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Numerical calculations of the amplitude-frequency characteristics of the difference of electric poten-
tials at the output of an elastic spherical converter with internal filling were obtained. Vacuum, helium
and water were used as the internal filler. Mathematically the operation of the specified oscillatory system
is described using the state equations for piezoceramics, which linearly relate components of mechanical
stresses, deformations, electrical tensions and induction; the equations of motion of a thin shell involving
equations of Cauchy ratios which are connecting components of the strain tensor and the displacement
vector; equations of forced electrostatics. The output electrical signal of the investigated spherical receiving
transducer with a fully electrode surface is determined by the centrally symmetric component of the stress-
strain state of the piezoceramic shell. It is established that the oscillatory system is characterized by the
presence of a basic resonance of zero mode and an additional position whose position depends on the elec-
trical load and the characteristics of the aggregate. It is shown that the presence of a filler makes it diffi-
cult to match the resistance of the converter with the input resistance of the receiving path and leads to a
decrease in the width of its working strip. The resonance is no longer accompanied by antiresonance, as in
the case of air or helium filling. Since helium is very similar to air in its characteristics, the frequency re-
sponse is similar to the frequency response of air. The resonance region accompanied by antiresonance al-
most coincides in frequency, and the local extremum of the frequency response in the low-frequency region
is as weak as in the case of filling the converter with air.
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1. INTRODUCTION

Design of underwater electroacoustic spherical tran-
sducers often involves the use of compensated power
structures which are resistant to the effects of the hy-
drostatic pressure. One of the possible ways of design-
ing, implementing such a property, is to fill the inner
cavity of the sphere with acoustic environments, such
as liquids or gases [1-3].

A positive quality of this approach is an increase in
the range of the working depths and the ability to adjust
the frequency dependences of the main characteristics of
acoustic, mechanical, and electric fields that take part in
the process of converting an acoustic field into a mechan-
ical and then — into an electrical one. However, this may
reduce the efficiency of the converter in terms of possible
reduction of the sensitivity, increasing the size and cost
of the converter, as well as complicating the assembly
process and the structure itself [4, 5]. The dynamic prop-
erties of such an oscillatory system manifest themselves
in a changing sensitivity, which is conveniently and pro-
spectively described, based on the methodology of cross-
cutting tasks, which actually involve the presentation of
the reception process from pressure in the acoustic field
to the voltage on the load of the transducer electrodes by
a joint solution of equations for acoustic, mechanical and
electric fields [1-3, 6, 7].

The present work is devoted to the study of the elec-
troelastic properties of electroacoustic transducers made
of piezoceramics and belongs to the class of problems of
stationary hydroelectroelasticity.

The paper considers the results of numerical studies
of the cross-cutting issues of the problem of receiving
sound waves by a spherical piezoelectric transducer with

2077-6772/2020/12(4)04034(7)

04034-1

PACS number: 43.38.n

fully electrodated surfaces, and the article is a continua-
tion of [8]. The presented materials contain brief infor-
mation about the main relationships and the solution of
the cross-cutting reception problem [8], calculation re-
sults and analysis of the frequency characteristics of the
electric voltage at the load of the converter, the con-
struction of which implies either vacuuming the inter-
nal region or filling it with ideal environments.

In our opinion, the proposed material regarding the
results of numerical studies of the amplitude-frequency
characteristics of the electrical voltage (hereinafter the
frequency response) of these converters seems relevant
and modern. And the aim of the work is to develop rec-
ommendations on the use of gaseous and liquid fillers
of the main cavities of spherical piezoelectric transduc-
ers of compensated design, with the purpose of regulat-
ing the bias of the resonance regions of the amplitude-
frequency characteristics.

2. FORMULATION OF THE PROBLEM

It is assumed that a receiving piezoceramic (piezoe-
lectric material: density pm, speed of sound c») transduc-
er in the form of a spherical shell (radius Ro, wall thick-
ness ho) is placed in an ideal fluid with density p and
speed of sound ¢ (Fig. 1). The shell is radially polarized.

