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Low-dimensional crystal structures that are attractive materials for the fabrication of modern nanoe-
lectronic devices due to their unique physical properties are considered. Type of nanostructure (quantum
well, quantum wire or quantum dot) and its sizes with respect to quasiparticle confined movement are de-
termining factors for the formation of its mechanical, kinetic, optical and electronic properties and, since,
main physical parameters. The processes of interaction between quasiparticles (in particular, electron-
phonon interaction) also play an important role. Renormalized energy spectra of electrons and phonons de-
fine the physical processes, which are produced by electron-phonon interaction in nanostructure. In order
to understand these peculiarities, it is necessary to study how the energy spectra of both these systems of
quasiparticles are transformed in nanostructures of different types and sizes, as well as mechanisms of
their interaction. Therefore, one should know the analytical form of dispersion relation for the electron en-
ergy and frequencies of all types of phonons in a particular nanostructure. In this paper, we propose the
method how to obtain the explicit dispersion relations for all modes of confined acoustic phonons in plane
quasi-two-dimensional nanostructures with hexagonal crystal lattice. Using the dielectric continuum mod-
el, the formulas describing frequency as a function of the phonon wave vector are derived and phonon
group velocity, in its turn. Computer simulations are performed for GaN nanofilm with wurtzite structure.
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1. INTRODUCTION

Nanosized crystal structures and materials have
been studied for a long time [1], however, interest to
their research is still not declining [2, 3]. Despite the
great number of theoretical and experimental research
works in this field, the theoretical description of electron-
phonon interaction in nanoheterostructures remains an
actual problem. This interaction is an important factor
in the processes of electrical and thermal conductivity,
optical absorption, radiation, luminescence and Raman
scattering in such systems [4]. It is particularly difficult
to describe consistently the influence of acoustic phonons
on these processes. The reasons lay in the discrepancy
of some integrals in the expressions for the electron-
phonon binding functions and difficulties in calculating
spectral dependences of the modes of the acoustic pho-
non spectrum in nanostructures. Therefore, the explicit
expression for the function describing these dependenc-
es analytically is actual for the development of the theo-
ry of electron-phonon interaction in such structures.

In this paper, we propose a simple method to estab-
lish the analytical dependences of energies and velocities
of acoustic phonons in a plane quasi-two-dimensional
crystal nanostructure — nanofilm. It is based on the idea
of expansion of components of the displacement vector
of elastic vibrations of atoms in the crystal lattice into
Fourier series. This gives an opportunity to find the
analytical solution of equations of motion and the dis-
persion relation for frequency.

Computer simulations are performed for hexagonal
structure of GaN type in order to compare the obtained
results with the data presented by the authors of paper
[5], who used the numerical methods.
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2. MODEL FOR THE PROBLEM AND METHOD
OF ITS SOLUTION

The processes of interaction between acoustic pho-
nons and electrons in nanosized quasi-two-dimensional
crystal structures can be described in the framework of
an elastic continuum model using the method of defor-
mation potential [6]. In this case, the Hamiltonian of
the electron-phonon interaction is expressed within the
functional dependences of frequency w of elastic vibra-
tions in a nanofilm on the magnitude of the wave vec-
tor ¢ and amplitudes of the displacement vector u,,
(m =1, 2, 3) on the coordinate x; along the direction of
its surface, Fig. 1. Such dependences are obtained in
this paper for all modes of the acoustic phonon spec-
trum in such quasi-two-dimensional crystal structures.
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Fig. 1 — Geometrical scheme of a nanofilm

For the solution of the problem, like the authors of
paper [5], we use the dielectric continuum model and
equation of motion for the description of elastic vibra-
tions in an anisotropic medium with mass density p
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where U,, (m=1, 2, 3) are the components of the dis-
placement vector, which are determined by the structure
and elastic characteristics of the medium, such as the
components of the mechanical stress tensor c;,; = ¢, Uy,
where c,; and Uy =v [(OU/0x)) + (OU/ 0x3)]/2 are the
components of the elastic and strain tensors, respec-
tively. Assuming that elastic vibrations are propagat-
ing along the Ox; axis, the solution of the equation of
motion is written in the form

U, (x,%5,t) = u,,,(x5) exp[-i(qx, —t)] , @)

where i is the imaginary unit.

