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A nonlinear model of a viscoelastic medium is proposed, which describes softening of a thin layer of the
ice surface during friction. The description of this transformation is based on the three following basic
equations: the Kelvin-Voigt equation for a viscoelastic medium, the relaxation equations of Landau-
Khalatnikov-type and for heat conductivity. It is revealed that mentioned equations coincide formally with
the synergetic Lorenz system, where the order parameter is reduced to the shear strain, the stress acts as
the conjugate field, and the temperature plays the role of the control parameter. The work further develops
a nonlinear model of ice surface softening during friction, taking into account the spatial inhomogeneity of
temperature in the equation of heat conductivity. In the framework of one-mode and adiabatic approxima-
tions an analytical soliton solution of a one-dimensional parabolic equation for the spatial normal distribu-
tion of shear strain to the ice surface is found. Due to the numerical solution of the one-dimensional Ginz-
burg-Landau differential equation, the distribution of friction force over the softened surface layer of ice is
obtained and described. Two physical situations are considered: 1) the upper and lower surfaces move with
equal velocities in opposite directions; 2) the upper surface is sheared along the fixed lower one. The coor-
dinate dependencies of the friction force at different times are constructed and the evolution of the system
to a stationary state is described. It is shown that the growth of time and background ice temperature
leads to a sharper change of the friction force along the thickness of the premelted surface layer of ice, i.e.

the relative shear velocity of the rubbing surfaces increases.
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1. INTRODUCTION

Ice friction is an important problem both from a
practical point of view (for example, driving on ice) and
in nature (in particular, the movement of glaciers),
which includes the following processes: creep, destruc-
tion and melting. In the applied aspect, modeling ice
friction is useful in the study of processes in the design
of artificial ice environments, materials moving on ice,
in particular, to create appropriate elements in me-
chanical engineering and winter sports [1-12].

The topic of ice medium formation from heterogene-
ous matter has recently gained great interest among
scientists, for example, the model for creating lakes on
ice shelves [1]. It describes the full cycle of creating a
lake so that it is possible to study the effect of thawed
lakes depending on density and temperature profiles on
the ice shelf. Also, a model developed on real data tak-
en from observations in the Barents Sea [2] describes
the consolidation of ice rubble due to the penetration of
low salinity water at freezing point inside the rubble
when the water salinity decreases with time.

As part of the synergetic representation of boundary
friction using a system of three differential equations
for stresses, strains and temperature of the softened
near-surface layer of ice, the nontrivial behavior of the
ice layer is proposed [10-12]. This work is devoted to
the further development of the model, and it studies
the time and spatial evolution of the system taking into
account the inhomogeneous temperature distribution
along the thickness of the near-surface ice layer.

2. BASIC EQUATIONS AND MODEL

Consider a system of basic equations in the dimen-
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sionless form [10] taking into account the inhomogeneity
of temperature:

T é=—6+0, (1)
rod:—6+g(T—1)5, 2)
o, =V°T +(7,Q-T) - oz, ®3)

where ¢ is the shear component of the relative strains,
o is the shear component of the stresses, T is the ice
surface temperature, 7,,7 are the relaxation times of
the strain, stress and temperature, @ is the heat flow
from the sliding block on the ice surface (T. = 7@ is the
background ice and block temperature). A constant g <1
is introduced, which is equal to the ratio of the charac-
teristic shear modulus of ice to its relaxed value.
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Fig. 1 — Mechanical analogue of the system

In our case, the system of equations (1)-(3) repre-
sents a nonlinear model of a viscoelastic medium, which
describes softening of a thin layer of ice surface during
friction [10-12]. The basic idea is that the softened sur-
face layer of ice is a solid body with a high density of
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defects. The system of differential equations with par-
tial derivatives (1)-(3) specifies the features of the be-
havior of an inhomogeneous system operating in the
boundary friction mode, which is shown in Fig. 1.

Fig. 1 shows a system consisting of a block with mass
M, located under a layer of softened ice with thickness A,
and a spring with stiffness k. An additional load P is
applied and the block moves with speed V. Friction force
F acts on the block.