The task used:

— general rectangular coordinate system O, X1, Xo, X3
which is located so that the axes OXi, OXz are lying in
a plane crossing the latitude of the converter and the
axis OX3 —in the plane of its meridian section;

— spherical coordinate system O, r, ¢, 9 whose cen-
ter coincides with the center of the rectangular coordi-
nate system.

© 2020 Sumy State University
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Fig. 1 — Spherical piezoceramic converter

Continuous electrodes are applied to the outer and
inner surfaces of the converter, which completely cover
them and are connected to an arbitrary electrical load
Zn. We consider the electrode thickness to be small, does
not affect the mechanical characteristics of the trans-
ducer and does not require additional conditions for the
mechanical and electric fields. The electrical voltage U,
(Usux that arises on the load Z, is required).

Flat sound wave po with amplitude po" falls on the
spherical converter from infinity in the direction of the
vector n (which in turn is positioned by angles S, g)
Py = p;e”"t resulting in a diffused ps(r, ¢, ) and pene-
trated external and internal fields p,(r, ¢, 6).

Mathematically the operation of the specified oscil-
latory system is described using [1, 8]:

— state equations for piezoceramics, which linearly
relate components of mechanical stresses, deformations,
electrical tensions and induction;

— equations of motion of a thin shell involving equa-
tions of Cauchy ratios which are connecting compo-
nents of the strain tensor and the displacement vector;

— equations of forced electrostatics [9].

The compatible solution of these equations allows to
determine the characteristics of the converter, taking
into account the relationship of three fields: electrical,
mechanical and acoustic. The solution of the problem are
performed by the method of partial regions [9] with the
use of the Fourier method, and the properties of orthog-
onality of the associated Legendre functions and trigo-
nometric functions at intervals ¢ € [0; 72':', Qe [O; 27[].

Recall that the method of partial domains is based
on the division of the total space of existence of a sound
field into canonical domains so that in each such formed
region the field satisfies the Helmholtz equation.

It is proposed to split the workspace into two areas
I and II (Fig.1) so that the areal (0<r<Ri— hos,

Ro=Ri—hos, p € [O; 27[], Se [O;iﬂl) corresponds to the

closed space of the internal volume of the converter and
the areall (R <r<ow,p e[O; 277], 39 G[O;iﬂ:l) corre-
sponds to the outer space.

The field in region I is formed by a penetrating wave
pi(r, ¢, 6), and the field in region II — by the superposi-
tion of flat pO(r, ¢, 6) and scattered ps(r, ¢, 6) waves
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pu ,0,0) = p°(r,0,0) + p,(r,,0)

Thus, the solution of the problem is to find unknown
coefficients of decomposition for the acoustic, mechani-
cal and electrical fields of the "external working envi-
ronment — spherical shell — internal volume filled with
acoustic medium" system, which are the consequences of
the influence of external (acoustic load p;(r, ¢, 6)).

3. BOUNDARY CONDITIONS
Acoustic-mechanical Conditions

According to the statements [1-3, 11-13], acoustic
and mechanical conditions are defined for the bounda-
ries of regions I and II in the form of conditions of con-
jugation of force and kinematic type as:

Pr-Pi =0y

r=R,r=R;pe[0;27],9¢€[0;z] (3.1)

Uy = U115
_ 1 op _
vrl‘r:Ro - er‘r:R jpccc a(kcr) r=R,
- (3.2)
__1 oy
Jjpc o(kr) v

v, .U,y are the radial components of the oscillatory
velocities of the points of the inner and outer surfaces
of the shell considered equal; o,, =0 are the radial
component of the tensor of the resultant mechanical

stresses that appear in the piezo-material of the shell
during its deformation;

_ 1 opy
vrII‘r:Rl _UrO‘FZRl = ij 6(kr)

=Uyo|,_p » (3.3)

r=R,

v,, are the radial components of the oscillatory veloci-

ties of the particles of the medium U'”H‘r:Rl = UrO‘r:Rl .