Substituting function (2) into equation (1) and tak-
ing into account the symmetry of the crystal lattice, we
transform it to the form of the second order partial dif-
ferential equation. In structures with the crystal lattice
of hexagonal symmetry (wurtzite), the elastic proper-
ties are defined by a set of seven independent elastic
constants: ¢11, Co, C33, Cia, Ci3, Cas, Ces. FOr such struc-
tures, these equations were obtained in [5] in the fol-
lowing form:

ol2u2 (x5)

dx§ - cesq2u2 (xg) (3)

2
—po Uy (x5) = Cyy

for the transverse vibrations which are polarized in the
plane of the layer (mode of shear vibrations) with
boundary conditions

du,xg)

dr, 0. ()

For the two other polarizations, which are defined by
the components of the displacement vectors U, and

U, =-iU,, the equations of motion have the form of the

system of equations

d%u, (x
—p’u; (x5) = —¢;,q%w, (x5) + €4y # +
dx;
dui(x
+(eyg +¢44)g M ) ®)
dx,
., 9, d*uy(x,)
— P u3(x3) = —044(1 u3(x3) + CS3 72 -
dux;
du, (x
ey + ey )q Pt ©6)
dx,
with boundary conditions
du . du;
—L+quy =0, —qcu “‘03373:0' (M
dx, dxy

Superposition of these vibrations produces two inde-
pendent modes in the spectrum of acoustic phonons in
quasi-two-dimensional nanostructures: dilatational (SA)
and flexural (AS) modes of normal vibrations [5].
Usually, the dispersion relation for these modes of
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confined acoustic vibrations is obtained within the so-
lution of the system of equations (3), (4) and (5)-(7) us-
ing numerical methods. We propose the method of ana-
lytical solution of this problem.

At first, we present the unknown functions u,,(xs)
(m=1,2,3), limited in a segment [0, d], within the
cosine range

u,,(x3) = i a, cos(nzxy [ d) (8a)

n=0

for the symmetric (S) solution or within the sine range

u, (x;) = 3 a, sin(nax, / d) (8b)

n=1

for the asymmetric (A) one. Substituting them into the
system of differential equations (3), (4) and (5)-(7), we
transform them into algebraic equations. The condition
of existence of their solution determines the dispersion
relations for all modes of confined acoustic phonons:
shear, dilatational and flexural.

3. RESULTS AND DISCUSSION
3.1 Spectrum of Acoustic Phonons in a Nanofilm

Substituting (8) into equation (3) and taking into
account the conditions (4), we get the dispersion rela-
tion for shear vibrations in a nanofilm with hexagonal
crystal lattice in the form

o (@)= \/ oo *"’4;(”” 1dy )

By analogy, using (5), (6) and taking into account (7),
we get the dispersion relation

o (@ = [ DN TnlD) (10)
0

for dilatational phonons and

a)fs(q) _ F.(@) ;p\/an(CI) 11)

for flexural phonons. Here n =1, 2, ... is the quantum
number (number of the vibrational state) and

F,(q)=(c, +C44)q2 +(nxl/ d)z(css +Cyy)
or

F, (q9)=(c; _044)2(14 +2(nrx/ al)2[2(c33 +c44)2 -

¢y —Cyy)(Ca— e)lg” +(nx/ d)4(033 —cy)?

are the auxiliary functions. If n = 0, expressions (9)-(11)
define the dispersion relations for the frequencies of
TA2-, LA- and TAi1-modes of normal vibrations in 3D
(bulk) crystal, respectively.