3. RESULTS
3.1 Analytical Solution

The selected equations (1)-(3) have no solution in
general form, so to solve this problem we use the
following adiabatic hierarchical approximation [10-13]:

T, >>Tp,T, . (4)

This approach to solving the problem is due to the fact
that in the process of evolution the stress o(t) and the
ice surface temperature T(¢) follow the changes in the
strain &(¢). According to [10-12], the minimum defor-

mation time can be estimated by 7z, ~107 s that is de-

termined by the reorientation time of water molecules
at the freezing point of fresh water. The microscopic

Debye time is equal to 7, ~a/c~10"% s, where

a~1nm is the lattice constant or intermolecular dis-
tance, and ¢ ~ 103 m/s is the speed of sound.

In addition, within the one-mode approximation, for
the operator V? the replacement is used, V2 — (l/ L)2 ,
where [ is the length of thermal conductivity or the
thickness of the ice film, L is the maximum value of the
length of thermal conductivity. Then, equating the left
parts of equations (2) and (3) to zero, we can express
the stress ¢ and temperature T as a function of the
strain e:

2| (1/ L) -1]+T,

oc=ge|l-—————=—|,
(L/ L) -1-g&*
T, - g¢’

Tzz—.
(1/L) -1-g&*

(6)

According to equations (5) and (6) at (I/L)2=0, the sta-
tionary values of the stress o and temperature 7T are as
follows:

3+ge2-T
JO:ggo[li 282 ] (7)
0
2_
T, = 8% Z (8)
1+gs;

Substituting equation (5) into (1) provided that

e <<1+(1/ L)2 , we obtain:
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ré=-e[1+g(3-T,)]+ g% (2-T.)+g(1/ L) ()
9
x(gTe —253)+2g5(l/L)4.

In the following equation (10), the inverse transition is

performed from (l / L)2 to the operator V2 :

ré=-¢[1+g(3-T,)|+ g% (2-T,)+g

(10)
><(gTe —283)V2 +2geV*.

Using approximations that g7, ~1, as well as each

derivative V and ¢ add an order of smallness, so the
powers of orders more than a third are neglected, then
the following equation is obtained:

7,6-V’e =—g[1+g(3—7;)]+g(2g—1)53. (11)

Thus, the system of equations (1)-(3) is reduced to the
time-dependent Ginzburg-Landau equation:

T.6= N

-t 12
‘ 5g(y) (12)

L i e

that can be rewritten in the following form:

r,.é=V —% ) (13)

Here the synergetic potential
& &t
V:[1+g(3—TQ)]E+g(1—2g)Z (14)

in which the condition g < 0.5 should be fulfilled.

If the temperature far away from the contact sur-
faces T, = 7;Q is less than the critical value

71'0:3"—8‘_17 (15)

then the potential (14) takes a minimum, which corre-
sponds to the shear strain & =0, so the softening can-
not occur and ice stays in a crystalline state. In the
opposite case Te > Teo the ice is softened and the steady-
state shear strain has a non-zero value, which we ob-

tain by equating to zero the derivative with respect to ¢
from (14)

) gTe—(3g+1) 1/2
80[(1—2g)gj . amn

In the steady state & =0 equation (13) has the first
integral

1(de ’
Z(dyJ =V +|V|. (18)
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Here it is taken into account that in the “ordered”
phase (the softened ice state) y=-o and under the
conditions ¢ =¢g,, Ve =0 the equality of the integration

constant to the absolute value of the synergetic poten-
tial Vo at ordering is required

(e, - (38 +1))’

Vo EV(‘QO)E_ 4g(1—2g)

19)

The solution of equation (13) taking into account
stationary conditions shows that the distribution of
shear strain is represented by the kink

£=g, tanh[yo_y], (20)
¢
2 _ 2
é = g],e _(3g+1) s (21)

where £is the correlation length diverging at the criti-
cal value of the friction surfaces temperature (15). The
integration constant yo >> & determines the width of the
boundary region in which the shear strain descents
from the stationary value (17) to zero. Thus, within the
framework of adiabatic and one-mode approximations,
the analytical solution (20) of the one-dimensional par-
abolic equation (13) was found for the spatial distribu-
tion of shear strain that is normal to the ice surface
(see Fig. 2).

