Room Temperature Synthesized TiO₂/Bi₂Se₃ Bilayer Thin Film by Simple Chemical Route: Study the Effect of Deposition Time of Bismuth Selenide on Physical Properties of Film

Vijay Baviskar^{1,2}, Dattatray M. Nerkar³, Prashant Baviskar⁴, Dipak Salunkhe⁵, S.R. Gosavi^{6,*}, R.S. Patil^{2, †}

¹ Department of Applied Sciences and Humanities, R. C. Patel Institute of Technology, Shirpur 425405, (M.S.), India

² Department of Physics, PSGVPM's A. S. C. College, Shahada, 425409, (M.S.), India

³ Sathaye College, Dixit Road, Vile-Parle (East), Mumbai, 400057, (M.S.), India

⁴ Department of Physics, S.N. Arts, D.J. Malpani Commerce and B.N. Sarda Science College, Sangamner, 422605,

(M.S.), India

⁵ KVPS, Kisan Arts Commerce and Science College, Parola, 425111, (M.S.), India

⁶ C.H.C. Arts, S.G.P. Commerce, and B.B.J.P. Science College, Taloda, 425413, (M.S.), India

(Received 10 February 2020; revised manuscript received 14 April 2020; published online 25 April 2020)

Simple chemical route namely Chemical Bath Deposition (CBD) has been successfully employed for deposition of Bismuth Selenide (Bi_2Se_3) nanoparticles on porous TiO_2 at room temperature. The effect of deposition time of Bi_2Se_3 on structural, surface morphological and optical properties of TiO_2/Bi_2Se_3 bilayer film has been systematically investigated. X-ray diffraction and energy dispersive X-ray spectra analysis was confirmed the Bi_2Se_3 nanoparticles are of effectively deposited on anatase TiO_2 film. Field Emission Scanning Electron Microscopy (FESEM) images shows the TiO_2 film uniformly covers by Bi_2Se_3 nanoparticles. Optical absorption spectrum is reflecting the considerable enhancement in absorption of visible light with increasing deposition time of Bi_2Se_3 on TiO_2 thin film.

Keywords: Bismuth Selenide, Titanium Dioxide, Nanoparticle, CBD, Thin films.

DOI: 10.21272/jnep.12(2).02038

PACS number: 68.60. – p

1. INTRODUCTION

The transparent conducting metal oxide such as TiO_2 , ZnO, CdO, and SnO_2 earned the considerable interest by research community since from last few decades due to its novel physical and chemical properties. Among them TiO_2 is one of the excellent metal oxide semiconducting material which is abundantly available, non-toxic, low cost, and chemically stable. As these consequences TiO_2 has been extensively used in number of applications such as in photoelectrochemical cells [1-4], gas sensors [5-6], supercapacitor [7-8] display devices [9-10], photocatlyst [11] etc.

The ideal physical and chemical characteristics of TiO₂ established him as promising candidate for the applications of solar energy conversion devices. But it is not functionalise ideally due to its wide energy band gap $(E_g = 3.2 \text{ eV})$ which is weaker its light harvesting ability in visible region [12]. Band gap modulation of TiO_2 by using of appropriate narrow band gap material is one of the convenient approach for enhancing optical absorption toward lower wavelength. With this consequences number of efforts has been taken by research community to improved optical properties of TiO₂ by using dyes, metal nanoparticles and metal chalcogenide materials. Compare with dyes and metal nanoparticles, semiconducting metal chalcogenides are prominent materials due to its easy band gap tuning by optimizing preparative parameters during synthesis. In this context some of the papers was reported were narrow band gap metal chalcogenide semiconductors such as CdS [13], CdSe [14], Bi_2S_3 [15], Sb_2S_3 [16], etc. used as sensitizer with metal oxide for effective trapping of visible light.

