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Based on the density matrix method for a general nonequilibrium system consisted of a number of fluc-

tuating in energy phonon-dressed states weakly coupled to the equilibrium environment, and using the 

concept of self-decaying defect states in terms of the three-stage framework for the defect dynamics, the 

applied cumulative stress distributions of a failure probability for the non-stationary population of peak 

amplitudes of intermediate state of the three-state decaying nonequilibrium system are found. It is shown 

that the theoretical cumulative distribution determined for this state in terms of the respective solution of 

transcendent equation for the maximum of population is in direct correspondence with the damage proba-

bility of the whole system and therefore should be in agreement with the experimental cumulative distri-

bution of the irreversible failure of the system observed on flexural testing of the brittle solids. In the pro-

posed formalism, it is established that a-plane sapphire is advanced in its brittle performance. As such it is 

concluded that a-Al2O3 has not only far more strength, but reveals a noticeably higher competitive ad-

vantage as compared to CVD-ZnSe. This conclusion agrees well with the corresponding experimental ob-

servations provided in respective IR-transmitting window materials for the a-Al2O3 and CVD-ZnSe. 
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1. INTRODUCTION 
 

All solids, crystalline or amorphous, are not perfect 

in structure and have a certain amount of various de-

fects. The types of these are numerous including vacan-

cies and interstitial atoms (point defects), dislocations 

(line defects), stacking faults (planar defects), and voids 

(volume defects), to name a few. In fact, in any solid, a 

defect of every possible type has a non-zero concentra-

tion. Therefore, in order to perform successfully, a solid 

must tolerate the low concentration of defects by being 

endowed with the capability for its self-decaying irre-

spective of the type. This requires considering the de-

fects in solids that as not the static macroscopic objects 

like permanent dislocations or structural imperfections, 

whose deleterious behavior scales linearly with the 

applied stress, but essentially as the dynamic micro-

scopic objects like local or extended lattice defor-

mations, which can depend on normal vibrational exci-

tations (phonons) and whose behavior scales nonlinear-

ly (exponentially) with the stress. Moreover, in a-Al2O3 

brittle solid, such a nonlinear behavior can at the same 

time be stochastic, revealing in itself an irreversible 

fracture of a tested solid at a different random value of 

a slow ramped stress without any significant plastic 

deformation before one-off failure occurs [1, 2]. 

At the same vein, this means that to make a rigor-

ous consideration of defect dynamics in solids, one needs 

to start from a microscopic framework of a defect-state 

space defined for a finite state nonequilibrium system 

coupled weakly to an infinite state equilibrium envi-

ronment, and then to describe the defect evolution as 

the random movement of distorted groups of the sys-

tems atoms between the several preferable configura-

tions (the so-called defect states) on the background of 

harmonic vibrations of environmental atoms. Such rai-

son d'être recognized long ago is formulated consistently 

in [3], where the defects are associated with elastic dis-

tortions of nonequilibrium atomic configurations inter-

acting with normal vibrations of the bulk atoms which 

form the reservoir of thermally equilibrated phonons. 

Because the defect-phonon interaction is introduced 

microscopically, this not only allows to nonperturbative-

ly define the renormalized defect states dressed in vir-

tual phonons, but also makes it possible to calculate the 

rate constants of relaxation transitions between the 

dressed states. In this framework, relaxation processes 

are re-assumed to be induced by the defect-phonon in-

teraction. As the latter after renormalization is made 

small enough to be taken as a perturbation, this justi-

fies the use of lowest-order-perturbation approximation 

(Born approximation) and provides a basis for the ex-

planation of general regularities in the dynamics of var-

ious defects in ceramics as well [4]. 

