Electric Properties of MCM-41 <SmCl₃> Nanohybrid Encapsulate

Fedir Ivashchysyn¹,², Dariusz Calus³, Anna Pidluzhna², Piotr Chabecki¹

¹ Częstochowa University of Technology, Faculty of Electrical Engineering, 17, Al. Armii Krajowej, 42200 Częstochowa, Poland
² Lviv Polytechnic National University, 12, Bandera St., 79013 Lviv, Ukraine

(Received 14 January 2020; revised manuscript received 20 June 2020; published online 25 June 2020)

1. INTRODUCTION

An interesting approach to technology for nonelectrochemical energy generators was enabled by a discovery of a notable phenomenon described in works of Kaminskii et al. [1, 2]. The electromotive force EMF was generated in SmS defect crystal structure during heating-up in the absence of extrinsic temperature gradients. The value for EMF generated in 1.3 s impulse was 2.5 V [1] and 0.6 V in continuous regime [2]. The following works in the area were dedicated to spontaneous generation of EMF at ambient temperature in ZnO [3-5] doped with impurities of different valence but the EMF value was in the millivolt range.

As it was determined in [1, 6], the local defects were the reason for EMF generation phenomenon in SmS. The proposed model for EMF generation let assume the possibility to observe the same phenomenon in other semiconductor substances. The necessary requirement for observation of this EMF generation effect is the presence of nonequilibrium distribution of donor impurity of concentration high enough in a bulk. For example, the EMF generation effect was observed in Sm₀.₉₅Ge₀.₀₅S and SmTeₙS₁₋ₓ, where x = 0.02 and 0.05 under constant heating [7].

Therefore, the purpose of our work was to investigate the above-stated assumption and supramolecular compound of complex structure based on silicate matrix MCM-41 and SmCl₃ was synthesised. The developed approach could help to understand the nature of EMF generation phenomenon and develop the methods for its improvement.

2. EXPERIMENTS AND METHODS

MCM-41 molecular sieve structure based on SiO₂ was chosen as the initial matrix for supramolecular compound synthesis [8]. It is of hexagonal structure with walls of 0.6-0.8 nm in thickness. The MCM-41 initial matrix with pore size of ~ 37 Å and 984 m²/g specific surface area was used in our experiments. SmCl₃ was selected as the guest component because of its magnetic properties.

The method of encapsulation, described in [9, 10], was used for supramolecular structure formation. The electrical properties of the synthesised compound were investigated by means of impedance spectrometry (potentiostat/galvanostat 30 AUTOLAB, ECO CHEMIE). The measurement equipment is supplied with FRA-2 module and GPES software. The preliminary analysis of impedance data was made with Dirichlet filter [11, 12], and the following procedure for frequency dependent complex impedance was made by graphical analytical method with the ZView 2.3 (Scribner Associates) software. Inaccuracies of approximation did not exceed 4 %. The adequacy of equivalent models to the package of experimental data was confirmed by random character of residual first order differences for frequency dependences [11, 12].

Impedance investigations were executed in 10⁻³ – 10⁶ Hz frequency range in ambient atmosphere, in an applied 2.75 kOe magnetic field and under illumination with 65 W solar imitator.

The spectra of thermostimulated discharge currents and spontaneously generated EMF were recorded during heating the sample up with 5 degree per minute increase in temperature.

Keywords: Mesoporous MCM-41 matrix, Impedance spectroscopy, Nyquist plot, Dielectric permittivity, Loss tangent, Thermogalvanic effect.

DOI: 10.21272/jnep.12(3).03014 PACS numbers: 74.25.nn, 81.05.Rm

¹ FedirIvashchysyn@gmail.com

© 2020 Sumy State University
3. RESULTS AND DISCUSSION

The fine powder material of MCM-41 <SmCl₃> nanohybrid was successfully synthesised. The pellets of 2.5 mm in thickness and 5 mm in diameter were formed and electrical contacts were applied from the both sides of pellets.

