11].

The model of nanoparticles with “frozen” magnetiza-
tion is also useful for studying the transport properties
of suspended nanoparticles. Within this framework, we
have predicted the phenomenon of their directed
transport induced by the Magnus force in both deter-
ministic and stochastic approximations (see Ref. [12]
and references therein). Since the direction of motion
and average velocity of nanoparticles can easily be
controlled by external magnetic fields, the Magnus
mechanism of directed transport could be used in drug
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delivery and separation applications. The model of
“frozen” magnetization also allowed us to determine the
transport properties of suspended nanoparticles sub-
jected to a time-independent gradient magnetic field
[13], which is often used in separation processes [14].
In the given work, we study analytically the coupled
translational and rotational dynamics of such nanopar-
ticles in a time-varying gradient magnetic field.

2. MOTION EQUATIONS

The translational and rotational motions of a sus-
pended ferromagnetic nanoparticle, which are induced by
a time-varying gradient magnetic field, depend on many
factors. In particular, they depend on the particle mag-
netic moment, interaction between the lattice and mag-
netic subsystems, particle size, surface structure, liquid
properties and gradient field characteristics, to name
only a few. Therefore, in order to make the theoretical
analysis tractable, we restrict ourselves to considering
the simplest model for the nanoparticle dynamics.

2.1 Coupled Balance Equations

Our model is intended to describe the nanoparticle
dynamics in dilute ferrofluids, when the interparticle
interactions are negligibly small. The ferromagnetic
nanoparticles are considered to be spherical with the
same radius a. On the one hand, it is assumed to be so
small that the single-domain state is realized and, on the
other hand, so large that the influence of thermal fluctu-
ations on the nanoparticle dynamics is negligible (see,
e.g., Ref. [15]). If the particle material is magnetically
uniaxial and the corresponding anisotropy field is strong
enough, then the particle magnetization M = M(t)
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(IM| = M = const) can be considered as “frozen” into the
material [9]. Therefore, denoting by w = w(t) the parti-
cle angular velocity, the dynamics of M can be described
by the kinematic equation

%M =wxM, )
where the sign X denotes the vector (cross) product.

Let us assume that in the Cartesian coordinate sys-
tem xyz characterized by the unit vectors ey, e,, e, the
time-varying gradient magnetic field H; = Hy(t) has
only the x component. Then H; in the nanoparticle
center R = R(t) is given by

Hy = exgR, sin(Qt + ¢). 2)

Here, g(> 0) is the magnetic field gradient, R, = R,(t)
is the x component of R, and Q and ¢ € (0,2m) are the
frequency and initial phase of Hgy, respectively. This
field induces both the translational motion of the parti-
cle along the x axis and its rotational motion. If the
initial magnetization M(0) lies, e.g., in the xy plane,
then M(t) stays in this plane for all ¢ > 0 (this result
holds for the “frozen” magnetization):

M = M(e,cos ¢ + ey sing), 3)

where ¢ = @(t) is the angle between the x axis and the
vector M. From (1) and (3) it follows that w = e,w, (the
particle rotates about the z axis) and dg/dt = w,.

In order to derive the equations describing the
translational and rotational motions of the nanoparticle
subjected to the time-varying gradient magnetic field
(2), we neglect for simplicity the inertial effects and use
the corresponding balance equations. Calculating for
our case the driving force f; = V(M- 3/ dR)H, [V is the
nanoparticle volume, the symbol - denotes the scalar
(dot) product] and the driving torque t; = VM X Hy, we
reduce the force balance equation f; + ff = 0 to

e MVgcospsin(Qt +¢) + fr =0 4)

(f7 is the friction force) and the torque balance equation
td + tf =0to

—e,MVgR,sinpsin(Qt +¢) + t; =0 5)