Using the obtained relationships and magnitudes
which determine the structure and mechanical proper-
ties of GaN (wurtzite structure): lattice parameters
ao=23.189 A, ¢, =5.185 A, p=6.15 g/lem? [7] and elastic
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constants (in GPa) ¢;; = 390, ¢33 = 398, ¢4y = 105, g6 = 123,
c19 =145, ¢13= 106 (according to A. Polian (1996), see in
Ref. [8]), we present the dispersion curves for GaN nan-
ofilms with different thicknesses in order to compare
the results of analytical and numerical calculations pre-
sented in paper [5] at d = 6 nm. Our results prove that
calculated magnitudes of frequencies and character of
their dependences on wave vector well correlate with
data in [5].

The dispersion curves of shear phonons, Fig. 2, are
almost the same as those presented in Fig. 1a in [5].

The similar results are observed for dilatational and
flexural phonons, Fig. 3, and those, which are presented
in Fig. 4d in [5].
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Fig. 2 — Energy spectrum of shear phonon mode in a nanofilm
with a thickness of N GaN monolayers
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Fig. 3 — Energy spectrum of dilatational (a) and flexural (b)
acoustic phonon modes in a nanofilm with a thickness of NV
GaN monolayers
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It is clear that due to the spatial confinement of
acoustic phonons in a nanofilm, one can see the quasi-
optical states of these modes. The energies of these
states hw, (n=1, 2, ...) at any q exceed the energies of
respective states in the bulk crystal Awy. The depend-
ence hw,(q) is nonlinear. These excesses are significant
at small g, and as ¢ increases, the energies of all pho-
non states asymptotically tend to hay.

Distances between dispersion curves hw,(q) depend
on the nanofilm thickness: they decay as it increases.
Character of these functions is illustrated by behavior
of the dispersion curves plotted at fixed g for nanofilms
with different thicknesses for dilatational phonon
mode, Fig. 4.
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Fig. 4 — Energy of dilatational phonons as a function of nano-
film thickness

3.2 Velocity of Acoustic Phonons

Obtained functional dependences of frequency on
the wave vector give an opportunity to establish dis-
persion and size dependences of group velocities v of
acoustic phonons in a nanofilm. Differentiating func-
tions (9)-(11), we obtain

v}'(@) = el (12)
Jpo<c66q2 HCD )

for shear mode and

VSAAS (g = {(ey, + ¢4 )W Fn (@) + (%)2[2(013 +eg)t -

_(011 _C44)(033 _044)]]qi(cu _044)2q3}>< (13)
X2 F,, (9)(F,, (@) £\, (@)

for dilatational/flexural phonons.

Functions v,(g) in a nanofilm demonstrate disper-
sion, Fig. 5, on the contrary to the bulk crystal where
group velocities of LA-, TAi-, and TA2-modes of acoustic

v, =USA =c, /gy = 7963,
Upy, = = e,/ p = 4132, Ura, =v" = Jes | g = 4472 mis.
Herein, the velocities of shear and dilatational modes
are smaller than the respective magnitudes in bulk
crystals, see Fig. 5a, b. The difference between v,(q)
and vy is bigger if the wave vector is smaller. Group
velocities of these phonons monotonously increase. At

phonons are constant:
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bigger g their magnitudes asymptotically, from below,
tend to vgy, and vy, respectively.

The dispersion dependence of group velocities of
flexural phonons is nonmonotonic, Fig. 5c. Bigger ¢
causes their sharp increase from infinitely small mag-
nitudes to maximal ones, which exceed the velocity of
transverse TAi-phonons in the bulk crystal. Further,
the curves, like in cases shown in Fig. 5a, b, asymptoti-

v, 10%m/s

J. NANO- ELECTRON. PHYS. 12, 05033 (2020)

cally tend to vyy,, but from above.