In addition, for the development of the condition de-
termined by the first equation of the system of function-
al equations (3.1), when contacting a piezoceramic shell
with a fluid of low dynamic viscosity, it is appropriate to
use Newton's third law as the following equality:

(04 —8,Ap) =0,V x, €8S, (3.4)

nk is the k-th component of the vector of external normal
to the surface of the transducer s; J;; is the Kronecker

symbol for indexes &, j; Ap = p;(r,0,9 - p,(r,9,9 is the
excess pressure that is brought to the surface of the shell
r=R, or r=R;; x, €S 1is the condition of belonging to

the spatial coordinate of the shell environment.
By involving the conjugation conditions, the displace-
ment u,,u,,Uy can be written as

:jwurv re [R()le]’
r=F,

Vet

r:Rl: r
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vr is the radial component of the oscillatory speed of the
material particles of the surface of the shell, u, is the
radial component of the displacement of the material
particles of the surface of the shell.

Electrical Conditions

Using the position of works [1, 11], we consider that
the shell thickness is much smaller than the radial
dimensions: ho < Ro, Ri1.

Therefore, the electric polarization of the deformed
piezoceramic shell is determined by the radial compo-
nent of the electric induction vector Dm — D;.

In this case, the electric charge @ formed on the
electroded surfaces by the free carriers of electric cur-
rent as a result of the polarization charges of the de-
formed piezoceramic element on them, taking into ac-
count [1, 9, 12], is represented as:

o

T

Q=—[D,dS=—R2[ [ D, (p,9)sin 9d5dop .
S 00

Dy (@, 9 corresponds to the equation
D, =e ¢, +ey (g(pgo +599)+Zf1Er )

where S is the area of the electrode, dS = R} sin 9d9dgp.

The current I, of the load circuit (that is, the cur-
rent due to the load of the electrode Z,) is represented
as the rate of change of @, which will be determined by
the time derivative:

1-29_ - —jo] D,dS =
ot s
27

=—joR} [ [ D,(¢,9)sin9d9dp =—joR; -1,
0

=Rt ]

Do

T

I=[[D,(p,9)sin9d3dep =
0

oy

27 V4
= [ cos(me)dp| D™ ((p, 9) P"(cos P sin 9d9
0 0

Applying [13], we pass to the form:
I=4zD".
Therefore, the current will be determined by the
expression In =—jwdzR:D?, D’ corresponds to the

centrally symmetric component of the expression

0 _ 0 0 0 & 170
Dr _ellgrr+el2 (EW+883)+Z11Er .

Using the boundary conditions of the types
divD =divD, = divD’ =0 and E, = E° = *Si , we have
X,

the opportunity to get ¥ is the scalar electrical potential
and, accordingly, the electrical voltage U, of the shell
electrodes due to the corresponding potential difference.

Note that the definition E’ corresponds to the condi-
tion that there is no charge in the piezoceramics. Thus,

0
for a vector D

., using the form of an operator div in

spherical coordinates, we have:
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19
r? or

(D?)=0 and D? = &,
r
C1 is the constant to be determined.

4. SHORT DESCRIPTION OF THE SOLUTION
THROUGH THE RECEPTION

According to works [1-4, 8], the part of the acoustic
field representation in partial regions I, IT leads to the
scattered and penetrated wave as a result of a plane
wave falling on the surface of the sphere. The full field
must satisfy the boundary conditions on the surface of
the sphere: the equality of pressures and normal con-
stituents of the velocity of the particles on the surfaces
of the transducer represented by equations (3.1)-(3.3).
Note that the decomposition for pressures can be rep-
resented as an algebraic sum of centrally symmetric
spherical harmonics, a set of zero-order tesseral har-
monics (or an axisymmetric solution) and higher-order
tesseral harmonics (or a non-asymmetric solution):

py(ro, 9 = { D LLkr J,(kr) + A, fzikr Hl(/ZZ)(kr):|+

{ Y @n+1)j" ;i J, 15 (kT)P, (cos %)P, (cos 9) +
r

n=1

T ®
+ %El A, H?, ,(kr)P, (cos 3):‘ + wn

R a(n-m)! [ 7
2n +1);" f* J
+{Por§1n§1( n+1)j (n+m)! ohr ns1ra(RT)
xP"(cos %,)P," (cos §) cos(m(¢ - ¢,)) +