(tf is the friction torque). If the particle dynamics is
characterized by small translational and rotational
Reynolds numbers, then (see, e.g., Ref. [16]) ff =
—e,6mnadR,/dt (n is the liquid dynamic viscosity) and
t; = —e,8ma’w,. Finally, taking into account that
w, = dp/dt and introducing the dimensionless time
T = Qt, the dimensionless particle position r, = R,/a
and the dimensionless characteristic frequency of the
particle oscillations

Mga

Y e ©

from Egs. (4) and (5) one obtains the following set of the
coupled first-order differential equations:

T = (4/3)v cos @ sin(t + ¢), ™

@ = —vrysingsin(t + ¢), ()]
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where the overdot denotes derivative with respect to
the dimensionless time 7. The solution of these equa-
tions, the pair {r,¢@} of functions 7, =r(r) and
¢ = @(1), is assumed to satisfy the initial conditions
Txo = 1x(0) and ¢ = ¢(0) € (0, 7).

3. THEORETICAL ANALYSIS

In spite of their apparent simplicity, Egs. (7) and (8)
are difficult to solve analytically. Therefore, here we
present only some exact results following from this set of
equations and solve it approximately for v << 1, |ryo| S 1
andv < 1, v[r| = 1.

3.1 Exact Results

Let the pair {ry, ¢} be the solution of Egs. (7) and (8)
for a predetermined set (ryq, @o, ¢, v) of the initial values
and parameters, Tyg, @9, ¢ and v. Then, it can be
straightforwardly checked that the pair {r,, © — ¢} repre-
sents the solution of these equations for the set of pa-
rameters (1o, T — @q, T + ¢,v). Similarly, one can verify
that the solutions {—r,,m — ¢} and {—r, ¢} correspond to
the parameter sets (—7yo, T — @o, ,v) and (—ryg, @o, T +
¢,v), respectively. Thus, if, e.g., the dimensionless initial
particle position 1, is changed to —7,, the initial phase
¢ is changed to m + ¢ and the other parameters ¢, and v
are the same, then the solution of Eqgs. (7) and (8) is
given by the pair {—r,, ¢}.

The set of Egs. (7) and (8) can also be represented in
another form useful for the theoretical analysis of the
particle dynamics. In order to derive this representation,
we multiply Eq. (7) by sin ¢, Eq. (8) by cos ¢ and divide
the second by the first. In doing so, one obtains

pcosg 3

=~y 9
sin et ©)

Since by assumption ¢, € (0,7), it is expected that the
angle ¢ = (1) also belongs to this interval. Using this
condition and the relation dr?/dt = 21,7, Eq. (9) can be
reduced to

d In sin ¢ = 3d , 10

gpinsing = —o—r. (10)
Finally, by integrating both sides of Eq. (10) with re-
spect to 7 from O to 7, we get the equation

8 sing,

2 =1 +§ln g

an

that connects r, and ¢ and can be considered as the
first equation for determining {r,¢}. Its important
feature is that it is an algebraic, not differential, equa-
tion (it holds also for the time-independent gradient
magnetic field, see Ref. [13]) The second equation,
which is necessary to find {ry, ¢}, may be written, e.g.,
in the form of Egs. (7), (8) or

; 2 , 2
(4 sinro():x+ ¢)) + (rx sin(q')r + ¢)) =v2 (12)

Equation (11) permits us to make some general con-
clusions on the character of the nanoparticle dynamics.
Indeed, since according to (11) r, = 1.(¢), the variables
¢ and 7 in Eq. (8) can be separated, yielding
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@ () d
f — 2 _yr, (13)
0, Tx(@)sing

where for convenience we introduced the notation
F (1) = cos ¢ — cos(t + ¢). (14)

From this, it follows that the angle ¢ is a periodic func-
tion of time: ¢(t) = ¢(t+ 27n) (n=1,2,..). Similarly,
transforming Eq. (11) to

sin ¢ = sin @q exp[-3(rZ — 13)/8], (15)

we make sure that ¢ = ¢(r;) and, separating variables
1, and 7, Eq. (7) can be represented in the form

x(7) drx 4
————==vF(1), 16
). wee3 e

showing that r,(t) = r(t + 2nn). Although integrals in
the left-hand sides of Egs. (13) and (16) are not calcu-
lated analytically, these equations explicitly show that
their solution, {r,, ¢}, is time-periodic. It is important to
emphasize that the periodic solution is established
immediately. In other words, the particle position 7,
and the magnetization angle ¢ oscillate periodically
(with the dimensionless period 2m) for all 7 > 0.