The electrical resistivity of as formed pellets was investigated by means of impedance spectroscopy. The frequency dependence of the real part of the complex impedance ReZ for synthesised MCM-41<SmCl₃> measured at normal conditions, at illumination and under applied magnetic field are presented in Fig. 1, and the specific resistance is close to 10¹⁰ Ohm·cm. The real part of the complex impedance ReZ for initial MCM-41 matrix is a monotonically decreasing value with a frequency dependent character (inset in Fig. 1) in whole frequency range. On the other hand, the insertion of SmCl₃ into MCM-41 leads to specific resistance decrease by three orders with simultaneous change in ReZ behaviour with frequency. The real part of the complex impedance ReZ became frequency independent in 10⁻³–10³ Hz region and is shown in Fig. 1 (plot 1). The insertion of a guest component into initial matrix results in obvious and significant change in impurity energy band. The slight decrease in specific resistance is also observed under applied magnetic field (plot 2, Fig. 1). The nonmonotonic change in ReZ in low frequency region attracts ones attention and reaches the minimum near at 7·10⁻³ Hz. Such behaviour serves as an illustration for increase in conductivity as a result of charge carriers’ delocalisation at the narrow band of attachment levels. Contrary to the MCM-41<SmCl₃> behaviour in a magnetic field, the illumination of pellet of synthesised sample with white light provokes an increase in ReZ (plot 3, Fig. 1). The frequency dependence of ReZ is of abnormal character with an increase in specific resistance in low frequency region and its maximum at 5·10⁻² Hz. At the same time, there are ReZ oscillations in a middle frequency region which could be initiated by charge carriers capturing and release by trap centres during time commensurable to half-period of sinusoidal signal of initial excitation. Hence, the illumination activates the trap states intensively and they capture and keep charge carriers then.

Interesting results can be observed during analysis of frequency dependence of the imaginary part of the complex impedance – ImZ. It should be mentioned that a well defined maximum for – ImZ appears near 1.5·10¹ Hz for MCM-41<SmCl₃> (plot 1, Fig. 2) which does not appear for initial MCM-41 matrix (inset in Fig. 2). The application of magnetic field and illumination leads to maxima shift to low-frequency region. Thus, at the constant magnetic field the maximum is observed near 6·10¹ Hz (plot 2, Fig. 2) and under illumination maximum appears at 1.2·10¹ Hz (plot 3, Fig. 2). The shift in maxima positions corroborates the redistribution of density of states above and under Fermi level that results in activation of additional deep trap centres.

The Nyquist plot for initial matrix MCM-41 is of classical character with two well defined arcs which represent charge transfer stages through the matrix itself and through the inter grain boundary (Fig. 3a). Such impedance character can be represented by two parallel R∥C units linked in series (1st equivalent electric circuit in Fig. 4). The Nyquist plot for MCM-41<SmCl₃> nanohybrid structure consists of two arcs as well but they do not have a clear shape, and the low-frequency component appears as a line (Fig. 3b). The last feature of Nyquist plot can be modelled by the BCPE (Boundary Constant Phase Element) (2nd equivalent electric circuit in Fig. 4), which represents conductivity in spatially limited regions with complex conductivity [12]. The impedance behaviour of synthesised compound in a constant magnetic field demonstrates the negative capacitance effect with transfer to the 4th quadrant of complex plane.

This phenomenon can be caused by Zeeman effect. The same impedance behaviour appears under illumination but in a middle frequency region. In the last case, the mechanism of photoinduced negative capacitance most likely is related to electron excitation by light-wave from occupied states under Fermi level and trap centre formation for injected electrons. The relaxation time for these centres is longer than the half-period of sinusoidal initial signal. In general, this effect is well known in literature [13, 14] and comprehensively studied in works [15-17]. Therefore, the equivalent electric circuit for the last case contains inductive element L (3rd equivalent electric circuit in Fig. 4).

Fig. 1 – Frequency dependent real component of the specific complex impedance Z measured for MCM-41<SmCl₃> under normal conditions (plot 1), in magnetic field (plot 2) and under illumination (plot 3). The inset shows the frequency dependent real component of the specific complex impedance Z measured for the initial MCM-41 matrix.

Fig. 2 – Frequency dependent imaginary part of the specific complex impedance Z measured for MCM-41<SmCl₃> under normal conditions (plot 1), in magnetic field (plot 2) and under illumination (plot 3). The inset shows the frequency dependent real component of the specific complex impedance Z measured for the initial MCM-41 matrix.
Electric Properties of MCM-41 <SmCl₃> Nanohybrid …

Constant phase element CPE of capacitive character models distributed capacitance [11] caused by vacancies or impurity defects, which provide electron conductivity at ambient temperature. It is noteworthy that observed effect can have a practical impact on development of magnetically and optically operated nanoscale gyrator-free delay lines.

The measurements of thermostimulated discharge spectrum (Fig. 5) serve as an evidence for statements described above. As seen from Fig. 5, the spectrum consists of narrow bands with a considerably higher density of levels and has well defined miniband character. The observable homo- and heterocharge relaxation process is important as well.