| ZS S A, H  (kr)P"(cos 9)cos(mg) |,
2kr n=1m=1

pi(r,0,9) = [301/2”,” Jm(kcr)} +

0

+ |23 B, .,(k1)P, (cos 9) |+ 4.2)
2kr n=1

{ S ¥ B, J,..,(kr)P"(cos 9) cos(mgo)},

2kr n=1 m=1

are the unknown coefficients of ex-

AO’BO’Anm’Bnm’C’nm
pansions (4.1), (4.2); J,,(kr), Hl(/zz)(kr) are the Bessel and
Hankel functions of a non-integral character; I.(kr) is
the spherical Bessel function of integer -th order,
n=0,1,23,...; H,(L?‘)(kr) is the second n-order Hankel

spherical function; P,'(...) is the Legendre function of

the first kind of integer degree and m, n =0, 1, 2, 3, ...
Under the influence of the excess pressure, which is
represented by condition (3.4), the shell is deformed,
which corresponds to certain displacements of the ma-
terial points of the shell and the appearance of the cor-
responding mechanical strains by the Hooke law:

£,5(0,8) = 52/, + il e3P, (cos 9) +

+ i i SZ;PHW (cos 9) cos(me),

n=1m=1
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which, by analogy with (4.1) and (4.2), is an algebraic
sum of centrally symmetric, axisymmetric, and non-
symmetric solutions of a problem.

Understanding this, we determine the equation of
oscillations of the shell based on the general conditions
of motion, which are given in [4, 8, 11, 13].

We use the expressions to calculate the tensor com-
ponents of the resultant mechanical strains in the pie-
zoceramics:

E
o, —cug +ch£ 0989 — €1 E,
_E E
O-(p(/) - cl2grr + 622‘9@/2 + 612899 - elQEr

0,5 = 205565 o6 Ey (4.3)

—_9nE _
Gr¢_2c55gw e26E

0"

_o.E
0w9—2c445¢9,

E. E E
€115 €1 chichscl are the components of the elastic mod-

ulus tensor (the radial axis of the sphere coincides with

the OXi axis); 0,,;044;0,4;0,,;0,5 are the components of

the tensor of the resulting mechanical strains; e;;e,; €y

are the piezomodules; ¢,,.;¢,,645:¢,,€,9:€,9 are the defor-

o re?
mation tensor components; E,,E = E, are the components
of the electric field intensity vector in piezoceramics. We

determine the equation of state for the components of
the electric induction vector in the form:

Dm mlj + Zmn (44)

D, is the component vector of electric induction deter-
mined by the algebraic sum of "electric polarization"

Di=¢ ¢

that is, it is a dynamic component) and a "Coulomb"

€5 (caused by elastic mechanical deformations g;

component D’ = yr E . which is due to the pre-pola-

n
rization of the ceramics (this is a static component);
X:. 1is the dielectric constant tensor components.

Further, based on [1, 8] and realizing the condition of
satisfying the oscillations of the second Newton law in
differential form, the equations of motion of the sphere
with respect to mechanical strains orj and displacements
of the material particles of the shell Uy, Uy, Ug will be:

1
F(2Grr — 0y 7035)+pMa)2ur =0,
0

1 oo i oo 9 20

o9 [

: + +
R,sin8 0p R, 08 R,

2
ctgd+pyou,=0,

0
1 0_.9 1 66‘99+L(O_99
R,sin$ op R, 09 R,

u,,Uy are the angular components of the displacement

vector of material particles of deformed spherical shell.
Based on the piezoelectric equations (4.3) and (4.4),
which are supplemented by the components of vector

D, (D, ,D(p ,Dy) in the form:

W)ctg19+pMa)2u9 =0,
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D, =ey ¢, +ey (SW &g ) +mk,

D,=2ey¢,,+ 15.E, (4.5)
Dy =2e556,5+ 135E,4

and considering the continuous electroding of the tran-

sducer surfaces, D,=Dy=0 and the Cauchy ratio for
displacements and deformations [1, 8, 13]:

1 ou, ou,
u,=— , ug =
? sing op 09
P 4.6)
o0 R sing ¢ R Ro ’
1 ouy  u,

+
‘"R 09 R,

After the series of mutual transformations (4.5)-(4.6)
([8, 9]) for the displacement component ur we obtain in
the simplified form:

. o
c e
au +2LAp-LE =0,
R R
0 0
where
*'k
@, =

2— v(v+1))+pu 4.7

R2 (
Note that the component ur can be represented by:

u, =u,(r,p,9) = Z Z w" (r)P" (cos ) cos(img) =

v=0m=0

=3 3w (0.9), 1 =R,

n=0m=0

f=]

Let us determine the electric field. To find electrical
characteristics: current in the external load circuit I,
electrical induction D, and tension E, it is necessary to
determine the centrally symmetric components of the
physical fields under consideration, namely:

0'23,0'2(/,,5?,, Epps 23,E° D0 ur,Ap

So, after simplification of the relations for defor-
mations and mechanical strains in accordance with the
selected type of electroding of the surfaces of the trans-
ducer, the centrally symmetric components of induction
and tension will be presented as:

0
D} —engrr+el2(5¢¢+‘999)+7(11E
C 2e;
1, %G 0

v 2 * R U, —— E Ap
2l Xty 7511011

E) =

Application of boundary conditions of the electric field
(item 2) for centrally symmetric solution of the form:

ov°

divD =divD, =divD} =0 and Ef ==~ (48)
r

Y0 is the potential of a centrally symmetric electric field.
After integrating the both sides of equation (4.8) along
the radial coordinate for the potential, we obtain:
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w0 Gy, G apt - A2 0| R ) (a9)
* 2 + E * r 0
X111 1k,

VAL
(2 is the constant to be determined.
Considering the potential of the external electrode is
zero, the potential difference “external electrode — in-
ternal electrode” will be:

0 .
= O,
r=R,+h,

-] . =U, = joZ,4xr°D)| =

r=R, r=

= joZ 4xR3D° = joZ, 47C;;

\I_,O

where Un = InZ, and Z, =R, +]Xn
Thus, as a result of the general solution of the prob-
lem for the given boundary conditions and type of electro-

. . . . R
ding, we have five unknown coefficients u;,4,,B,,C,,C,,

the finding of which requires five algebraic equations.
Namely:

— two equations arising from the force and kinematic
conditions of conjugation (3.1), (3.2) involving the ex-
pansions (4.1) and (4.2);

—two equations (4.3), which use (4.9) to find the co-
efficients C1, Cz for the known one Z,.

The last fifth equation for finding the coefficient uf

follows from (4.7) written for a centrally symmetric
solution v= 0, which gives:

ek ek
c e
agud + L Ap° - L E? =0,
R R
0 0
*%

2c
12 2
R2 + pr .

0

where o =

Thus, a system of five algebraic equations is ob-
tained, the number of which corresponds to the number
of unknown coefficients of expansions and equations for
the electric field, which makes it possible to find them
uniquely.

5. THE RESULTS OF THE CALCULATIONS

The calculations were carried out for a piezoceramic
spherical transducer made of piezomaterial (speed of
sound cm = 3400 m/c, density pm = 7210 kg/m?, components

of the elastic modulus tensor CIE1 = cfz =15.1-10"° N/m?,

CZEZ =7.9-10". N/m2, piezo modules e1; = 17.7 kg/m? and

e12 = — 7.9 kg/m2) with a diameter of 12.5 mm and a wall
thickness of 1 mm.

Air, helium and water were chosen as the fillers for
the internal volume of the sphere.

5.1 Frequency Load Voltage Dependence for
Vacuum Converter

Mathematically, the potential difference at the out-
put of a spherical piezoceramic transducer of acoustic
waves is determined by the relation:

o 91| %99 ) E
33 33

Uout = e (w)%t{e* { (0.0) + 5(0’0)} %AP(O»O)] ,
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where f, (@)= ingZn/(l + ia’Can) is the function of

turning of the piezoceramic acoustic wave receiver.
Note that, electrically, the converter shows only zero
mode due to the selected type of electrode.