This general result shows that the stationary solu-
tion of Egs. (7) and (8), {0,7/2}, cannot be realized. The
reason is that the particles with different 1, could
reach the stationary state r, = 0 only if they perform
both the oscillatory and non-oscillatory motions. But, as
shown above, only oscillatory motion is possible for
particles in the time-varying gradient magnetic field. It
should be noted that the impossibility of the stationary
solution {0,7/2} for arbitrary initial values r,, and ¢,
follows from Eq. (11) as well.

Using Eq. (11), it is also possible to estimate the an-
gle interval, in which the magnetization angle oscil-
lates at |ryo| < 1, where the critical value of the initial
particle position is defined as

1/2

rcr=2(§ln ! ) . a7

sin ¢q

With this definition, the condition of non-negativity of
the right-hand side of Eq. (11) can be written in the
following form: sin¢@ < exp[—-3(r& —1%)/8]. Assuming
that ¢q € (0,m/2), from this condition one obtains
¢ € (0, ¢.), where the critical angle ¢, is given by

pcr = arcsin exp[—3 (1 — 1:%)/8] (18)

(note, @cr = @9 and @e = @o at 1y =0, @ =m/2 at
|7wol = 7). A similar consideration shows that if
Qo € (t/2,1), then ¢ € (T — Qcp, 7).

An interesting feature of the critical angle ¢, is
that it depends only on the initial particle position 7y,
and the initial magnetization angle ¢,, but not on the
initial phase ¢ and the dimensionless characteristic
frequency v of the gradient magnetic field. As a conse-
quence, the magnetization angle ¢ oscillates within the
same angle interval (0,¢) [if ¢o € (0,7/2)] or (w—
Qe ) [if @g € (r/2,m)] at arbitrary values of ¢ and v.
This is a rather unexpected result because if, for exam-
ple, 1y € (0,7cr), @0 € (0,m/2) and ¢ =, then Eq. (8),

J. NANO- ELECTRON. PHYS. 12, 06028 (2020)

at first glance, yields ¢ > 0 for all t € (0,m). If so, then
¢ may tend to m as 7 —» w if v is large enough, i.e., ¢
may exceed ¢... However, this reasoning is not correct
because, according to Eq. (7), the particle position 7,
initially decreases with 7, and if 7, changes sign, then ¢
changes sign too. Thus, the restriction of the intervals,
where the magnetization angle ¢ oscillates at [ry| <
Ter, 18 a direct consequence of the complex coupled dy-
namics of r, and ¢. Note also that for |ry| > 1 the
above analysis becomes inapplicable (in this case the
right-hand side of Eq. (11) is positive).

Unfortunately, we are not able to solve the set of
Egs. (7) and (8) exactly. Therefore, to illustrate some
important features of the nanoparticle dynamics in the
time-varying gradient magnetic field, below we solve
this set of equations approximately.

3.2 Nanoparticle Dynamics at v <« 1

If the characteristic frequency of the particle oscilla-
tions is small, i.e., v < 1, then, according to Eq. (7), all
particles perform small translational oscillations near
their initial positions. As to the rotational oscillations,
their amplitude depends on the parameter vr, and thus
on Vry, see Eq. (8). Therefore, we consider separately
two cases, when the conditions 1) |r| S 1 and 2)
V|ryo| = 1 are held together with the condition v « 1.

