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Spin-waves excitations propagating along the superlattice nanotubes are investigated by use of the
many-body Green function method of quantum statistical theory. The elementary unit cell of superlattice
nanotubes constructed of / atomic layers of ferromagnetic material a and r atomic layers of different ferro-
magnetic material b. The exchange coupling between two neighboring magnetic atoms of material a (or b)
in intralayer and interlayer are Ju(J») and Ya(Ys), respectively. Exchange interactions between neighboring
spins of two adjacent a and b materials is Y. An external magnetic field & is applied along the z-direction.
Continuous and discrete components of the total wave vector are used to take into account the periodicity
of the nanotubes along the z-axis and circumferential direction. Within the framework of random-phase
approximation the expressions of Green functions for different spins of nanotubes, which are modeled as
having a hexagonal cross section, are derived by recurrence relation technique. The results are illustrated
numerically for a particular choice of parameters. The spin-wave spectra for reduced frequency aw/eJ, versus
the wave-vector component, which characterizes periodicity in the z direction for the system under consid-
eration, are demonstrated. Moreover, in order to clarify the effect of exchange interaction and the number
of atomic layers / and r in the elementary unit cell on dispersion law, the results are presented for the var-
ious values of discrete components of wave-vector. It is found that four energy ranges exist for the spin
waves propagating along the z direction. When both k. and ks are real superlattices, dispersion curve ex-
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hibits brood pass band and narrow stop bands.
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1. INTRODUCTION

Currently, there is an increasing emphasis on the
magnetic properties of nanosized materials. The reason
for this is that they have extraordinary properties com-
pared to bulk materials and have the potential to be
used in magnetoelectronic devices [1-4]. Multidimen-
sional structures play an important role in multifunc-
tional bioanalysis, biosensors, magnetic cell division and
gene delivery. Therefore, the magnetic properties of
these systems are of particular interest to many scien-
tists, both experimental and theoretical [5-8]. Experi-
mentally, many requests have been made to fabricate
such nanomaterials using electron beam lithography,
vapor-liquid solid and wet chemical methods [9-11].
Theoretically, different superlattices, nanotubes and
nanowires can be modeled with finite spins of the se-
lected size, and the magnetic properties of these struc-
tures are actively studied using various techniques,
such as Green function technique (GF), mean field ap-
proximation (MFA), effective field theory (EFT) and
Monte Carlo (MC) simulation techniques [12-16].

Compared to bulk systems, both superlattice and
nanotubes systems show new magnetic and electronic
features. The magnetic behavior of nanoscale magnetic
objects is strongly dependent on size, shape and compo-
sition. The study of spin waves is very useful in defin-
ing the fundamental parameters that characterize
these structures.

The organization of this work is as follows: in sec-
tion 2 we give the model and formalism of the GF. Sec-
tion 3 is devoted to results and discussions.
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2. MODEL AND FORMULATION

The schematic representation of the system can be
seen in Fig. 1 in two different perspectives. Elementary
cell of hexagonal ferromagnetic superlattice nanotubes
(SLNTSs) consists of / atomic layers of material a and r
atomic layers of material b, having exchange constants
Ja and Jp in intralayer and Y, and Ys in interlayer, re-
spectively. On the other hand, the exchange interaction
between neighboring spins on two adjacent a and b ma-
terials is Y. Each atomic layer is assumed to be the xy
plane and lattice constant of the SLNTs is D = (I + r)d.
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Fig. 1 - Model of hexagonal ferromagnetic nanotubes in which
| atomic layers of material a alternate with r atomic layers of
material b. The nanotubes are infinite in the direction per-
pendicular to the axes z

In studying magnetic properties of such systems,
two periodic conditions have been taking into account.
Therefore, the total wave vector has two components
ket = f(R, q). The wave-vector component denoted as % is
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within the first Brillion zone and characterizes perio-
dicity in the z direction. The other component denoted
as g characterizes periodicity in the xy plane and takes
the following discrete values [17]:
q=nv/3d,v=0,1,2,...,5. (1)

The Hamiltonian of the system can be written in
the form

H=H,+H,+H,+H,,

H,py =—J ,%SJSM - (b)Z( iSia +STS;+1) herSj?,(Z)
H,, = jz (Y, S:5%, +YSISE,, ).

( )Glr

n+l,m

Here, 4, =h+2J,(S%)+2Y (S%)—-2J (S%)cosqd, also the

random-phase approximation (RPA) decoupling and
discrete Fourier transformation in circumferential
direction (in the xy plane) [17, 18] have been made.
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Here, j is the number of layers, while 7 represents the
position in this layer and the sum on § is over nearest
neighbors only. H, and Hp describe exchange interac-
tions between the neighboring spins and Zeeman’s
energy when j belongs to materials a and b, respective-
ly. Also, h is the externally applied field along the
SLNTs under consideration and it is assumed to be
parallel to the z axis. Exchange interactions between
neighboring spins on two adjacent a and b materials
are described by the terms Ha and Hp.