In this paper attempt has been made to extend the optical absorption response of TiO_2 towards lower wavelength region through the deposition of group V-VI compound inorganic semiconductor material such as Bismuth selenide consisting narrow optical band gap which is tuneable in the range of 0.91 to 2.3 eV [17, 18] by simple chemical route. The effect of deposition time on structural, surface morphological and optical properties of resulted TiO₂/Bi₂Se₃ bilayer film was systematically presented.

2. EXPERIMENTAL

2.1 Chemicals and Materials

For the fabrication of TiO₂/Bi₂Se₃ bilayer system, TiO₂ powder (P-25 Degussa, Germany), titanium isopropoxide (Aldrich, India), acetyl acetone (Sigma Aldrich), ethanol absolute, triethanolamine (TEA) (Merck, Germany) and bismuth nitrate, sodium sulphite, selenium (Loba chemie) were analytical reagent (AR) grade and used without further purification. All precursor solutions were freshly prepared with ultrapure deionized water.

The fabrication of TiO_2/Bi_2Se_3 bilayer system is a two-step process namely; coating of TiO_2 on pre cleaned glass substrate by using spin coating technique and then Bi_2Se_3 nanoparticles decoration on porous TiO_2 thin film by using simple chemical route.

2077-6772/2020/12(2)02038(4)

^{*} srgosavi.taloda@gmail.com

[†] rspatil_shahada@yahoo.co.in

VIJAY BAVISKAR, DATTATRAY M. NERKAR ET AL.

2.2 Deposition of TiO₂ Thin Film

The amorphous glass was used as a substrate for the deposition of porous TiO_2 thin film. Preliminarily glass substrates well cleaned with labolin soap solution and then proceed for ultrasonic cleaning treatment in double distilled water (DDW) followed by acetone. Finally cleaned glass substrates were dried in nitrogen environment before the deposition of TiO_2 thin film.

Initially TiO₂ gel prepared by adding 2 gm of P-25 TiO₂ powder in the 10 ml mixture of ethanol and acetyl acetone followed by addition of 1 ml titanium isopropoxide. The resultant mixture was well stirred at room temperature and subjected in ice bath for ultrasonic probe sonication at an frequency (20 kHz) for 30 min. The sol-gel spin coating route followed for the preparation of TiO₂ thin films onto glass substrate by injecting 1 ml of prepared TiO_2 gel one time onto the centre of glass substrate. The spin coater was rotated with the different r.p.m. from 500 to 2000 rpm for 1 min. and finally a uniform film was obtained. In order to avoid agglomerations of TiO₂ nanoparticles in TiO₂ gel, it is mandatory to keep it inside the ultrasonic bath till end of the deposition process. The synthesized films were annealed at 450 °C for 30 min. to eliminate organic ingredients and to enhance the adherence as well as porosity of film with surface of the substrate. Lastly, the annealed TiO₂ thin film was used as a substrate to for further deposition of Bi₂Se₃ nanoparticles carefully store in vacuum desiccator.

2.3 Deposition of Nanocrystalline Bi₂Se₃ on Porous TiO₂ Thin Film

The experimental set up used for the preparation of TiO₂/Bi₂Se₃ bilayer system is shown in Fig. 1. Simple and low cost CBD method employed for the deposition of nanocrystalline Bi₂Se₃ on porous TiO₂ thin film at room temperature. The cationic precursor for Bi_2Se_3 was 1 mM bismuth nitrate (Bi(NO₃)3.5H₂O) complexed with optimised amount of triethanolamine (TEA) at a $pH \approx 9$. The source for selenium is a sodium selenosulfate serve as a anionic precursor prepared by adding elemental selenium powder and sodium sulphite (Na₂SO₃) in 60 ml deionized water followed by magnetic stirring at 65 °C for 6 h consisting $pH \approx 11$. The cationic and anionic precursors were taken in 1:1 volumetric ratio in beaker and earlier coated porous TiO₂ thin film was immersed in chemical bath and kept inclined to the wall of the beaker in such manner that deposited surface towards the mixture. The films were taken out with specific time intervals i.e. after 15, 20 and 25 min. and rinsed with DDW to remove loosely bounded particles. TiO₂/Bi₂Se₃ films exhibiting variation in colour from faint brown to dark brown as increasing deposition time from 15 to 25 min. Finally deposited films were dried in air at room temperature and used for further characterizations.