Differences between the group velocities of different
states of each mode of the acoustic phonon spectrum
between each other and with respect to the magnitudes
of corresponding velocities in the bulk crystal change
when the nanofilm thickness varies, Fig. 6. It is abso-
lutely clear for an ultra-thin nanofilm with a thickness
of several GaN monolayers.
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Fig. 5 — Spectral dependences of group velocities of phonon modes: (a) share; (b) dilatational; (c) flexural in a nanofilm with a

thickness of N GaN monolayers
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Fig. 6 — Group velocities of acoustic phonons as functions of GaN nanofilm thickness for (a) shear; (b) dilatational; (c) flexural modes

We should note that the revealed character of the
dispersion dependences of group velocities generally
correlates with the results of numerical calculations
presented in [5]. Our results for shear phonon mode,
Fig. 5a, are almost the same as that shown in Fig. 2a of
the cited paper. However, in case of SA-phonons, one
can see essential differences: character of the disper-
sion curves presented in Fig. 5d, [5] is almost the same
as we obtained for phonons of AS-polarization, but
much more complicated. Dispersion functions for AS-
phonons are not presented in paper [5].

4. CONCLUSIONS

The method of obtaining an explicit expression for
dispersion relations for frequencies of confined acoustic
phonons in a nanofilm with hexagonal symmetry is
proposed. Within the obtained information, it is possi-
ble to analyze and quickly calculate the structure of the
frequency spectra, as well as the energies and group
velocities of each mode of acoustic phonons in such
nanostructures.

The results of calculations performed on the base of
obtained relationships for wurtzite GaN nanofilms with
different thicknesses prove the essential effect of spa-
tial confinement on the structure of frequency-energy
spectra of acoustic phonons in ultra-thin nanofilms —
the emergence of quasi-optical phonons. The frequen-
cies of quantum states exceed the respective character-
istic frequencies of atomic vibrations in the bulk crystal
for all types of modes. Their dependences on the wave
vector g nonlinearly increase. Both these peculiarities
are essential at small ¢ and are bigger for the smaller
nanofilm thickness.

By analogy, the calculated magnitudes of phonon
velocities for shear and dilatational modes monotonous-
ly increase at bigger ¢, being smaller than the respec-
tive vry, and vps of the transverse and longitudinal

phonons in the bulk crystal. These differences are also
more essential at small magnitudes of the wave vector
and nanofilm thickness.

Dispersion dependences of group velocities of flexur-
al phonons are nonmonotonous. In the vicinity of small
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g, the velocities of all phonon states of this type sharply
increase approaching their maximal values, which ex-
ceed velocity vpy, of transverse TAi-phonons in the bulk

crystal. The location and height of the maximum are
determined by the nanofilm thickness and the number
of quantum states. Further increase in the wave vector
causes the decrease in velocities of all quantum states of
this mode of acoustic phonons and their asymptotical
tend to vgy,, faster for the bigger nanofilm thickness.

Differences between the group velocities of different
states of each mode of the acoustic phonon spectrum
between each other and with respect to the magnitudes
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AHaniTHYIHNN PO3PAXyHOK CIIEKTPAa YaCTOT i FPYIIOBUX MBUAKOCTEH aKyCTUYHUX (POHOHIB

Y KBa3iJBOBUMiPHUX HAHOCTPYKTYpPax
10.B. JIymox, B.M. Kpamap
Yepuiseupkuli HayloHavHull yHigepcumem, 8ys. Kouwobuncoroeo, 2, 54012 Yeprisui, Yrpaina

