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A model of a superlattice consisting of alternating strips of single-layer and bilayer graphene is pro-

posed, whose parameters of the energy spectrum can be controlled by changing the external electric field 

perpendicular to the surface of the sample. Using the Kronig-Penney model, the dispersion equation is ob-

tained based on the analysis of which the energy spectrum of a graphene superlattice is studied depending 

on the ratio of the strip widths of single-layer and bilayer graphene. For the considered superlattice, it is 

shown that there are two types of dispersion surfaces corresponding to two branches in the spectrum of bi-

layer graphene. In the absence of a transverse electric field, neighboring minibands obtained from the so-

lution of different types of the dispersion equation touch at the edges of the first Brillouin band, and the 

conduction band and the valence band touch in the center of the first Brillouin band of the superlattice. 

The results of the analytical solution are compared with the results of modeling by methods of the density 

functional theory. It is shown that the low-energy approximation used to derive the dispersion equation is 

valid when considering a superlattice with narrow strips of bilayer graphene and wide strips of single-

layer graphene. Under this condition, the dispersion surfaces are symmetrical with respect to the K-point 

of the inverse space for the basic material – single-layer graphene. Quantum chemical modeling has shown 

that the band gap in the superlattice spectrum appears even in the absence of a transverse external field 

due to a violation of symmetry between states in different layers of bilayer graphene in the superlattice, 

and has confirmed the dependence of the band gap width on the transverse electric field. 
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1. INTRODUCTION 
 

The most important characteristic of low-

dimensional semiconductor materials is the energy 

spectrum of charge carriers, in the first place, the 

width of the forbidden and allowed bands, as well as 

the shape and symmetry of dispersion surfaces. For 

example, the band gap determines the boundary fre-

quency of the interminiband absorption of electromag-

netic radiation. By varying the width of the gap, this 

effect can be used to determine the spectral composi-

tion of the incident radiation. It is promising to use 

various kinds of artificially created low-dimensional 

structures, the parameters of which can be changed 

both at the manufacturing stage, varying the chemical 

composition and sizes, and during direct measure-

ments, applying to the sample as the basis for this kind 

of electromagnetic radiation detectors in the terahertz 

and far infrared ranges external fields. An example of 

such a structure is the graphene superlattice (GSL). 

At the moment, a number of GSL models have been 

proposed [1-9], which differ in the way the additional 

periodic potential is formed. In works [1, 4, 5], GSLs 

arising in graphene placed on a periodically modulated 

dielectric substrate were studied. The works [2, 6, 7] 

are devoted to superlattices (SLs) formed in graphene 

under the action of an electric periodic or magnetic field 

in space. Moiré SLs are also known, which are formed 

when graphene layers are displaced by a small angle 

[3]. In addition to the effects expected for a GSL by 

analogy with other types of SLs, effects have recently 

been discovered that are not manifested in other mate-

rials, but due precisely to the two-dimensional nature 

of a GSL. So, in a recent work [3] it was shown that a 

transition to the superconducting state is observed in 

the moiré SL. It is noted that such a structure can be 

used as a testing ground for studying high-temperature 

superconductivity. 

A number of papers discuss the possibility of con-

trolling the quantitative and qualitative parameters of 

the electronic energy spectrum of the GSL using exter-

nal fields [4, 6-8]; in [10], a similar situation is studied 

in a single-layer modification of silicon – silicene. In [4], 

the manufacture and study of the transport properties 

of a SL formed in single-layer graphene placed over a 

substrate with a two-dimensional periodic structure of 

alternating holes in a dielectric under the influence of a 

constant electric field are described. The work [9] is 

devoted to the study of the electronic energy spectrum 

of SLs from alternating strips of single-layer and bi-

layer graphene based on the modified Kronig-Penney 

model. The case of the so-called unbias bilayer gra-

phene is considered, that is the electron states on vari-

ous graphene sheets are considered equivalent, and 

there is no gap in the energy spectrum. The GSL model 

considered in [9] is of interest, firstly, due to its relative 

simplicity, and secondly, due to the fact that when a 

transverse electric field is exposed to bilayer graphene, 

the symmetry between the layers is broken and a band 

gap is formed, therefore, the energy spectrum of the 
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considered SL should also change. Since such a GSL 

consists of alternating strips of various materials, sur-

face (Tamm) states should form at the boundaries of 

regions [12, 13]. Due to the periodicity of localization of 

surface states, they form a zone of allowed energy val-

ues, which may have a different shape than the zones 

formed by the main periodic potential. 

In a number of works, much attention is paid to the 

appearance of additional Dirac points and lines – points 

in the reciprocal space of the crystal lattice, in which 

the valence and conduction bands intersect, and charge 

carriers can be described as relativistic massless parti-

cles [2, 7]. 