’
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Fig. 2 — Coordinate dependence of the strains obtained as the
analytical solution of (13)

3.2 Numerical Solution

In subsection 3.1 the system of nonlinear differential
equations (1)-(3) within the framework of the one-mode
and adiabatic approximations is reduced to the one-
dimensional Ginzburg-Landau parabolic equation (13)
where the synergetic potential is expressed by equation
(14). In this subsection, we will solve the equation (13)
numerically to study the evolution of the system.

To find the thermodynamic force f(¢) the derivative
of the synergetic potential (14) is taken with a negative
sign

fe)=—¢[1+g(3-T,)|-g(1-2g)&”.  (22)

JJ. NANO- ELECTRON. PHYS. 12, 04002 (2020)

Equation (13) has the form of the one-dimensional
parabolic equation, which we will solve numerically
using an explicit two-layer difference scheme, i.e. finite
difference method [14-17]. In Fig. 3, a grid is shown
that specifies the spatial partition for the numerical
solution of equation (13).

Fig. 3 — Grid that specifies the spatial partition for the numer-
ical solution of equation (13) and shows the iterated nodes

The calculation will be performed on the y coordi-
nate, which corresponds to the limits [0; ym], and in
time from O to ¢n. Also Fig. 3 depicts the points repre-
senting the necessary boundary and initial conditions,
which will be determined based on the physical repre-
sentation of the problem.

We approximate the derivatives for the explicit
scheme, as shown in Fig. 3

Vzg = & — gi]+1 _2€i] +‘€ij—1 , (23)
ay* H?

J+l j
e 24)

where H=yum/M is the step in the coordinate, that is
the distance between the nodes, M is the number of
steps in the coordinate, A=¢N/N is the increment in
time, N is the number of steps in time. The final rela-
tionship looks like this:

J+l _
&g =&+

i+1

?{ sl 26l vl ()] 29)

&

where f (sl’ ) is a predetermined thermodynamic force

(22).
Thus, the system (25) includes N (M — 1) equations
j+1

and makes it possible to find &/* with the known val-

ues in the previous time layer eij . To solve a certain
problem, we fix a formal set of initial (at time ¢ = 0) (26)
and boundary (27) conditions

&=¢, i=0,1,.., M, (26)
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& =4, ey=n;, j=L2..., N, 27)

which add M +1 and 2N equations, respectively. To-
gether (25)-(27) represent (M + 1)(IN + 1) equations equal
to the number of unknown grid nodes.

When the friction surfaces move, the stationary
value & (17) is set, which we need to start the calcula-
tions. Consider the two most significant physical situa-
tions. The first is when the upper and lower surfaces
move at equal speeds in opposite directions. That is, on
the upper surface the shear strain is equal to &, and on
the opposite one — &, since they define the speed. The
strains are zero in the middle between the surfaces.
Therefore, we set the following initial (at time ¢=0)
and boundary conditions:

9

g?:—go-l—ﬂ, 1=0,1,..., M, (28)
M

gé:—go, ezjilzgo, j=12,..., N. (29)

Consider the second situation when the upper sur-
face is sheared at a fixed bottom. That is, on the upper
surface the shear strain is equal to , and on the oppo-
site one £=0. We obtain the following initial and
boundary conditions, respectively:

=50 i-01,., M, (30)
M
& =0, ely=5y j=1,2..,N. (31)

The coordinate y is measured in units of the thick-
ness of the surface softened layer of ice A, its lower limit
is 0, and the upper one is 1. For the solution we choose
the steps in time A=10-¢ and coordinate H=0.01, i.e.
the y coordinate is divisible by M =100 parts. Thus, a
closed system of equations is obtained, which allows
solving the problem.

To pass from shear strain ¢ to friction force we use
the formula

F(t)=AG.(t), (32)

where A is the contact area and G, is the relaxed shear
modulus of ice. We assume that the friction force is
measured in units of AG,.

Fig. 4-Fig. 7 show the results of the solution of our
chosen equations. Fig. 4 and Fig. 5 depict the results
for the four time layers. The dashed line in both figures
reflects the initial conditions (28) and (30), respectively,
i.e. the initial friction force distribution on the zero
time layer ¢ = 0. In Fig. 4, the time layers 500, 2500 and
50000 are displayed, which at the selected time step A
give us the following moments of time: t=0.0005,
0.0025, 0.05. The last curve does not change with the
choice of a larger point in time, i.e. it corresponds to the
stationary value of the distribution of friction force in
the softened surface layer of ice.

