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In the cubic non-linear approximation framework, the analysis of space charge wave formation with a 

wide frequency spectrum in helical two-velocity electron beams was performed. It was shown that the for-

mation of a space charge wave with wide frequency spectrum in this kind of beams occurs on condition that 

the wave first harmonic frequency is much less than the two-stream instability critical frequency. We 

demonstrated that due to the linearity of the growing space charge wave dispersion characteristic, the con-

dition of the three-wave parametric resonant interactions in helical two-stream relativistic electron beam 

fulfills for a significant number of such wave’s harmonics which frequencies are less than the critical fre-

quency. Due to these resonances, the excitation of multiharmonic space charge wave occurs. This wave is 

amplified due to both the three-wave parametric resonances and the two-stream instability mechanism. As 

a result, the multiharmonic space charge wave forms, and its spectrum width is defined by the 1st harmon-

ic frequency and the two-stream instability critical frequency. It is demonstrated that the frequency spec-

trum width of the multiharmonic space charge wave increases with the increase of the electrons input an-

gle with respect to the longitudinal focusing magnetic field and it exceeds the frequency spectrum width of 

such waves in straight electron beams. It is also found out that the space charge wave saturation length in 

a helical electron beam is two and more times less than in straight electron beams. Therefore, the devices 

using two-stream helical relativistic electron beams would have less longitudinal dimensions. We proposed 

to use helical two-stream relativistic electron beams in multiharmonic two-stream superheterodyne free-

electron lasers in order to increase the frequency spectrum width and to decrease the device’s longitudinal 

dimensions compared with devices using straight electron beams. 
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1. INTRODUCTION 
 

Owing to the two-stream instability, the two-stream 

superheterodyne free-electron lasers (TSFELs) are cha-

racterized by exclusively high amplification properties 

in millimeter-infrared wavelength band [1-11]. Howev-

er, single-section TSFEL amplifiers have a pronounced 

tendency to self-excitation due to extremely high ampli-

fication level. This problem can be effectively solved by 

use of the klystron-type TSFEL schemes [1]. The main 

advantage of this design is the very deep input-output 

decoupling. It fully suppresses the abovementioned 

self-excitation in single-section TSFELs. 

In the majority of works devoted to TSFEL klys-

trons and TSFEL in general, only monochromatic oper-

ation modes are investigated. In such modes the space 

charge wave (SCW) is excited on the frequency having 

maximal amplification due to the two-stream instabil-

ity [1-11]. Lately, there are also works investigating 

multiharmonic operation modes of TSFELs [1, 12, 13]. 

In these studies, multiharmonic TSFELs capable of 

powerful ultrashort electromagnetic field cluster for-

mation and able to create powerful multiharmonic 

signal with a wide frequency spectrum are investigat-

ed. In this connection, there is a task to find TSFEL 

operation modes in which effective generation of elec-

tromagnetic waves with a wide frequency spectrum 

takes place. 

 

A multiharmonic SCW is the source of multi-

harmonic waves in TSFELs. Previously performed 

researches [1, 12, 13] showed that SCW with a broad 

frequency spectrum (tens and more harmonics) is ex-

cited in straight two-stream relativistic electron beams, 

if the frequency of the first harmonic of SCW that 

grows due to the two-stream instability is much less 

than the two-stream instability critical frequency. The 

excitement of such SCW is caused by two factors. 

Firstly, the SCW growing due to the two-stream in-

stability is characterized by the quasilinear dispersion 

characteristic. Therefore, the conditions of parametric 

resonance between the harmonics of such a wave are 

satisfied for the plurality of harmonics, i.e. plural 

three-wave parametric resonant interactions take 

place. The excitement of higher SCW harmonics hap-

pens because of such interactions. Frequencies of such 

harmonics do not exceed critical frequency of the two-

stream instability. 

Secondly, since the frequency of the first SCW har-

monic is much less than the critical frequency of the 

two-stream instability, the harmonics excited due to the 

plural resonant interactions are also amplified due to 

the two-stream instability. As a result of superposition 

of plural resonant interactions and the two-stream in-

stability, the powerful multiharmonic SCW with a 

broad frequency spectrum, which can be a source of 

multiharmonic waves in multiharmonic TSFELs, forms. 
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Further search of the multiharmonic operation 

modes has revealed that excitation of multiharmonic 

SCWs happens more effectively in helical two-stream 

relativistic electron beams [13]. In the framework of 

the small-signal approximation it was found out that in 

helical two-velocity relativistic electron beams the 

growth rates of the two-stream instability are higher 

than in the straight beams. The critical frequency of 

the two-stream instability also increases which is the 

evidence of possibility to form multiharmonic SCW 

with broader frequency spectrum. But some questions 

remained uncertain: what are the saturation levels, the 

spectral characteristics of SCW, the SCW dynamics in 

cubic nonlinear approximation. This work is devoted to 

the solution of these questions. 

 

2. MODEL. BASIC EQUATIONS 
 

The simplest variant of scheme of the klystron 

TSFEL amplifier is shown in Fig. 1. 
 