In the similar framework developed in [4] the struc-

tural defects are associated with some kinds of disorder 

in nearly periodic amorphous lattices, too, provided that 

the emerged defect states interacting with each other 

and with lattice phonons are properly (or, at least, con-

sistently) defined. Moreover, the microscopic nature of 

these defects can be very different, from the disordered 

pattern of molecular bonds in the lattice (like loose at-

oms or dangling bonds) having mainly two alternative 

positions in space (the two-state defect) separated by a 

particular potential barrier, to the extended structural 

configurations of compact disordered regions encom-

passing hundreds of molecular units and forming the 

multi-state defects. Analogously, the structure and 

properties of Al2O3 associated with the deformation of 

the lattice in the vicinity of the vacancy can be described 
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within the framework described in [5]. 

In the present paper, based in part on our previous 

work [3], we aim at developing the three-stage self-

decaying model able to describe the irreversible dynam-

ics of defects in brittle solids, from a microscopic stand-

point. Our approach is formulated in the framework of 

a microscopic defect-state space for a nonequilibrium 

nonstationary system coupled to an equilibrium steady-

state environment. But in contrast to [3], we allow the 

systems eigenenergy levels with random fluctuations 

around the stochastic average positions with mean am-

plitudes and frequencies. This allows to use the formal-

ism of calculating the rate constants of transitions be-

tween the fluctuating energy levels developed in [4]. 

The paper is organized as follows. In Section 2 we 

propose the theoretical model for describing the dynam-

ics of a-Al2O3 defects in a nonequilibrium system con-

sisted of a number of fluctuating in energy phonon-

dressed states weakly coupled to the environment that 

induces relaxation transitions between them in the 

one-defect approximation. In Section 3, for the case of a 

single transient failure-prone state, we reduce this 

model to a three-stage chain of transitions, for which 

the solution for the time-dependent population of that 

state is obtained in an analytical form in Section 2. 

This allows to find the stress dependence of the maxi-

mum of the population that determines the cumulative 

failure distribution. The theoretical results are com-

pared with experimental data on flexural testing of a-

plane sapphire in Section 3. Finally, in Section 4, the 

consequences thereof are concluded. 

 

2. THEORETICAL MODEL 
 

There are different scales for description of the dy-

namics of defects in a nonequilibrium system. At each 

scale, one aims to model the temporal behavior of defects 

in the corresponding time and state spaces characteristic 

of the required description level. As such it is commonly 

assumed that, despite the different types of defects may 

occur in the system in all possible occupation numbers, 

there is the mean field approximation that replaces an 

actual surrounding of a defect by a locally averaged 

number of neighboring defects, so that solely a single 

defect of the most relevant type will influence one and 

only one set of observations [3]. As a consequence, the 

many-defect state can be specified in terms of the occu-

pation numbers (populations of defect states) associated 

with the small elementary cells in the system defined at 

the level of a single-defect state-space scale. 

In general, one can indicate three levels of descrip-

tion at which the plausible models for defects may be 

defined most accurately. These are microscopic level, 

mesoscopic level, and macroscopic level. At the macro-

scopic level, defects are associated with some macro-

scopic particles such as specific atomic and molecular 

structures, whose concentrations can vary with time 

and behavior of which obeys the generalized continuity 

equation in the reactor. However, if to use both the low 

concentration limit and an activated state representa-

tion for a single defect species, then equation of contin-

uous diffusion of a defect can easily be reduced to the 

master equation for its thermally activated Arrhenius-

type transitions between failure-tolerant and failure-

prone system states [4]. Analogous reduction of the 

dynamics of defects to the master equation for their 

between-state transitions is also appropriate for the 

mesoscopic level, at which the defects are associated 

with the mesoscale faults such as localized cracks, 

whose density exponentially depends on the stress. 

However, at the microscopic level, one cannot charac-

terize the defects so specifically as in cases of macroscop-

ic and mesoscopic level descriptions. The matter of fact is 

that microscopic defects, being numerous, but small in 

size, are hidden from direct observations and even unde-

tectable in a brittle solid for causing no harm to it. 