2.4 Reaction Mechanism

The solution growth is the proposed route for the deposition of Bi_2Se_3 thin film onto porous TiO_2 majorly involved ion by ion mechanism. The cationic precursor is a source of Bi^{3+} ions consist Bi-TEA mixture where

TEA used as complexing agent. The complexing agent having two important aspect first to prevent dissociation of cations and suitably releasing them for further reaction. The dissociation of selenide anions by the hydrolysis of sodium selenosulfate in alkaline solution containing soluble complexes of bismuth. The ionic product of cations and anions in precursor solution exceed the solubility product they lead to formation of embryos by coagulation of atoms. Once these embryos attain the critical size initiated the nucleation which serve as a seed for further growth of Bi₂Se₃ nanoparticles on the surface of substrate. In this way the thin film formation is proceed on porous TiO₂ substrate by ion by ion condensation which facilitated us to easily tuning particle size by controlling preparative parameters. Here growth of Bi₂Se₃ thin film controlled by varying the deposition time of film in precursor solution and the resultant effect on physical properties of TiO₂/Bi₂Se₃ film are systematically presented. The overall reactions proceed in precursor solution are as follow

Bi-TEA \longrightarrow Bi³⁺ + TEA Na₂SeSO₃ + OH⁻ \longrightarrow Na₂SO₄ + HSe⁻ HSe⁻ + OH⁻ \longrightarrow H₂O + Se² 2Bi³⁺ + 3Se² \longrightarrow Bi₂Se₃

2.5 Characterizations

The prepared TiO₂/Bi₂Se₃ bilayer architecture was characterized by using XRD, FESEM and UV-Vis spectroscopy. Crystallographic and structural studies are carried out using Bruker D8-Advanced X-ray diffractometer using a CuK_a radiation source ($\lambda = 1.54056$ Å). The surface morphology and chemical composition of the prepared TiO₂/Bi₂Se₃ film was determined by FESEM and energy dispersive X-ray spectroscopy (EDS) using S-4800 type-II (Hitachi High Technology Corporation Tokyo, Japan). The optical properties were investigated using UV-Vis. double beam spectrophotometer, Shimadzu (Model-1601) within the wavelength range 300 to 800 nm.

Fig. 1 - The schematic illustration of TiO₂/Bi₂Se₃

3. RESULTS AND DISCUSSION

3.1 Structural Studies

Fig. 2(a) and 2(b-c) shows the XRD pattern of a spin

ROOM TEMPERATURE SYNTHESIZED TIO2/BI2SE3 BILAYER...

coated bare TiO₂ and TiO₂/Bi₂Se₃ thin films respectively. Fig. 2(a) shows the XRD pattern of the bare TiO₂ synthesized on glass substrate which clearly reveals polycrystalline in nature. The most intense peak observed at $2\theta \approx 25.26^{\circ}$ assigned to (101) plane, which is the characteristic peak of anatase phase with tetragonal crystal structure of TiO₂ [JCPDS card no. 84-1286]. While other low intense peaks at $2\theta \approx 37.87^{\circ}$, 48.15°, 54.54° and 55.06° correspond to reflections from (004), (200), (105) and (211) planes respectively of TiO₂.

In Fig. 2(b-c) some additional low intense peaks are observed at $2\theta \approx 27.58^{\circ}$ and 50.35° established the presence of another layer on TiO₂. The diffraction angles indexed to planes with orientation (121) and (351) correspond to formation of orthorhombic crystal structure of Bi₂Se₃ nanocrystals [JCPDS card no. 77-2016]. The XRD pattern confirmed the CBD method has been successfully utilized for synthesised TiO₂/Bi₂Se₃ bilayer architecture.