In Fig. 5, the same time layers 500, 2500 and 50000
are shown, which are selected for Fig. 4, at the initial
(30) and boundary (31) conditions. The last curve also
does not change with the choice of a larger point in
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time, 1.e. it corresponds to the steady-state value of the
distribution of rubbing force in the softened surface
layer of ice.
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Fig. 4 - Coordinate dependence of the friction force obtained
by the numerical solution at the parameters 7¢ = 400, g = 0.25,
7. = 0.3, the initial (28) and boundary (29) conditions

v

Fig. 5 — Coordinate dependence of the friction force obtained
by the numerical solution at the parameters the same as in
Fig. 4, the initial (30) and boundary (31) conditions

0.0 0.2 0.4 0.6 0.8

Fig. 6 — Coordinate dependence of stationary values of friction
force at T. =50, 150, 400, 650, initial and boundary conditions
of Fig. 4
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Fig. 7 - Coordinate dependence of stationary values of friction
force at T. =50, 150, 400, 650, initial and boundary conditions
of Fig. 5

Fig. 6 and Fig. 7 show the coordinate dependence of
the friction force at different temperatures 7. and
under different initial and boundary conditions. A time
layer of 100000 is selected, which at a certain time step
A gives us the corresponding time ¢ = 0.1. The values of
the constants used are the same as previously g =0.25
and 7,=0.3.

It is seen that the increase in background ice tem-
perature leads to a sharper change in the friction force
along the thickness of the surface layer of ice, i.e. the
relative shear velocity of the friction surfaces grows. This
implies that the difference between the friction forces in
the upper and lower coordinate layers increases a lot.

REFERENCES

1. S.C. Buzzard, D.L. Feltham, D. Flocco, J. Adv. Model. Earth
Syst. 10, 262 (2018).

2. A.S. Shestov, A.V. Marchenko, Cold Reg. Sci. Technol. 122,
71 (2016).

3. M.H.P. Ambaum, Thermal Physics of the Atmosphere.
Advancing Weather and Climate Science (Chichester, UK:
Wiley-Blackwell: 2010).

4. E. Ebert, J. Curry, J.Geophys. Res.-Oceans 98(C6), 10085
(1993).

5. A.V. Khomenko, D.S. Troshchenko, L.S. Metlov, Condens.
Matter Phys. 18 No 3, 33004 (2015).

6. L.S. Metlov, M.M. Myshlyaev, A.V. Khomenko, I.A. Lyashenko,
Tech. Phys. Lett. 38 No 11, 972 (2012).

7. M. Liithje, L. Pedersen, N. Reeh, W. Greuell, J. Glaciol.
52 (179), 608 (2006).

8. R.Arthern, D.G. Vaughan, A. Rankin, R. Mulvaney, E. Thomas,
J. Geophys. Res.-Earth 115, F03011 (2010).

JJ. NANO- ELECTRON. PHYS. 12, 04002 (2020)

4. CONCLUSIONS

The analysis of spatial distributions of elastic and
thermal fields is carried out over a surface film of ice
softened at rubbing using analytical and numerical so-
lutions. In the framework of adiabatic and one-mode
approximations, an analytical solution of the one-dimen-
sional parabolic equation for the spatial normal distri-
bution of shear strain to the ice surface was found. It
has kink soliton form. The dependence of temperature
on the corresponding coordinate is determined.

Using an explicit two-layer difference scheme, a
numerical study of a one-dimensional parabolic equa-
tion was performed. Distributions of current and sta-
tionary values of the friction force are constructed. Two
cases are considered: 1) the upper and lower surfaces
move with equal velocities in opposite directions; 2) the
upper surface is sheared along the fixed lower one. The
dependence of the stationary friction force on the coor-
dinate along the axis perpendicular to the ice surface at
different thermostat temperatures is analyzed. It is
shown that the increase in time and temperature leads
to a sharper change in the friction force along the
thickness of the premelted surface layer of ice, i.e. the
relative shear speed of the friction surfaces ascents.
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Heniuiiina moaesip po3M’ AKIIEHHS IIOBEPXHI JIbOY IIPU TEPTi, 1[0 BPaXOBY€ IIPOCTOPORBY
HEOIHOPiAHICTh TEeMIeparypu