We evaluate a retarded GF of the form ((S, .S, )
denoted as G,T”; Assuming that n-th and m-th layers

belong to material a, by using the model Hamiltonian
(2) the explicit equation for the GF can be written as:

+Gr) = S8, 8 ®)

On the other hand, one can also write the equations

of GFs for the spins whose one of the neighboring spins
belongs to different material.

n+l+1,m = 2<SZ>
= 2(S*)o

n+l,m l‘r’

4)

n+l,m n+l+1,m 11"

Aoy = ht 2 (S7) + Y,y (S7) + Y(S7) — 2], (S7) cosqd .

Equations (3) and (4) can be solved by recurrence
relation technique to relate the Green functions for

1, 1,
Gnil+2,m] _ TyTl—l anl,m] +
1 T Tava 1,
GnIHl m Gn,:n
The matrix T« and the power of matrix T, have the
form:

k=2

a

—(@-4,)/Y(S?)
Tlfl —

kad is defined by the expression

cos(k,d) =y, = (4, - ®)/2Y,(S?). (6¢c)
For |ya| > 1, y = cosh(kad), and one replaces sin(nka.d)

by sinh(nkad) for 3. > 1 and (- 1)"sinh(nkad) for ya < — 1.
Using (5) we can easily determine the matrix of

transfer, which relates the GF's of spins in the left first

TOZ ZI‘, Tof_k (25H+k l(r;

T,:[w—ﬂ;xw—%)/wszv—Y/Yb Y, (0 2)/¥V,(5°

1 sin {lkad}
¢ sin(k,d) sin{(l-Dk,d} —sin{(I-2)k,d})

different spins at the first and second atomic layers of
elementary unit cell [19, 20]

5“/Y“j [26 randie % ~(0 4, /YKJ<SZ>}J ()
5n+l+1 m51 T/Y
: ; (62)
-Y /)Y
—sin{(l -1k, d
sin{(t-Dk, }j (6b)
and second atomic layers of a neighboring unit cell
Gl T Gl T A
z+l+r+2 mo| =T nzl ,m +[ 1} , (7)
Gnil+r+1 m Gnin A2

where T = Tb’fl}]”lT;ch’l and
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2/Y
T;;Tbr—lTafTalJrn—m—l [ /O aj
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0
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~ b b [Z/Y]
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(2/1/& ~2(w- 4, )/YYa<SZ>J
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The matrix elements T and 7T are obtained by re-
placing all subscripts a by b, and all b by a in the ma-
trix elements T and 7., respectively. The matrix ele-
ments 7 fulfill the following conditions:

detT =1, Tr(T)=TrT™), ©)

where Tr(T) and Tr(T-1) are the sum of diagonal ele-
ments of T"and that of inverse matrix, respectively.

Due to the fact that the system is periodic in the z
direction, according to Bloch’s theorem we can write

Grlt’+11+r+2 m . Grltfl m
G = exp[iKD] GLT’ .

n+l+r+l,m
1 .
and G, are obtained

(10

Gl,r

n+l,m

The expression of GF
by using equations (7-9) and (10):

_ (AT —ATy,) exp[—iKD]+ A,

G = , (11
nLm 2cos(KD) T, - Ty, (118)
G (AT, — AT, )exp[ —iKD |+ A, . a1

2cos(KD)-T, - T,,

The GFs for all layers of elementary unit of SLNTs
and G-*

wi1.m DY recurrence relation

are related to G,

technique. As known, the spin-wave dispersion spec-
trum is obtained from the poles of the GF's:

cos(KD) =0,5(T}; +Ty,) (12)

3. RESULTS AND DISCUSSION

In this section, as numerical illustration dispersion
equation of spin waves propagating along the SLNTSs
has been studied. The wave vector %k characterizing
these spin waves depends on k. and k» and the latter
two quantities are related to w by the expression (6¢).
Consequently, dispersion law for SLNTSs is related to
the dispersion law for components. It is known that
there are four spin-wave branches for component nano-
tubes a and b. Fig. 2a, c, e, g show these spin-wave dis-
persion curves for a particular choice of parameters,
while Fig. 2b, d, f, h show the spin-wave dispersion curves
of the SLNTSs. The SLNTSs dispersion curve exhibits

|
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Fig. 2 - The spin-wave dispersion graphs with parameters:
h=0.2,1=5,r=5,(58)=0.5, YolJa = 0.8, JoleJo = 1.5, Yi/Ju=1.7,
Yida=1
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brood pass bands and narrow frequency bands in the
frequency range where both component nanotubes a
and b have bulk spin waves. This frequency range (in
the unit of J4) corresponds to that, both ks and ks are
real and |coskap)d| < 1. The number of frequency gaps
increases with increasing number of atomic layers [
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Meton dbyuxniit I'pina niia dpepomaruiTHIX HAHOTPYOOK 3 HAAPEIIITKOIO
V.A. Tanriverdiyev