Therefore, in order to maintain the defect concentration 

at a no damage level avoiding brittle failure of the solid, 

there should be a particular mechanism that balances 

the process of thermal activation of defects with their 

spontaneous self-decaying by matching a difference be-

tween numbers of stationary appearing and disappear-

ing defects at the subthreshold level. Moreover, in this 

case, the defects will be associated with the stochastical-

ly fluctuating thermally-excited states of a nonequilibri-

um quantum system weakly coupled with its equilibrium 

environment [5, 6]. Remarkably, the kinetic equation for 

populations of defect states, found as a result of stochas-

tic averaging of the microscopic Liouville-von Neumann 

evolution equation for the density matrix of the whole 

system “system + environment + weak interaction” over 

fast fluctuations in the states energies, being generally 

nonlinear and containing also states coherences, can 

nevertheless be reduced to a linear equation of the popu-

lation balance only [4]. 

In general, the microscopic master equation is too 

complicated to treat it precisely. Therefore, to try to in-

tegrate it analytically we need simplifying approxima-

tions dealing with averaging out those irrelevant degrees 

of freedom, precise knowledge of which is out of the 

question. For doing this, according to Ref. [3], the se-

quence of consecutive averaging approximations can be 

proposed as follows. These approximations are: first, 

partial averaging over the Bose-distributed normal vi-

brations (phonons) in a thermally equilibrium environ-

ment by eliminating them from explicit consideration; 

then, neglecting the fast decaying off-diagonal elements 

of the nonequilibrium density matrix (states coherences) 

and retaining only its ensemble-averaged diagonal ele-

ments (populations of system states); further, averaging 

over the random fluctuations in microscopic energies 

given the distributions of their mean stochastic ampli-

tude and frequency parameters; and, finally, modulariz-

ing the description of the temporal behavior of the locally 

equilibrium state populations by using appropriate 

steady-state approximations (for more detail, see, e.g. 

[4]). The final result of the above approximations is the 

reduced master equation. 

Following [7], the resulting kinetic model for the pro-

cess of self-decaying of defects in a brittle solid in the 

one-defect approximation is represented in the form of a 

three-stage four-state scheme 
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state being the aggregated state of N equipopulated (de-

generate) thermally activated states at equal energy IE  

with the initial equilibrium population, |F   is the 

transient failure-prone state at energy EF, |D   is the 

decay failure-tolerant state at energy ED, and 

, , , ,f r     are the rate constants for between-state 

transitions directed with respective arrows in (1). In this 

scheme, the activated-state degeneracy, being a function 

of T and applied stress , scales with these as 
 

 



1 exp[( ) / ]

1 exp[ ( ) / ]

exp( / ) exp( / )

I B

I B

F B D B

N n E k T

E k T

E k T E k T

  



    

     

   

 (2) 

 

Here,  is the volume of representative volume of a 

one-defect cell of the system whose states of applied 

stress are uniformly distributed in the cell with activa-

tion energies being much larger than the thermal energy 
 

 I F D BE E E k T    (3) 

 

At not very high stresses, the expression in the figure 

brackets of (2) is close to unity. Therefore, the steady-

state stress in the one-defect cell is determined by the 

condition of chemical potential equilibrium 
 

 1 1
0ln( / ) 0Bk T n n    , (4) 

 

where 0 exp[ ( / )]I Bn E k T   is the activated-state de-

generacy density at zero stress. However, condition (4) is 

well appropriate for a continuous distribution of defect 

states ceases to hold at higher stresses in the one-defect 

approximation conditioned by a discrete degeneracy rela-

tion 0 1N N  . Therefore, in this case one must use 

the more general expression (2) which reproduces both 

the limit of zero stress and the limit of infinite stress 

leading to 0 1N   and 1N  , respectively. 

The kinetic model (1) comprises the problem of a con-

tinuous-time discrete-state Markov chain. Given the 

initial conditions, it can be solved exactly for the time-

dependent populations of states by using standard nu-

merical methods for solving systems of first order linear 

differential equations [3]. 