The crystallite size (D) for TiO₂ in the films has been evaluated by using Scherer's formula at an angle 25.26°.

$$D = \frac{k\lambda}{\beta\cos\theta},\tag{1}$$

where k is constant (0.94), λ is the wavelength of X-ray, β is the full width at half of the peak maximum in radians and θ is Bragg's angle. Above equation established crystallite size of TiO₂ is found to be nearly 26 nm.

Fig. 2 – XRD patterns of (a) bare TiO₂ (b) TiO₂/Bi₂Se₃ – 15 min (c) TiO₂/Bi₂Se₃ – 20 min (d) TiO₂/Bi₂Se₃ – 25 min

3.2 Surface Morphology and Compositional Studies

Fig. 3 shows the FESEM images were taken with scale bar of 200 nm for spin coated bare TiO₂ thin films and TiO₂/Bi₂Se₃ bilayer architecture. Fig. 3(a) depicted bare TiO₂ shows porous morphology constructed by small nanocrystals with average size 25 to 30 nm appears as agglomerated spherical clusters. This porous film provides large surface area for the further growth of Bi₂Se₃ nanoparticles. Fig. 3(b) gives the morphology of Bi₂Se₃ coated TiO₂ with 20 min. deposition time gives the pre deposited Bi₂Se₃ nanoparticles act as a secondary nucleation centres leading to coalescence formation.

Fig. 3 – FESEM images of (a) bare TiO_2 (b) TiO_2/Bi_2Se_3 – 20 min. (c) Cross sectional image of TiO_2/Bi_2Se_3 (d) EDX spectra of TiO_2/Bi_2Se_3

The agglomerated Bi_2Se_3 nanoparticles enhancing the density of bridging result in minimizing porosity of resultant film. In this way by tuning deposition time in CBD is facilitated to optimise Bi_2Se_3 layer on porous surface of TiO₂. Fig. 3(c) for SEM cross sectional image clearly shows formation of another thin layer on bare TiO₂ recommended formation of TiO₂/Bi₂Se₃ bilayer thin film.

The compositional analysis was studied with the help of EDS coupled with FESEM unit. EDS spectrum

VIJAY BAVISKAR, DATTATRAY M. NERKAR ET AL.

Fig. 4 –UV-Visible absorption spectra (a) bareTiO₂ (b) TiO₂/Bi2Se₃ – 15min (c) TiO₂/Bi₂Se₃ – 20 min (d) TiO₂/Bi₂Se₃ – 25 min

as shown in Fig. 3(d) consisted clear peak for Ti, O, Bi and Se strongly support to formation Bi_2Se_3 thin layer on bare TiO₂. In addition to XRD, this again confirmed the formation of TiO₂/Bi₂Se₃ bilayer architecture at room temperature by simple CBD method.

3.3 Optical Studies

The modification in light harvesting ability of TiO_2/Bi_2Se_3 architecture due to the chemically deposited thin layer of Bi_2Se_3 on bare TiO_2 film was studied by performing optical absorption studies in 300 to 800 nm wavelength range. The optical curve for bare TiO_2 as shown in Fig. 4(a) clearly revealed the sudden rise in absorption spectra at shorter wavelength (UV part)