Fig. 2 shows the results of the calculations of the
amplitude-frequency characteristics (frequency response)
of the difference of electric potentials at the output of a
converter with classical construction (vacuum filling) for
different electrical loads in the range from Z,=100Q
to Z», =1 MQ.

In order to confirm the theoretical results in the la-
boratory conditions, the frequency response at the con-
verter operation at a load of 100 kQ was measured.

It can be seen that as the electrical load increases,
local frequency extremal extremum in the low frequen-
cy region appears. As the impedance increases, the
extremum becomes more gentle and sharp and its peak
approaches the y-axis. The sensitivity in the field, how-
ever, in the low-frequency region, should obviously in-
crease. A similar result is confirmed by [11-13].

In short-circuit mode, when Z, — 0, the function is
on fe(w) = 0 and off Usux = 0. In idle mode, when Z, —
at any low frequency, the function is on fe(w) = 0. In this
mode, the function is a Heaviside function. It follows
that the piezoceramic acoustic wave receiver is not ca-
pable of detecting static pressure.

The output electrical signal of the investigated spher-
ical receiving transducer with a fully electrode surface is
determined by the centrally symmetric component of the
stress-strain state of the piezoceramic shell.

The dashed curve is experimental. As can be seen from
comparing the calculation materials with the experimen-
tal ones, there is a good coincidence of the results.

-4
1xlf)

f, kHz

Fig 2 — Frequency response of electrical potentials at the re-
ceiver (range of electrical load from Z, =100 Q to Z, = 1 MQ

5.2 Frequency Response of the Converter with
Helium Filling

The calculated frequency response of the electrical
voltage (potential difference) at the output of the conver-
ter with internal helium filling for different loads in the
range from Z, = 100 Q to Z» = 1 MQ is shown in Fig. 3.

Calculation materials of Fig. 3 show that since helium
is quite similar in characteristics to air, the frequency
response is similar (blue curve in Fig. 2). The resonance
region accompanied by antiresonance almost coincides
in frequency, and the local extremum of the frequency
response in the low-frequency region is as weak as in
the case of filling the converter with air.
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Fig 3 — Frequency response of electrical potentials at the re- Fig. 4 — Frequency response of electrical potentials at the re-
ceiver (range of electrical loads: a) Z, =100 Q, b) Z, =10 kQ, ceiver (range of electrical loads: a) Z, =100 Q, b) Z, = 10 kQ,

¢) Zn=1MQ) ¢) Zn=1MQ)
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5.3 Filling the Converter with Liquid

Fig. 4 presents the frequency response of the poten-
tial difference at the output of the converter with inter-
nal water filling for different electrical loads in the
range from Z, =100 Q to Z, = 1 MQ. The results demon-
strate the peculiarity of counteracting the filling of the
environment. That is the water inside counteracts the
deformation of the piezoelectric compensating the ex-
ternal (static) pressure. Here we see that the resonance
is no longer accompanied by antiresonance, as in the
case of air or helium filling.

Local extremum in the low-frequency range [0 Hz;
0.05 Hz] is less pronounced, and the absolute value of
the sensitivity drops sharply.

6. CONCLUSIONS

As a result of the solution of the "through" problem
of receiving sound by an elastic spherical converter with
internal filling it is established that:

— the oscillatory system is characterized by the pre-
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Juaamika eekTponpy:kHOI chepruuIHOl 000IOHKHU 3 3aIIOBHIOBAYEM MPU IIPUHOMI 3BYKY

H.IO. ®inimora, O.B. Kopsxuxk, C.A. Haiina, A.C. Yaiika, M.O. Kopaxux, A.C. Hatina

Hauionanvruii mexniunuti ynigepcumem Yrpainu «Kuiscokuil nonimexniuHul incmumym
imeni leops Cikopcorozon, npocn. Ilepemozu 37, 03056 Kuis, Yrpaina