Hence, it is appropriate to restrict further considera-

tion of defect evolution to only the one failure-prone state 

|F  , staying with a defect which appears for the sys-

tem to be a single cause for failure. However, this state 

is a transient one. So, transiting a defect to the pre-decay 

state |D   makes the system failure-tolerant and hence 

creates the possibility for ultimate self-decaying of it to 

the ground defect state. The resulting system of master 

equations in the case (1) for the respective state popula-

tion , , ( )I F Dp t  takes the form of the system of three ki-

netic equations 
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However, even for the given initial conditions, the 

analytical solution of system (5) remains still complicat-

ed. Nevertheless, we can use an exact analytical solution 

to the similar simpler system obtained in [3] and find an 

approximate analytical solution for population 
( )( ) ( ; )F Fp t p t   of failure-prone state |F   (the sta-

tionary level that is always small at all ). By so doing, 

we can obtain 
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Here, the exponents ' 1,2,3j j    under summation and 

product signs are the system eigenvalues which are 

associated with the non-negative Debye relaxation 

rates obeying the characteristic equation 
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 (7) 

 

Given the simple initial conditions, analytical solu-

tion (6) coincides with the analogous solution of [3] at 

1N  . Moreover, Eq. (7) corresponds to the third or-

der equation 
 

( ) ( ) ( )

[( )( ) ( )] ( ) ( ) 0

F F

F F

p t fn r p t
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
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(8) 

 

This equation represents an exponential temporal 

rise and the decay pattern that consists of the failure 

relaxation modes. This mode adds its particular contri-

bution, differing in eigenvalue (7), as well as amplitude 

and sign (8). As expected, the time dependence of ( )( )Fp t  

is transient and shows an increase, peak and decline 

without oscillations to the equilibrium as t . This 

allows us to find the maximum of the population 
 

 ( ) ( ) ( )( )F F Fp p t    (9) 

 

at the peak time moment  being a nontrivial solution 

of the transcendent equation 
 

 ( )( ) 0Fp t  . (10) 

 

Since the maximum failure probability is associated 

with just a maximum of population (6) of failure-prone 

state ( )( ) ( ; )F Fp t p t  , expression (9) represents the 

stress dependence of failure cumulative distribution 

function of the system. Populations 
( )
, ( )D Ip t

 of other 

states can be obtained similarly (cf. [3]) and are not pre-

sented here for reasons of space. 

In general, there is no analytical solution to the prob-

lem (6)-(10). Therefore, in the next section we use a nu-

merical method to simulate the behavior of failure cumu-

lative distribution based on available experimental data 

for brittle ceramic materials. 

 

3. COMPARISON WITH EXPERIMENT 
 

In the previous section, we propose a three-stage  

kinetic scheme (1) to model the self-decaying of defects 
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in brittle solids under the applied stress. In the one-

defect approximation, we consider the time behavior of 

four defect states, that is, the ground state, decay state 

|D  , failure-prone state |F  , and aggregated acti-

vated state |I  , populations of which obey the system 

of kinetic equations (3). We assume that in this system 

the initially populated is only activated state and the 

responsibility for failure lies with only failure-prone 

state. In approximations of the high degeneracy of acti-

vated state and the large energy of activated, failure-

prone and decay states as compared to the energy of 

the ground state, we obtain the stress dependence for 

the failure cumulative distribution function (9) associ-

ated with the maximum ( )
Fp
  of population ( )( )Fp t  of 

failure-prone state |F  . 