0.B. Xomenxo, J1.T. Jlorsunenko, .B. Xuxrua

Cymcoruti Oepoacasruil ynisepcumem, 8yJ. Pumcorozo-Kopcakosa, 2, 40007 Cymu, Yipaina

3anponoHoBaHO HeJIIHIMHY MOJIeNhb B'I3KOIIPYKHOTO CEPEIOBHINA, SIKA IPEICTABIISE PO3M IKIIIEHHS TOHKO-
To mapy IOBEepXHi Jboay pu Tepri. [le mepeTBopeHHS OMMCyeThCA HA OCHOBI TAKUX TPHOX OCHOBHUX PIBHSAHD:
piBHsaaEs Kenbpina-Qoiirra 1A B'S3KONPY:KHOIO CEPENOBHUINA, peAKCAIMHUX piBHAHL Tuily Jlammay-
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XasraTHiKOBA /I 3CYBHHUX HAIPYKeHD 1 TerwtonpoBimHocti. [lokasano, mo qaHl piBHAHHS QopMasbHO 30ira-
OTBCS 3 CHHEPreTUYHow cucremorn JlopeHiia, fe mapaMerp MOPSAIKY 3BOJUTHCS 10 JedopMaliii 3CyBy, HAIIPY-
JKEHHS € CIIPSIYKeHUM II0JIEM, 1 TeMIlepaTrypa BiArpae poJib KepyBaJIbHOro rmapamMerpa. B po6oTi 3milicHeHo I1o-
aJIbIINA PO3BUTOK HEJIHINHOI MOJEJI PO3M SIKIIIEHHS TOHKOIO IIapy MOBEPXHI JIOAY IIPH TEPTI 3 ypaxyBaH-
HSM IIPOCTOPOBOI HEOTHOPITHOCTI TEMITEPATYPH B PIBHAHHI TEILIOMPOBIIHOCTI. B pamMkax amiabaTiyaHOro Ta 01-
HOMOJIOBOT'O HAOJIM/KEHb 3HANIEHO AHAJNTHYHHUN COJIITOHHMM PO3B’SI30K OJHOBHMIPHOTO IIApabOJIiyHOrO piB-
HSIHHSI JIJIS IIPOCTOPOBOIO HOPMAJIBHOTO JI0 TIOBEPXHI JILO/Iy PO3MOJILITY 3CyBHOL HedopMariii. 3aBIsKU YHCIIOBO-
My PO3B’SI3KY OJJHOBMMIPHOIO IuepeHIriaapHoro piasuaHs [iH30ypra-Jlanmay, oTpuMaHuii Ta OMUCAHUIA PO3-
TIO/ILJT CHJIA TEPTS [0 PO3M SIKIIIEHOMY IIPUIIOBEPXHEBOMY IIapy JIboAy. Poarisamatorsest nBi disuysi curyarrii:
1) BepXHsI 1 HUYKHS [IOBEPXHI PYXalOThCS 3 PIBHUMU 34 BEJIMYNHOIO IIIBUIKOCTSIME Y IPOTUJIEKHUX HAIIPSIMKAX;
2) BepxXHs MOBEPXHS 3CYBAETHCA O Hepyxomiit HrkHiN. [To0ymoBaHi KOOPAMHATHI 3aJI€KHOCTI CHJI TEPTS Y pia-
HUIT 9ac Ta IOKA3aHO eBOJIILIII0 CHCTEMH JI0 CTAIlloHapHOro crany. [lokasaHo, 110 3pocTaHHsI Yacy Ta TeMiepa-
TypPU TEPMOCTATY IIPUBOIUTD 0 OLIBII PI3KOI 3MIHM CHJIU TEPTS 10 TOBIIUHI PO3M SIKIIIEHOTO IIPUIIOBEPXHEBOTO
Iapy JIbOMAY, TOOTO 30LIIBIIYeTHCSA BIIHOCHA IITBUIKICTD 3CYBY TEPTHOBUX IIOBEPXOHb.

Knrouosi ciosa: Tepra smbony, @aszosuit mepexin, Peostoris, [lmactuuwicrs, Cuita Teprs, 3cyBHi gedopmarrisa
Ta HATIPYKEHHI.
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