First case. Let us represent the solution {ry, ¢} of Egs.
(7) and (8) in the form 1, =1y + 14, and @ = @ + @4,
where the unknown functions r; =1y(r) and ¢; =
@1(7) satisfy the conditions |ryq|~v, |@1|~V, 11 (0) =0
and @;(0) =0. Then, keeping only the terms of the
order v, these equations can be reduced to the set of
uncoupled equations

T1 = (4/3)v cos @, sin(t + ¢), (19)
@1 = —VTyo Sin @ sin(z + ¢). (20)

Solving Eqgs. (19) and (20) with the initial conditions
7.1(0) =0 and ¢,(0) =0, we make sure that in the
reference case, when v < 1 and |ry| < 1, the time de-
pendence of the particle position is described as

Ty = Ty + (4/3)v cos g F(1T) 21D
and the magnetization angle as
@ = @ = VI sin@o F (). (22)

It can easily be verified that solutions (21) and (22)
satisfy Eqs. (11) and (12) in the linear and quadratic
approximations in v, respectively.

In accordance with the general result of the previous
section, both variables r,, and ¢ oscillate with the period
21. As seen from (21) and (22), these oscillations occur
about the average values

(ry) = 1o + (4/3)v cos @, cos ¢, (23)
(@) = @g — Vg sin g cos @ (24)

defined as ((")) = (1/2n) f:n(-)dr. Since by assumption
v « 1, from (23) and (24) it follows that the average and
initial values of r, and ¢ differ only slightly.

Using (21), (22) and notation (14), we can also de-
termine the maximum, max7,, and minimum, minr,
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values of the particle position 7,

(max) _ + 4 [ + (+) ] 25

min/ T = Txo t 3V C0S 9o cos¢ +| _|sgn(cosgo)| (25)
and the maximum, max ¢, and minimum, min ¢, values
of the magnetization angle ¢

(me.lx) @ = Qo — Vyg Sin g [COS ¢ - <+) sgn(rxo)], (26)
min —
where the signum function sgn(:) denotes the sign of its
argument (). We note in this regard that the angle in-
tervals (min ¢, max ¢), which correspond to 7,y > 0 and
o < 0, are determined by formula (26) much more pre-
cisely than those using the critical angle ¢... The reason
is that formula (18) (recall that it holds for |ry| < 1p) 1s
determined for arbitrary values of the parameters ¢ and
v, and so the angle intervals (0, ¢..) and (7 — ¢, ) do
not account for the specific features of the nanoparticle
dynamics at v < 1 and |ry| S 1. Summarizing, we con-
clude that in this case rotations and translations of
nanoparticles occur in small vicinities of ¢, and 1.
Second case. If v « 1 and v|ry| = 1 then, as before,
we can represent the particle position as 1, = 1y + 1y,
where, according to Eq. (7), |ry1|~v. The last condition
shows that the term vr, in Eq. (8) can be approximately
replaced by vry,. Therefore, the nanoparticle dynamics
in this case can be described by the set of simplified
differential equations

Ty1 = (4/3)v cos g sin(t + ¢), 27)

@ = —Vry singsin(t + ¢). (28)

In contrast to Egs. (19) and (20), these equations are

coupled and, since v|ryy| = 1, only Eq. (27) contains the

small parameter v. In order to find the solution of Egs.

(27) and (28) with the initial conditions 7,;(0) = 0 and

¢(0) = ¢,, we should first solve Eq. (28) and then, us-
ing the obtained solution, solve Eq. (27).

Equation (28) can readily be solved by the method of
separation of variables. Indeed, using the table integral

dx 1 1-—cosx
f - =—=In )
sinx 2 14 cosx

from Eq. (28) one immediately obtains

1—cos¢ 1 —cos @,
n —In
1+ cosg 1 + cos ¢

= —2vr o F (7). 29)
Solving Eq. (29) with respect to cos ¢, after some simple
algebra we arrive to the following expression:

cos @g + tanh[vry F (1)]
1 + cos @g tanh[vr, o F ()]

cos@ = (30)
It shows that, since v|ry| = 1, the interval of oscilla-
tions of ¢ is, in general, not small.