In order to make a comparison of theoretical cumu-

lative distribution ( )
Fp
  (9) with experimental data we 

must select a structural material that is brittle and 

hence prone to fracture. In this regard, the most appro-

priate materials are infrared window materials, such as 

CVD ZnSe and sapphire, widely used in automobile, 

aerospace and space structures and electronic devices 

[8-10]. These materials are tough to resist fracture un-

der sudden impact, but produce a brittle fracture re-

sponse with little to no deformation. Therefore, it is 

natural and interesting to test those materials in the 

conditions that could imitate the effects of flexural 

stresses on deleterious strains in them. Such a testing 

has actually been carried out by Klein in a number of 

his papers e.g. [6, 8, 10]. It was shown that the Weibull 

statistics of brittle ceramics do not always well describe 

the experimental cumulative distributions and should 

be endowed with additional parameters to better fit the 

data [11]. On the other hand, these distributions can 

successfully be described by the use of statistics of de-

caying defect states in the framework of three-stage 

kinetic model coincident with (9) and considered in de-

tail in [3]. Consequently, we may use here the results 

obtained in [3] to illustrate that, in the one-defect ap-

proximation, the applicability of a kinetic model consid-

ering only three decaying states, and one absorbing 

state to the description of experimental data can serve 

as the evidence for thermal creation and spontaneous 

self-decaying of defects in brittle solids. The very similar 

effects of thermal creation and spontaneous decaying of 

defects have also been observed in polyethylene crystals. 

Usually, different brittle materials have different 

margins of safety with respect to flexural stress [8-10]. 

Therefore, using two different strength parameters and 

two different shape parameters to describe the depend-

ence of measured cumulative failure distributions on 

the applied stress in terms of the five parameter bi-

modal Weibull distribution model [10] is almost insuffi-

cient for the possibility of a significant stress depend-

ence of all those parameters. On the other hand, the 

use of five parameter rate constant space of the kinetic 

model (1) in the one-defect approximation (cf. [3]) in-

stead of two-strengths-two-shapes-one-weight parame-

ter space of bimodal Weibull model noted above ap-

pears to be fully independent of the stress scale. The 

main reason for this is that, in a thermodynamic model 

(5), the stress is assumed to change only degeneracy of 

aggregated activated state f fn  , but not influence 

microscopic rate constants  of transitions between 

different states in the kinetic model (1). 

It is known that the system (6) with 1M   states 

generally has ( 1) / 2M M   rate constants with only 

2 1M   of them be linearly independent in the leading-

order approximation. As the set of microscopic rate 

constants is scale independent, it can therefore be con-

sidered as a complete set of independent parameters in 

a rate constant space of scheme (1). Moreover, we can 

introduce: 
 

 / ; / ; / ; / ; /f f w r r w w w w            .(11) 

 

The set of transformed parameters becomes dimension-

less, with w  being the failure rate constant correspond-

ing to the median of cumulative failure distribution func-

tion ( )
Fp
  (9) measured at the stress ms  , where ms  

is the median strength characteristic of the material. 
 

 

 
Fig. 1 – The cumulative failure distribution )(

Fp  (curve) sim-

ulated with (6)-(10) for (a) CVD ZnSe and (b) sapphire with 

the rate constant parameters (given in the inset in dimension-

less units) as a function of dimensionless reduced stress loga-

rithmically scaled as )log()10ln/()(  fTkBms   (12). The 

experimental data for both materials (squares and triangles) 

are adapted from [8] 
 

This allows to give a description of experimental da-

ta on the flexural load testing of the two different brit-

tle solids, that is, CVD ZnSe and sapphire, in a unified 

manner. In such a description, the transformed failure 

rate constant f fn   is considered as a running pa-
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rameter that can change with stress due to (2) in the 

wide limits by satisfying the relation 
 

 ( / ) ln( )ms Bk T df    , (12) 

 

whereas the other transformed rate constants are re-

garded as the adjusting parameters specific to a brittle 

solid examined with ( / ) ln(1 / )ms Bk T f    being a 

nuisance parameter characteristic of its median 

strength. 

Thus, experimental data for CVD ZnSe and sap-

phire, adapted from [8], can be compared with the cor-

responding cumulative failure distribution functions (9) 

numerically simulated using the equations (6)-(10). The 

result of this comparison is depicted in Fig. 1. As it is 

seen, adjusting the dimensionless rate constant param-

eters (9) with accuracy to the arbitrary failure rate con-

stant f  that is generally unknown provides a good 

agreement between the theory and the experiment. 