REFERENCES

- H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, Md. K. Nazeeruddin, *Nano Lett.* 9 No 12, 4221 (2009).
- Anusorn Kongkanand, Kevin Tvrdy, Kensuke Takechi, Masaru Kuno, Prashant Kamat, J. Am. Chem. Soc. 130, 4007 (2008).
- B.R. Sankapal, D.B Salunkhe, S. Majumder, D.P. Dubal, *RSC Adv.* 6, 83175 (2016).
- Rahul A. Wagh, Anil N. Kulkarni, Prashant K. Baviskar, Habib M. Pathan, Rajendra S. Patil, *Mater. Ren. Sus. Energy* 7, 18 (2018).
- Tony Dantes de Morais, Frederic Chaput, Khalid Lahlil, Jean-Pierre Boilot, Adv. Mater. 11, 107 (1999).
- G.N. Chaudhari, A.M. Bende, A.B. Bodade, S.S. Patil, V.S. Sapkal, *Sens. Actut. B: Chem.* **115**, 297 (2006).
- S.S. Raut, G.P. Patil, P.G. Chavan, B.R. Sankapal, J. Electroanalytical, Chem. 780, 197 (2016).
- Lingxia Zheng, Yucheng Dong, Haidong Bian, Chris Lee, Jian Lu, Yang Yang Li, *Electrochim. Acta.* 203, 257 (2016).
- 9. G.P. Patil, A.B. Deore, V.S. Bagal, D.J. Late, Mahendra A.

suggested the optical band edge would facilitate its application as window layer for visible spectrum. The enhancement in optical absorption is seen lower wavelength (visible region) with 15, 20 and 25 min. deposition time of Bi₂Se₃ as shown in Fig. 4(b-d) respectively. This might be due to as increasing in deposition time small particles get agglomerated to form bigger one, which is responsible to shifting optical properties towards the bulk materials. The optical absorption ability of bare TiO₂ is extended in lower wavelength region by depositing thin layer of Bi₂Se₃ nanoparticles.

4. CONCLUSION

In the present investigation we have successfully explored the simple chemical route for size controlled growth of Bi₂Se₃ nanoparticles on porous TiO₂ film at room temperature. The interaction between TiO₂ and Bi₂Se₃ significantly influences the surface morphological and optical properties of obtained TiO₂/Bi₂Se₃ bilayer thin film. The modulation in physical properties of as synthesised bilayer architecture will offer new opportunities in the field of optoelectronic, gas sensors and solar cell devices.

ACKNOWLEDGEMENT

The author sincerely thankful to HRT, GPP, SRT, RAW and CDJ for supporting during work. The author also thankful to Prof. J.V.Sali, Dr. S.S.Ghosh, Dr. P.G.Chavan and Dr. A.V.Deore for support and lab facility. The author is also thankful to KBCNMU, Jalgaon for research project [NMU/11A/VCRMS/ Budget-2016-17/Science/18/85/2017].

More, Padmakar G., Chem. Phys. Lett. 657, 167 (2016).

- Girish P. Patil, Vivekanand S. Bagal, Sachin R. Suryawanshi, Dattatray J. Late, Mahendra A. More, Padmakar G. Chavan, *App. Phys. A* 122 No 5, 560 (2016).
- Jing Shang, Wei Li, Yongfa Zhu, J. Mol. Catal. A: Chem. 202 No 1-2, 187 (2003).
- A. Hosseini, K.C. Icli, H.H. Gullu, *Turk. J. Sci. Techol.*, 8 No 2, 69 (2013).
- R.S. Dibbell, D.F. Watson, J. Phys. Chem. C 113 No 43, 18643 (2009).
- Y.L. Lee, B.M. Huang, H.T. Chien, *Chem. Mater.* 20, 6903 (2008).
- D.B. Salunkhe, D.P. Dubal, J.V. Sali, B.R. Sankapal, *Mater. Sci. Semicond. Proc.* **30**, 335 (2015).
- D.B. Salunkhe, S.S. Gargote, D.P. Dubal, W.B. Kim, B.R. Sankapal, *Chem. Phys. Letters* **554**, 150 (2012).
- S. Augstine, S. Ampili, J.K. Kang, E. Mathai, *Mater. Res. Bull.* 40, 1314 (2005).
- X. Yang, X. Wang, Z. Zhang, J. Cryst. Growth 276, 566 (2005).