Now we substitute the right-hand side of (30) into
Eq. (27). Then, integrating both sides of this equation
over 7T in the interval (0,7) and taking into account that
1741(0) = 0, we can write its solution in the form

(€29

Tx1

- 3cos ¢ 1+ cos @y tanhx’

4vF(1)  4sin? @, f‘”xOF(T) dx
370 COS Qg Jg
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Although the definite integral in (31) can be calculated
analytically for arbitrary values of ¢, (see, e.g.,
Ref. [17], Eq. 2.448), the result is rather cumbersome.
Therefore, here we analyze only three particular cases,
when ¢, = 0,7/2 and 7. If ¢, = 0 or =, then, according
to (30) and (31), one gets

COS(pl(p0=0,rr =11, rxllgoozo,n = +(4/3)vF(1), (32)

where the upper and lower signs correspond to ¢, =0
and ¢, = m, respectively. These conditions show that
nanoparticles do not rotate (p =0 at oo =0and p ==
at ¢, = m) but only perform small translational oscilla-
tions in the vicinity of the initial position 7y (1x|g,=0x =
Tyo + Tx1lp,=0)- If @9 = m/2, then formulas (30) and (31)
lead to the following conditions:

COSQDI(pO:T[/Z = tanh[verF(T)]' 7"xll(po=7r/2 =0 (33)

(to avoid misunderstanding, we point out that the second
condition in (33) is determined as the limit: 71| =r/2 =
limy, /2 7%1). Thus, in contrast to the previous case,
nanoparticles perform only the rotational oscillations,
whose amplitude, as it follows from the first condition in
(33), is not small (because v|ry,| = 1).

4. CONCLUSIONS

We have studied analytically both the translational
and rotational dynamics of suspended ferromagnetic
nanoparticles in a dilute ferrofluid subjected to the
time-varying gradient magnetic field. Our approach to
this problem is based on the main assumptions that (1)
neglect inertial effects, (2) ignore thermal fluctuations,
and (3) “freeze” the magnetization vector into each na-
noparticle. Within these approximations, which hold for
relatively large-sized nanoparticles with a strong uniax-
ial anisotropy, we have derived a coupled set of the first-
order differential equations that describe the transla-
tional and rotational motions of such particles.

Using these equations, we have expressed the parti-
cle position, which describes the particle translational
motion along the gradient magnetic field, through the
magnetization angle, which describes the particle rota-
tional motion. It has been explicitly demonstrated that
this expression plays an important role in the theoreti-
cal analysis of the nanoparticle dynamics. In particular,
using this expression, we have shown that the solution
of the derived set of motion equations is always periodic
(with the gradient field period) and estimated the inter-
vals for the magnetization angle. In addition, to gain
more insight into the nanoparticle dynamics, we have
solved this set of equations for particles close to and far
from the coordinate origin under the condition that the
characteristic frequency of the particle oscillations is
small. It turned out that while the translational oscilla-
tions are small for all particles, the rotational oscilla-
tions are small only for particles close to the origin.

Since the translational and rotational dynamics of
ferromagnetic nanoparticles is responsible for many
their properties, we expect that the theoretical results
obtained in this paper will be useful for a number of
modern applications. In particular, the resulting parti-
cle velocity, which is directly determined from the
above results, can be used to calculate the power loss
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arising from the friction between nanoparticles and
liquid. This contribution to the total power loss may be
important, e.g., for magnetic hyperthermia applica-
tions. In addition, the theoretical analysis carried out
here may be of interest also for drug delivery and sepa-
ration applications. The reason is that the permanent
magnetic field, which is applied perpendicular to the
time-varying gradient magnetic field, could cause the
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Juuamika 3BaskeHHX HAHOYACTUHOK Y 3MiHHOMY B 4aci
rpagieHTHOMY MarHiTHOMY I0JIi: AHAIITHYHI pe3yabTaTu