Moreover, both the nearly unimodal cumulative failure 

distribution in Fig. 1a and the clearly bimodal cumula-

tive failure distribution in Fig. 1b are described equally 

well. This means that the unification of rate constant 

space for the description of evolution of self-decaying 

defect states in a simple three-stage kinetic model (1) 

can form a helpful framework for insights into the 

stress behavior of brittle solids whose cumulative fail-

ure distributions are sigmoidal with different steepness 

slopes and modality shapes, but detailed information 

on the median strengths of which is hardly accessible 

or almost inaccessible for cost or technical reasons. 

The first reason is associated with the relatively 

simple problem of unifying the description of cumula-

tive distributions far distanced in their strengths on 

the stress scale. To represent these distributions on a 

single stress scale, that problem is approached with 

numerical simulations of equations (6)-(10) on a re-

duced rate constant space. This allows to provide a 

comparison of experimental failure cumulative distri-

butions and theoretical ones without taking into ac-

count the strengths of the materials and without speci-

fying their failure rate constants. A result of a compari-

son is shown in Fig. 1. 

The second reason is related to the complicated 

problem: resolving the sensitivity of the response of 

different materials to the stress loading. Obtaining the 

density distribution functions from the cumulative dis-

tribution functions ( )
Fp
  as ( ){ [ln( )]} / [ln( )]Fd p f d f

   and 

plotting them in Fig. 2 as two curves labeled as (1) and 

(2), respectively, we see that they are indeed very dif-

ferent. Thus, the highest slope steepness of cumulative 

distribution functions manifested in the largest maxi-

mum of the density distribution function curves ap-

pears to be bigger in curve (1) than in curve (2) of 

Fig. 2, while the modality feature is more apparent in 

curve (2) than in curve (1). 

The explanation of this effect is that a-plane sap-

phire is more advanced in its performance than ZnSe 

and hence shows the far more strength and a higher 

competitive advantage regarding to it (cf. [3]). This ful-

ly corresponds to the well-known maximizing perfor-

mance while minimizing sensitivity-to-failure objective 

very typical of high-energy systems, such as missile 

window materials [6]. On the other hand, this implies 

that, given the tolerances with respect to the cumulative 

response of maximum population ( )
Fp
  of failure-prone 

state |F   on the limiting stimulus actions, such as 

flexural or tensile stress, the brittle material with the 

larger margin of safety in the log of stimulus rate con-

stant space, such as a-plane sapphire (a-Al2O3) with den-

sity distribution curve (2) in Fig. 2, i.e., with the lower 

sensitivity (the slope of the cumulative stimulus-

response curve in Fig. 1b) exhibits lower sensibility to 

failure and therefore a higher competitive advantage as 

compared to the other brittle material, say ZnSe, with 

the smaller margin of safety on the density distribution 

curve (1) in Fig. 2 and the higher slope of cumulative 

stimulus-response curve in Fig. 1a, if these materials are 

regarded as rivals or competitors [6]. 
 

 
 

Fig. 2 – The cumulative failure distribution 
( )
Fp


 (curve) sim-

ulated with (6)-(10) for (a) CVD ZnSe and (b) sapphire with 

the rate constant parameters (given in the inset in dimension-

less units) as a function of dimensionless reduced stress loga-

rithmically scaled as ( ) / ( ln10) log( )ms Bk T f     (12). The 

experimental data for both materials (squares and triangles) 

are adapted from [8] 

 

4. CONCLUSIONS 
 

Based on the above results, we come to the conclu-

sion that the concept of self-decaying of defect states in 

brittle solids can be considered as a consistent and 

physically well-substantiated framework helpful in 

understanding a variety of failure factors that influence 

the performance and competitiveness of different mate-

rials at various levels of fracture. Thus, among two IR-

transmitting window materials analyzed in this work, 

the a-plane sapphire exhibits advanced performance 

revealing a higher competitive advantage regarding the 

CVD ZnSe, which has much lower strength (see Fig. 1) 

and moreover performs poorly compared to the a-Al2O3 

(see Fig. 2). This conclusion agrees completely with the 

experimental observations provided in [8]. 