OTpuMaHi 4rcesIbHI PO3PAXYHKH AMILIITYHO-YACTOTHUX XaPAKTEPUCTHK PISHMUIN €JIEKTPUYHUX ITOTEHITI-
aJIiB Ha BUXO/1 IPY:KHOTO C(hePHUIHOIO IIePeTBOpIoBaYa 3 BHYTPIIIHIM HATIOBHEHHAM. B SIKOCTI BHYTPIIHBOTO
3aBIOHIOBAYA BUKOPHUCTAHO BaKyyM, resiil Ta Bogy. Maremarndano pobora 3a3Ha4eHOI KOJIMBAJIBHOI CHCTEMU
OIMCYETHCST 3 BUKOPUCTAHHAM PIBHSAHB CTAHY IT€30KEePAMIKH, SIK1 JIHINHO CITIBBIIHOCITH KOMIIOHEHTHA MeXa-
HIYHUX HAUpyT, Aed)OpMaliii, eJIEKTPUYHIX HAIPY:KeHb Ta 1HIYKIMI; PIBHSIHb PYXy TOHKOI 000JIOHKH 3 piB-
HaHHAME koedimienta Komr, mo 3'enHyoTs KOMIIOHEHTH TeH30pa JedopMariii Ta BeKTOpa 3MIIEHHs; piB-
HSTHb BUMYIIIEHOI eJIEKTPOCTATHKY. BHUXITHUN eJIeKTPUYHUN CUTHAJ JOCJIKYBAHOIO C(hepUyHOro Ipuiima-
JIBHOTO IIePETBOPIOBAYA 3 IOBHICTIO €JIEKTPOJHOIO ITOBEPXHEI0 BU3SHAYAETHCS IIEHTPAILHO CHMETPUIHUM KOM-
IIOHEHTOM HAIIPYKeHO-1eh0PMOBAHOIO CTAHY IT'€30KepaMiqHOl 000I0HKN. BeTaHOBIIEHO, 10 KOJIMBAJIBHA CHC-
TeMa XapaKTePH3yeThCsl HASBHICTIO OCHOBHOIO PE30HAHCY HYJILOBOIO PEKMMY Ta JOJATKOBOTO IIOJIOKEHHS,
TIOJIOKEHHST SIKOTO 3aJIeIKUTH BiJ| €JIEKTPHYHOI0 HABAHTAKEHHS Ta XapaKTePUCTHK HanoBHIoBauYa. [lokasaHo,
1[0 HASBHICTH HATIOBHIOBAYA YCKJIA/IHIOE CIIIBCTABJIEHHS OIOPY IIEPETBOPIOBAYA 3 BXIJHUM OIIOPOM IIPHIIOM-
HOTO TPAKTY 1 IIPHU3BOJUTE JO0 3MEHIIIeHHs IIHUPUHYU #oro pobouoi cmyru. [Ipu BukoprcraHHi HAIOBHIOBAYA y
BUTJISAl PIAUHYM Pe3yJIbTaTh JOCTIIKeHb JeMOHCTPYIOTh 0COOINBICTh MIPOTH/Il HATIOBHEHHIO cepenoBuina. Pe-
30HAHCHA 00JIaCTh, IO CYIIPOBO/IKYETHCS aHTHPE30HAHCHOKI YACTOTOI, MalsKe CIIIBIIAIAE II0 YACTOTI, a JIOKAa-
JIBHUM eKCTPEMYM YaCTOTHOI XapaKTePUCTHKY B HI3bKOYACTOTHIM 00JI1aCTl TAKUH Ke CIa0KUil, sIK y BUIIAIKY

3AaIIOBHEHHJ IIepeTBOopoBava HOBiTpHM.

Knrouori ciosa: [Tesokepamiunmii cepudHmii mepeTBopoBaY, 3ar0BHIOBAY, AMILIITY/THO-4aCTOTHI XapaKTe-
puctuku, Enexrpuuse mose, Enexrpornpyskai Biactueoceri, Yyrsmusicrs, [Tpuitom 3Byky, PisHurs morenriamis.
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