C.I. lenucos, T.B. JIroruit, A.T. JIroruit

Cymcoruli Oepocasruil ynisepcumem, 8ysi. Pumcoroeo-Kopcakosa, 2, 40007 Cymu, Yipaina

TeopeTHYHO BUBYAETHCS JIETEPMIHICTHYHA MWHAMIKA OJHOIOMEHHUX (PEpPOMATHITHUX HAHOYACTHUHOK Y
po3baByieHHX hepOopiIMHAX, 10 3HAXOIATHCS I BIIMBOM IIEPIOJMYHOTO y Yacl IPajieHTHOr0 MarHITHOI'O
nosst. BukoprcroByoun piBHSHHS 0aJlaHCy CHJI TA MOMEHTIB BUBEJIEHO CHUCTEMY IBOX IUQepeHINHUX PiB-
HSAHB IIEPIIOTO MOPSJIKY, 10 OMUCYITh TPAHCIAIINHUA Ta 00ePTAJIBHUN PYyXU TAKUX YACTUHOK y BUIIAIKY
masux yrcest PeitHosnbaca. OCKUTBKY T'pajlieHTHE MATHITHE TI0JIe TeHepye SIK TPAHCIAIINHNMN, Tak 1 obepra-
JIBHUH PYXHW YACTHUHOK, Il PyXU II0B’sg3aHl Misk coboro. [1eit dakT mpo1eMOHCTPOBAHO IMIISIXOM OTPUMAHHS 34
JIOTIOMOTOI0 3HAW/IEHOI CHCTEMHU PIBHSIHB CIIIBBIHOIIEHD, 1[0 BUPAKAITH [I0JI0KEHHS YACTHHKHN Yepe3 KyT 11
opienrairii, i HaBmaku. OTpUMaHi CITIBBIIHOIIEHHS BUKOPHUCTAHI, 00 IIOKA3aTH, III0 PO3B’SI30K 0a30BOI CHC-
TeMU PIBHAHD € IIePIOJUYHNM Yy Yaci, 1 1100 3HANTH 1HTepBaJIH, B SKAX BiAOYBAIOTHCS OCIIMJIALNI ITOJIOMKEHHS
Ta KyTa opieHTalrii yactnHok. KpiM 116010, 3HAMIEHO HACIMKEHUN PO3B SI30K JAHOI CHCTEMU PIBHAHDL Y BH-
maJKy, KOJIM XapaKTepHa 4acToTa KOJMBAHb YACTHHOK MaJsia. BCTaHOBIIEHO, 110 B IIhOMY BHUIIAIKY BCl Jac-
THHKY 31MCHIOITH MaJIl KOJIMBAHHSA MO0JIM3y [TOYATKOBUX II0JIOJKEeHb. B TOH e Jac, Masi KOJIMBAHHS KyTa
opieHTAIl] BIIHOCHO IIOYATKOBOIO KyTa BiJIOYBAIOTHCS JIUIIE JJIsT YACTUHOK, 10 3HAXOIATHCS MOOIM3y modva-
TKY KOOPJIMHAT, Jie TPaieHTHe MarHiTHe nose masie. OGroBOpreThCS TAKOMXK MOYKINBE BUKOPUCTAHHS OTPU-
MaHUX Pe3yJIbTATIB B G10MeIMIIMHI Ta POIlecax cernapairi HaHOYaCTHHOK.

Kmiouosi ciosa: Pos6asieni depopiguau, OmHOZOMEHHI HAHOYACTMHKHN, ['pajieHTHe MAarHiTHe IIOJe,
PiBusiaus 6anancy, Tpanscsiiiina Ta obeprasbHa JUHAMIKA.
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