Most studies of the energy spectrum of a GSL use 

the Kronig-Penney model, and only states near the  

K-point are taken into account. At the same time, in a 

SL consisting of strips of single-layer and bilayer gra-

phene, not only low-energy states can influence the 

nature of the energy spectrum, therefore, independent 

verification of the results of model calculations is re-

quired, which can be carried out using quantum-

chemical methods. 

In this work, an attempt is made to consider the 

electronic states in the GSL consisting of alternating 

strips of single-layer and bilayer graphene placed in a 

constant electric field perpendicular to the surface of 

the sample. It is expected that change in the electric 

field will make it possible to control the width of the 

forbidden and allowed minibands of the studied GSL, 

which in the future can be used to create electromag-

netic radiation detectors. Fig. 1 shows the location of 

additional graphene strips forming bilayer regions. 

Here, dI and dII are the strip widths of single-layer and 

bilayer graphene, respectively, d is the period of the 

SL. It is assumed that the bilayer regions are of type 

AB (the so-called Bernal stacking), the arrangement of 

atoms of the second layer of graphene relative to the 

first layer is shown in the insert. In Section 1, the en-

ergy spectrum of the considered GSL is studied analyti-

cally, and in Section 2, the results of quantum-chemical 

modeling by the methods of the density functional the-

ory are presented. The work is a continuation of the 

studies begun in [14, 15]; a new one compared with [14] 

is the inclusion of Tamm states. The difference from 

[15] is a more detailed study of the shape of dispersion 

surfaces, in particular, the dependence of the energy in 

the minibands on the projection of the quasimomentum 

onto the direction perpendicular to the SL axis, and the 

conditions of applicability of the low-energy approxima-

tion in the Kronig-Penney model are clarified. 
 

 
 

Fig. 1 – Layout of graphene strips forming bilayer regions on 

the main graphene sheet 

2. THE DISPERSION EQUATION FOR A SUPER-

LATTICE CONSISTING OF ALTERNATING 

STRIPS OF SINGLE-LAYER AND BILAYER 

GRAPHENE 
 

The energy spectrum of bilayer graphene, to which 

a transverse constant electric field is applied (the so-

called bias bilayer graphene), is determined by the fol-

lowing expression [11]: 
 

 
 

        
2 4

2 2 2 2 2 2 2 2 24
2 4

F F

t t
v k v k t .  (1) 

 

Here, vF  108 cm/s is the velocity on the Fermi surface 

in graphene, ħk is the quasimomentum of the electron, 

t 0.4 eV is the overlap integral between the layers of 

bilayer graphene,   0.1-0.3t is a parameter that de-

termines the band gap (half-width of the band gap 

       
2' / 4 / 1t ). 

The dispersion relation is derived on the basis of the 

Kronig-Penney model using the T-matrix method 

[1, 16] and is considered in detail in [14]. 

The wave functions of the electron I in the region 

of single-layer and II in the region of bilayer graphene 

can be represented as a four-component spinor: 
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The calculation shows that for the GSL under con-

sideration there are two families of dispersion surfaces 

corresponding to the presence of two branches in the 

spectrum of bilayer graphene, which corresponds to two 

different expressions for kII and two types of the disper-

sion equation. Both real and imaginary values of kII in 

expression (2) should be considered, which was noted in 

[14]. In [14], a situation was considered when kI is a 

real number, but formally there is a solution of the dis-

persion equation for imaginary values of kI, which indi-

cates the formation of the so-called Tamm minibands 

that arise due to the periodic arrangement of surface 

states at the boundaries of single-layer and bilayer 

graphene regions. The inclusion of such states leads to 

two additional types of the dispersion equation. 

The dispersion relation, which allows us to calculate 

the electron energy En(kx, ky) (n is the miniband number, 

kx, ky are the components of the electron quasimomen-

tum) can be represented as: 
 

      , , , , 0I II x yF E k E k E k k . (3) 

 

Let us turn to dimensionless variables: , ,x y x yq k d , 

1,2 ,I IIq k d ,  /I Ia d d ,  /II IIa d d ,   /FB v t d . 

The values of E and Δ will be measured in units of t. 

We introduce the following notations: 
 

             2 2 2 2 2 2 2 2
2 4 1 / ,yQ B q E E B  (4) 
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The first family of surfaces can be obtained by solv-

ing the dispersion equation (3) with the following pa-

rameter values: 
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The second family: 
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The dispersion equations were solved numerically by 

the Newton method. 