 

ACKNOWLEDGEMENTS 
 

The present work was partially supported by the  

National Academy of Sciences of Ukraine (project 

No. 0116U002067). 



 

V.I. TESLENKO, O.L. KAPITANCHUK J. NANO- ELECTRON. PHYS. 12, 06017 (2020) 

 

 

06017-6 

REFERENCES 
 

1. T.L. Anderson, Fracture Mechanics – Fundamentals and 

Application, 3rd ed. (CRC Taylor & Francis: Boca Raton: 

2005). 

2. R. Morrell, Fractography of Brittle Materials (National 

Physical Laboratory: Teddington: 1999). 

3. O.L. Kapitanchuk, V.I. Teslenko, Mol. Cryst. Liqu. Cryst. 670 

No 119 (2018). 

4. O.L. Kapitanchuk, O.M. Marchenko, V.I. Teslenko, Chem. 

Phys. 472 No 249 (2016). 

5. D.A. Kolesnikov, I.V. Sudzhanskaya, I.Yu. Goncharov, 

S.V. Lytovchenko, V.Yu. Novikov, Е.А. Kudryavtsev, 

B.O. Mazilin, Е.V. Krytsyna, V.M. Beresnev, O.V. Glukhov, 

J. Nano- Electron. Phys. 12 No 1, 01022 (2020). 

6. C.A. Klein, Opt. Eng. 37, 2826 (1998). 

7. O.L. Kapitanchuk, V.I. Teslenko, Phys. Chem. Solid State 

20 No 3, 269 (2019). 

8. C.A. Klein, Proc. SPIE 7504, 40K (2009). 

9. C.A. Klein, J. App. Phys. 96, 3172 (2004). 

10. C.A. Klein, Opt. Eng. 50, 023402 (2011). 

 

 

Три-стадійна кінетична модель для самозагасаючих дефектів в крихких твердих тілах 
 

В.І. Тесленко, О.Л. Капітанчук 

 

Інститут теоретичної фізики імені М.М. Боголюбова, Національна академія наук України,  

вул. Метрологічна 14-б, 03680 Київ, Україна 

 
Ґрунтуючись на методі матриці густини для загальної нерівноважної системи, яка розглядає пев-

не число флуктуючих, одягнених фононами, станів, зв'язаних з рівноважним оточенням, та викорис-

товуючи самозагасаючі стани, за допомогою три-стадійного підходу до динаміки дефектів, знайдено 

кумулятивні розподіли ймовірностей руйнування в залежності від прикладеного напруження віднос-

но піків амплітуд нестаціонарної заселеності проміжного стану системи, що загасає. Показано, що те-

оретичні кумулятивні розподіли, знайдені з розв'язку трансцендентного рівняння для амплітуд засе-

леностей проміжного стану, знаходяться у прямій відповідності з процесом необоротного руйнування 

всієї системи і тому мають співпадати з експериментальними розподілами руйнування, які спостері-

гаються у тестах згинання крихких твердих тіл. У формалізмі, який пропонується, встановлено, що 

сапфір в а-площині відрізняється перевагою у своїй якості щодо крихкості. При цьому зроблено ви-

сновок, що a-Al2O3 має не тільки більшу стійку стабільність, а проявляє й помітно більш високу кон-

курентну перевагу відносно до CVD-ZnSe. Цей висновок добре узгоджується з експериментальними 

спостереженнями прозорих в ІЧ-діапазоні відповідних матеріалів, як-то a-Al2O3 та CVD-ZnSe. 
 

Ключові слова: Крихкі тверді тіла, Самозагасаючі стани, Відмова системи, Якість а-Al2O3. 
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