Institute of Physics of the National Academy of Sciences of Azerbaijan, 33, H. Javid Ave.,
Baku AZ 1143, Azerbaijan

30ya:eHHA CIIHOBUX XBUJIb, 10 IOIIMPIIOTHCA B3I0BK HAHOTPYOOK 3 HAIPEIIITKOI, JOCIIIKYEThCI 3a
IomoMoroo Meroay yHkIrii ['piHa g 6araThoX TiJI y KBAHTOBIM cTaTUCTUYHIN Teopil. Enemenrapua xowmi-
pPKa HAHOTPYOOK 3 HAAPEIITKOIO o0y 10BaHa 3 [ aTOMHHUX IIapiB (pepoOMAarHITHOTO MaTepially @ Ta I' aTOMHUX
mapis immoro gpepoMartiTHoro marepiaay b. OOMIHHMEA 3B'A30K MidK ABOMA CYCiAHIMH MATHITHHMK aTOMAa-
Mu Marepiany a (abo b) BcepenamHi mapiB Ta Mix ImapaMu JopiBHIOE BIAIoBITHO Ju(Jb) Ta Yo(Ys). O0MinHA
B3a€EMO/IisI MIK CYCIIHIMU CIIIHAME JBOX CYMIKHHX MaTepiaiiB a 1 b ckiagae Y. 3oBHIinIHe MarHiTHe moiie A
IpPUKJIAJeHe Y3I0BK Z-HANPSAMKY. BearepepBHi Ta JUCKPEeTHI KOMIIOHEHTH CYMapHOIO XBHUJIBOBOTO BEKTOPA
BHUKOPHMCTOBYIOThCS JIJIS BPAXyBAHHS ITEPIOIMIHOCT]I HAHOTPYOOK Y3I0BK OCl Z Ta HANPSAMKY I10 KoJry. B pa-
MKax HaOJMKeHHs BHIAIKOBOI (pasm Bupasu yukiii ['pina mis pisHEX CHIHIB HAHOTPYOOK, SIK1 MOJIEJIIO-
IOTBCSI SIK TaKl, II0 MAIOTh FeKCATOHAJIBHUI IIepepi3, OTPUMAHI METOZOM PEKyPEeHTHHX CIIBBLIHOIIEHB. Pe-
3yJIBTATH IPOLIICTPYBAHO YKCEIBHO JJIs IEBHOT0 BUOOpy mapamerpis. [IpoieMoHCTpOBAHO CIIEKTPH CITIHO-
BOI XBUJII JIJIsI 3MEHIIIEHOI YacTOTU @/eJq Bl KOMIIOHEHTH XBUJIBOBOTO BEKTOPA, AKUI XapaKTepHu3ye [1epioju-
YHICTD ¥y HAIPSIMKY 2 JJIsi pO3rJisiHyTol cucremu. Kpim Toro, /1uIst yTouHeHHsT BILIMBY OOMIHHOI B3aemosii Ta
KLJIBPKOCTI aTOMHUX IIapiB [ 1 7y eeMeHTapHIN KOMIPII Ha 3aKOH JUCIepCii, IpecTaBIeHO pe3yJIbTaTh It
PI3HUX 3HAYEHB JMICKPETHUX KOMIIOHEHTIB XBUJILOBOTO BEKTOPA. BCTAHOBIIEHO, 110 JJIsI CIIIHOBUX XBUJIb, III0
THOIIUPIOIOTECA Y HATIPAMKY 2, iICHye Y0THpH miama3onu eHeprii. Kosm o0uasi k. Ta ks € crpaBkHIMEI Hagpe-
LNTKaMH1, KPUBA JUCIIEPCil JeMOHCTPYE 3apPOIKOBY CMYTY IIPOXOIKEHHS 1 By3bKl CMyTI' 3aTPUMKI.

Kmrouosi ciiosa: Hanorpyorn, Hagpernritka, Cminosi xsum, Oyuriria ['pina, Mixkimaposa 00MiHHA B3aeMOIis.
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