Dielectric properties of MCM-41 <SmCl₃> were investigated in a frequency range where loss tangent is less than unit (Fig. 6) with accentuation on advisability of the nanohybrid compound application. The dielectric permittivity of MCM-41 <SmCl₃> demonstrates an abnormal behaviour in a high frequency range (Fig. 7) but the maximum value is low anyway and does not make the compound practically attractive. However, the external field application leads to a giant increase in dielectric permittivity. The values for magnetic and capacitive effects are \(\rho_H = 2800\% \) and \(\rho_L = 7700\% \), respectively, where \(\varepsilon_H \) is the dielectric permittivity in constant magnetic field, \(\varepsilon_L \) is the dielectric permittivity under illumination and \(\varepsilon_0 \) is the dielectric permittivity under normal conditions.

The obtained results confirm the advisability of development of obtained nanohybrid structure. It can be applied for highly magneto- and photosensitive varicaps that enables the switch from resistive sensors to capacitive analogues.

The magnetically and optically sensitive dielectric properties of MCM-41 <SmCl₃> became the reason to continue investigation in the direction of spontaneously generated EMF under constant heating. The temperature dependence of EMF is presented in Fig. 8. The maximum value for EMF is 10 mV and it makes nanostuctured MCM-41 <SmCl₃> an attractive material for non-lectrochemical EMF generators.
4. CONCLUSIONS

1. The encapsulation of samarium (III) chloride in MCM-41 matrix results in dielectric permittivity increase by three orders of magnitude, changes the behaviour of the real
Re and imaginary Im components of the complex impedance Z.

2. The observed magneto- and photoinduced negative capacitance effects for obtained MCM-41 <SmCl₃> nanohybrid open up the possibilities for its application in noninverter delay nanolines with optically and magnetically operable parameters.

3. The giant magneto- and photocapacitive effects appear in MCM-41 <SmCl₃> encapsulate with the corresponding values ρH = 2800 %, ρL = 7700 % that makes it a promising alternative for exchange the resistive sensors of magnetic field onto capacitive analogues.

4. The encapsulation of samarium (III) chloride in MCM-41 matrix results in spontaneous generation of EMF of 10 mV in obtained compound under heating.

REFERENCES

11. Z.B. Stoynov, B.M. Grafov, B.S. Savova-Stoynova, V.V. Elkin, Elektrokhimicheskie impedans (The Electrochemical Impedance) (Moskov: Nauka Publishing House: 1991) [In Russian].

Електронні властивості наногібридного капсулю МСМ-41 <SmCl₃>

Fedir Ivashchyn¹,², Dariusz Calus¹, Anna Pidluzhna², Piotr Chabeki¹

¹ Częstochowa University of Technology, Faculty of Electrical Engineering, 17, Al. Armii Krajowej, 42200 Częstochowa, Poland
² Lviv Polytechnic National University, 12, Bandera St., 79013 Lviv, Ukraine

Імовірно, протягом останнього десятиліття особливо, найбільш популярною сполукою для синтезу комплексних гібридних структур є молекулярна співхідна матриця МСМ-41. Багато різноманітних класів сполук, нарисованих на її основі. Самарій є добре відомим металом завдяки своїм магнітним властивостям, та його золота широко використовуються в лабораторіях для синтезу нових сполук. Саме...
завдяки згаданим властивостям в даній роботі вирішено впровадити самарій-вмісну сполуку в матрицю МСМ-41 та дослідити електричні властивості отриманого гібридного комплексу з точки зору його застосування в магнітному та оптичних полях. Впровадження самарій хлориду SmCl₃ в матрицю МСМ-41 було успішно реалізовано з використанням методу інканціювання. Електричні властивості одержаного наногібридного інкапсуляту досліджено методом імпедансної спектроскопії та встановлено характер частотної дисперсії імпедансу, визначено тангенс кута втрат та діелектричну проникність МСМ-41-SmCl₃ в темряві, при освітленні та прикладеному зовнішнім магнітному полі. В синтезованій субстанції було досліджено термогальванічний ефект та проаналізовано його механізми. Зафіксована магнітно- та фотоіндукована від'ємна ємність відкриває можливість застосування одержаної сполуки в безгідраторних нанолініях затримки з оптико- та магнітно керованими параметрами.

Ключові слова: Нанопориста матриця МСМ-41, Імпедансна спектроскопія, Діаграми Найквіста, Діелектрична проникність, Тангенс кута електричних втрат, Термо-ЕРС.