Fig. 2 shows the four bottom minibands, the ar-

rangement of which corresponds to the conduction band 

of the basic material (the case is considered when the 

strip width of bilayer graphene is much larger than the 

strip width of single-layer graphene (aI  0.05, aII  0.95, 

value   0.1 in units of t). The two lower minibands 

are determined by the solution of the dispersion equa-

tion in the form (12), the two upper minibands – in the 

form (11). It is seen that in the situation under consid-

eration, energy gaps appearing between minibands are 

significant, i.e., the structure under consideration must 

have the properties of a semiconductor. The energy 

spectrum is periodic in qx. 

It should be noted that the shape of the dispersion 

surfaces corresponding to different families differs sig-

nificantly in the case of wide strips of bilayer and nar-

row strips of single-layer graphene. In the opposite 

case, the considered families of dispersion surfaces 

have a similar shape, but are spaced a small distance 

in energy. Fig. 3 shows the dispersion lines constructed 

for the case aI  0.95, aII  0.05 and   0. The solid line 

indicates the dispersion curves described by expres-

sions (11), the dashed line indicates the curves de-

scribed by expressions (12). 

It can be seen that the upper miniband of the family 

described by expressions (12) intersects with the lower 

miniband of the family described by expressions (11) at 

values qx  , i.e., the so-called Dirac lines are present 

in the energy spectrum of the studied GSL. At   0, 

the minimum value of energy in the lowest mini-band 

described by expressions (12), located at a point 

   , 0,0x yq q , is zero, that is, the conduction band 

and the valence band of the considered GSL touch at 

this point, which is a characteristic feature of single-

layer and bilayer graphene in the absence of an exter-

nal transverse electric field. 

Thus, using the T-matrix method, dispersion rela-

tions are obtained that describe two families of disper-

sion surfaces. The obtained GSL energy spectrum has a 

miniband character, and the width of the energy gaps 

between the minibands strongly depends on the ratio of 

the well width to the barrier. It is significant that along 

with the solutions of the Schrödinger equation oscillat-

ing in the well region, there are the decay solutions in 

the well region, corresponding to the Tamm states. 
 

 
 

Fig. 2 – Dispersion surfaces of charge carriers at   0.1, 

aI  0.05, aII  0.95 
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Fig. 3 – Dispersion curves plotted for case   0, qy  0, aI  0.95, 

aII  0.05 

 

3. QUANTUM-CHEMICAL MODELING OF THE 

ENERGY SPECTRUM 
 

The study of the energy spectrum of the GSL con-

sidered above was conducted using the OpenMX pack-

age. OpenMX (Open source package for Material eX-

plorer) is a software package for nanoscale material 

simulations based on density functional theory (DFT), 

norm-conserving pseudopotentials, and pseudoatomic 

localized basis functions. This allows us to more effi-

ciently calculate properties of periodic systems consist-

ing of hundreds and thousands of atoms with less time 

costs than plane wave based ones. The methods and 

algorithms used in OpenMX and their implementation 

are carefully designed for the realization of large-scale 

ab initio electronic structure calculations on parallel 

computers. The calculations were performed for a SL 

with a period d  10.9 nm, which corresponds to the 51 

period of the main graphene lattice, with a variable 

width of the second layer. During the SCF calculation, 

a PBE functional was used, and integration over the 

Brillouin zone was performed on a regular 4  16 grid. 

The accuracy of the calculation was 10 – 6 hartree. 

The crystal lattice of graphene is a hexagonal lattice 

whose constant is a0  2.46 Å. The primitive graphene 

cell includes 2 atoms located in the plane of the lattice. 

The lattice parameters of single-layer graphene coin-

cide with the parameters of the primitive lattice of bi-

layer graphene, consisting of 4 atoms [11]. We consider 

bilayer graphene of type AB (Bernal stacking graphene, 

see Fig. 1). In both single-layer and bilayer graphene, 

the minimum of the conduction band is located at the  

K-point of the Brillouin zone. Strips of single-layer and 

bilayer graphene in the considered superlattice alter-

nate in the direction of the X-axis. The values of the 

quasi-wave vectors are counted from the K-point. 

The simulation showed, first, that the minibands 

forming the Dirac cone are shifted to the high-energy 

region by about 0.1 eV, and even in the absence of a 

transverse electric field, a band gap is formed. Second, 

the energy spectrum of the studied GSL is periodic in 

the direction of alternating layers and is even in qx 

(Fig. 4), and this result is valid for all relative widths of 

stripes of single-layer and bilayer graphene. Third, the 

energy spectrum becomes asymmetric in qy as the ratio 

of the strip width of bilayer graphene to the period of 

the SL increases. This result can be explained in the 

following way. When the strip width of bilayer gra-

phene is small compared to the SL period, we can con-

sider the carbon atoms in the second graphene layer as 

regularly located impurities of high concentration, 

which explains the energy shift of the position of the 

Dirac point. On the other hand, the periodicity of the 

location of such an “impurity” leads to the formation of 

minibands, which, due to the large difference between 

the SL period and the crystal lattice period of the base 

material (single-layer graphene), do not have to be 

symmetrical about the K point. As can be seen from 

Fig. 5, for a small relative strip width of bilayer gra-

phene (dII/d  3/51), the asymmetry of the dispersion 

curves in qy is small, therefore, under such conditions, 

the low-energy approximation used in Section 1 for the 

analytical consideration of the properties of SLs can be 

considered justified. 