PosrisagamoTbess HU3BKOBHMIPHI HAIIBIPOBIHMKOBI KPHCTAJNYHI CTPYKTYPH, SKI Uepe3 YHIKAJIbHICTH
CBOIX (PI3MYHUX BJIACTHBOCTEM HAJIEYKATH 10 MPUBAOJIMBUX MATEPIAiB IJIS CTBOPEHHS HOBITHIX IIPHUCTPOIB
HaHOeJ eKTpoHiKku. Tun (KBaHTOBA sSiMa, KBAHTOBA HUTH YN KBAHTOBA TOYKA) T4 PO3MIPU OOMEIKEHHS PyXy
KBa3i4aCTUHOK Y HAHOCTPYKTYPI € BU3HAYAJIBHUMHU (paKTOpaMu Ipu PopMyBaHHI il MeXaHIYHMX, KIHETHY-
HUX, OITUYHUX TA JIEKTPOHHUX BJIACTHBOCTEM, & OTe ¥ 11 0OCHOBHUX (PI3MUYHMX mapaMmeTpis. Bemwky posib
TYT BiZIrPAOTh TAKOK IIPOIIECH B3aeMO/Iil KBA3IYaCTHHOK, 30KpeMa, eJIeKTPOoH-OHOHHOI B3aemomii. ITepeHo-
PMyBaHHS €HEPreTUYHHX CIIEKTPIB €JIeKTPOHIB 1 (POHOHIB y HAHOCTPYKTYPI1 3YMOBJIIOE OCOOJIMBOCTI Iepediry
B HHUX IIPOIIECIB, 10 KOHTPOJIIOITHCSI €JIeKTPOH-(POHOHHOW B3aemoier. Jsa posyMiHHS X 0cobIMBOCTEH
HEeOOXITHO JTOCITIPKYBATH 3aKOHOMIPHOCT] TpaHCcpopMaIrli eHepreTHYHUX CIIeKTPIB 000X CHCTEeM KBa3l4acTHh-
HOK y HAHOCTPYKTypax Pi3HOr0 THIIy Ta PO3MIpIB, 4 TAKOK MexaHI3MiB ix B3aemoxii. lle Bumarae snamus
AHAJITUYHOTO BUTJIAAY 3aJIEKHOCTI eHeprii eJISKTPOHA 1 YacToT (POHOHIB YCIX MOYKJIMBUX THUINB Yy KOHKDPET-
HI HAHOCTPYKTYpl. Y AaHIN poOOTI BHCBITJIEHNI CIIOCI0 BCTAHOBJIEHHS SIBHOTO BUTJISIZY 3aKOHIB qucrepcii
YaCTOT YCiX TJIOK CHEKTpa 00MeKeHNX aKyCTUYHUX (DOHOHIB y IIOCKUX KBa31IBOBUMIPHUX HAHOCTPYKTYpPaX
3 TeKCaroHaJIbHOI KPHUCTAJIYHOK IPATKOK. ¥ PaMKaX MOJEJI JIeJeKTPUYHOT0 KOHTHHYYMY BHBeIeH] dop-
MyJIH, 1[0 ONKCYIOTH 3aJIeKHICTh YACTOTH BiJl XBUJILOBOIO BeKTOpa (POHOHA Ta, HA I[ilf OCHOBI, HOr0 IPYIOBOL
mBuaKocTi. KoHkpeTHi po3paxyHKM BUKOHAHI Ha MpUKIaal HaHOILTBEY GaN BIOPTIIUTHOI CTPYKTYpPH.

Knrouogri ciosa: Hanocrpykrypa, Hamorumisra, Axycruuni dororu, Yacroruwmit crrekTp, ['pyriosa mBUaKICTb.

05033-5


http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=en
https://doi.org/10.3762/bjnano.9.98
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Maksym+V.++Kovalenko
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Liberato++Manna
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Andreu++Cabot
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Zeger++Hens
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Dmitri+V.++Talapin
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Cherie+R.++Kagan
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Victor+I.++Klimov
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Andrey+L.++Rogach
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Peter++Reiss
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Delia+J.++Milliron
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Philippe++Guyot-Sionnnest
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Gerasimos++Konstantatos
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Wolfgang+J.++Parak
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Taeghwan++Hyeon
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Brian+A.++Korgel
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Christopher+B.++Murray
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Wolfgang++Heiss
https://doi.org/10.1021/nn506223h
https://doi.org/10.1007/978-94-007-1019-1_1
https://doi.org/10.1007/978-94-007-1019-1_1
https://doi.org/10.1007/978-94-007-1019-1_1
https://doi.org/10.1017/CBO9780511624247
https://doi.org/10.1017/CBO9780511624247
https://doi.org/10.1016/S0749-6036(03)00069-7
https://doi.org/10.1016/S0749-6036(03)00069-7
https://doi.org/10.1063/1.1710705
https://doi.org/10.1063/1.1710705
https://www.rfbr.ru/rffi/ru/books/o_1945754
https://www.rfbr.ru/rffi/ru/books/o_1945754
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.1368156