It should be noted that under the assumption that 

the strips of bilayer graphene are narrower than the 

strips of single-layer graphene, the considered SL turns 

out to be ideologically close to one of the first GSL mod-

els proposed in [17]. In [17], a GSL formed in single-layer 

graphene as a result of the deposition of periodically ar-

ranged lines of hydrogen atoms on it was considered. 

The GSL considered in this work has forbidden and 

allowed miniband widths of the order of hundreds of 

electron-volts, and these parameters can be controlled 

by applying an external electric field perpendicular to 

the surface of the sample. 
 

 
 

Fig. 4 – Dependence of the electron energy on the projection of 

the quasimomentum in the direction of the axis of the SL, in 

minibands closest to the Dirac point in the graphene spectrum, 

in case dII/d  3/51 (qy  0) 

 

4. CONCLUSIONS 
 

Using the analytical approach and quantum-

chemical modeling, the electronic states in the GSL, 

consisting of alternating strips of single-layer and bi-

layer graphene, placed in a constant electric field per-

pendicular to the surface of the sample, are investigat-

ed. It is shown that the energy spectrum of the struc-

ture under consideration has a miniband character, the 

widths of the forbidden and allowed minibands are 

hundreds of electron-volts and can be controlled by an 

external electric field. 

For analytical consideration, the Kronig-Penney 

model was used. Dispersion equations of two types 

were obtained, corresponding to two branches in the 

energy spectrum of bilayer graphene, and each type of 

dispersion equation also describes the states corre-

sponding to Tamm minibands. 
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Fig. 5 – Dependence of the electron energy on the projection of 

the quasimomentum in the direction perpendicular to the axis 

of the SL, in minibands closest to the Dirac point in the gra-

phene spectrum, in case dII/d  3/51 (qx  0) 

The energy spectrum of the considered GSL was 

simulated using the methods of the density functional 
theory implemented in the OpenMX package. Based on 

quantum-chemical modeling, it was shown that the 
results of an analytical review regarding the conclu-

sions about the existence of a miniband spectrum, 
symmetric with respect to the K-point of the starting 

material, single-layer graphene, are valid in the case of 
SLs composed of wide strips of single-layer and narrow 

bands of bilayer graphene. In other cases, the energy 
spectrum of the SL is not symmetric with respect to the 

K-point in the direction perpendicular to the SL. 
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Запропонована модель надрешітки, що складається почергово із смуг одношарового та двошарового 

графена, параметри енергетичного спектру якого можна контролювати, змінюючи зовнішнє електрич-

не поле, прикладене перпендикулярно поверхні зразка. За допомогою моделі Кроніга-Пенні отримано 

дисперсійне рівняння, на основі аналізу якого вивчається енергетичний спектр графенової надрешітки 

залежно від співвідношення ширини смуг одношарового та двошарового графена. Для розглянутої 

надрешітки показано, що існує два типи дисперсійних поверхонь, які відповідають двом гілкам у спек-

трі двошарового графена. За відсутності поперечного електричного поля сусідні мінісмуги, отримані з 

розв'язку різних типів дисперсійного рівняння, стикаються по краях першої зони Бріллюена, а зона 

провідності та валентна зона стикаються в центрі першої зони Бріллюена надрешітки. Результати 

аналітичного розв'язку порівнюються з результатами моделювання методами теорії функціоналу гус-

тини. Показано, що низькоенергетичне наближення, яке використовується для отримання дисперсій-

ного рівняння, справедливо при розгляді надрешітки з вузькими смугами двошарового графена та ши-

рокими смугами одношарового графена. За цієї умови дисперсійні поверхні симетричні відносно точки 

K у оберненому просторі для вихідного матеріалу – одношарового графена. Квантово-хімічне моделю-

вання показало, що заборонена зона в спектрі надрешітки виникає навіть за відсутності поперечного 

зовнішнього поля через порушення симетрії між станами в різних шарах двошарового графену в над-

решітці, і підтвердило залежність ширини забороненої зони від поперечного електричного поля. 
 

Ключові слова: Двошаровий графен, Модель Кроніга-Пенні, Метод матриці переносу, Методи теорії 

функціоналу густини. 
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