 
 

Fig. 1 – The model of klystron TSFEL amplifier. Here: 1 is the 

two-beam electron accelerator, 2 is the first helical electron 

beam, 3 is the second helical electron beam, 4 is the first 

pumping system, 5 is the two-stream electron beam, 6 is the 

transit section, 7 is the absorber system, 8 is the second 

pumping system, 9 is the electron collector, 1, k1 are the 

amplified electromagnetic wave signal (frequency and wave 

number, respectively) 
 

The device works in the following manner. Two-

beam electron accelerator 1 generates two one-velocity 

helical relativistic electron beams 2 and 3, respectively. 

Both these beams are directed at the same input of the 

first pumping system 4. Then they form joint two-

velocity helical electron beam 5. Electromagnetic signal 

1 1
,k  (in the form of an amplified electromagnetic 

wave) is directed in the same input of the first pumping 

system 4. Two-velocity electron beam 5 is weak-

density-modulated as a result of the nonlinear para-

metric interaction of the electromagnetic wave 11,k  

with the first pumping system 4 and a SCW. So, fur-

ther (within transit section 6) electron beam 5 propa-

gates being modulated by frequency 3  (frequencies 

1  and 3  can be different in the general case). This 

means that initial (input) signal 11,k  transforms from 

the electromagnetic form in the electron-wave one in 

the first pumping system. 

The two-stream instability develops in electron 

beam 5 within transit section 6. Amplification maxi-

mum of the longitudinal electron waves in this case 

attains for the waves with some optimal frequency opt  

(9) [1, 8, 11-13]. The key point of the discussed design is 

that the modulation frequency 3  is much smaller than 

the optimal frequency opt , at which SCW has maximal 

growth increment due to the two-stream instability. In 

this case, the intensive generation of higher harmonics 

occurs due to the plural three-wave parametric resonant 

interactions. Higher harmonics are further amplified 

due to the two-stream instability. The formation of SCW 

with a broad frequency spectrum containing abnormal 

region in which higher harmonics are characterized by 

higher amplitudes occurs. So, the input signal 11,k  

exists in transit section 6 in the form of a multiharmon-

ic electron SCW. At the same time, absorber system 7 

absorbs the initial (input) electromagnetic signal 11,k . 

Thus, the modulated electron beam with a multi-

harmonic SCW enters the input of the second pumping 

system 8. The input electromagnetic signal 11,k  fur-

ther is absorbed in system 7. 

The generation of the output electromagnetic signal 

11,k  occurs within the second pumping system 8. This 

takes place due to the nonlinear interaction of modu-

lated electron beam 5 with relevant pumping field of 

the second pumping system 8. This means that the 

back transformation from the electron-wave-form 

33 ,k  into the electromagnetic one 11,k  takes place 

within the work bulk of the second pumping system 8. 

The worked off electron beam is collected by electron 

collector 9. The amplified electromagnetic signal is got 

from the system output. 

Thus, a main merit of the klystron TSFEL is an orig-

inal decoupling on a signal electromagnetic wave. It is 

realized by the transit section 6. Due to this, the TSFEL 

klystrons are characterized by rather high level of in-

put-output decoupling with respect to the signal wave. 

The present work is devoted to the analysis of plu-

ral resonant interactions of growing SCW harmonics in 

the transit section 6 of the TSFEL of klystron type with 

helical electron beam. We consider the following model 

of the two-velocity helical electron beam in the transit 

section 6. The helical two-stream relativistic electron 

beam consists of two partial interpenetrating electron 

streams with close values of relativistic velocities 1 ,

2  ( 2121 ,  ). The beam is injected at an angle 

  to the focusing magnetic field 0B  and moves along 

the helical trajectory. We take partial plasma frequen-

cies of beams as equal 2p,1p,   . We consider that the 

space charge of the beam is compensated by an ion 

background. We talk about the situation when the 

transversal dimensions of the model are much bigger 

than the wavelengths propagating in the investigated 

system. In this case, the beam can be considered as 

homogenous and we can neglect its borders influence 

on the wave dynamics. 

The SCW of the helical two-stream superheterodyne 

electron beam is taken multiharmonic. The electric 

field of this wave has the form 
 

  



N

m
mm ccpEE

1
z ..)iexp( , (1) 

 

where N is the maximal harmonic number considered 
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in the problem; zktp mmm    is the phase of m th 

SCW harmonic, 1 mm , mk  are its frequency and 

wavenumber respectively, the axis Z is directed along 

the focusing magnetic field 0B . 

In order to numerically analyze the processes de-

scribed above, we use the quasihydrodynamic equation, 

the continuity equation and Maxwell’s equations as 

initial. We utilize methods of hierarchic theory of oscil-

lations and waves to solve these equations [1]. This 

approach is based on Krylov-Bogoliubov method [1] for 

the asymptotic integration of the differential equations. 

We consider the case when the electron collision 

and thermal spread can be neglected. We investigate 

the model, in which all values depend only on longitu-

dinal coordinate z and time t. Then, the relativistic 

quasihydrodynamic equation, the continuity equation 

and Maxwell’s equations can be presented in the fol-

lowing form: 
 

 
   

             

2

2

e

1
qz

qz qz z

q

e
E

t z m c
, (2) 

 

 
  

    
   

qz

qz q q
n n

t z z
, (3) 

 

 



 



2

z

1

4
q

q

E
en

z
. (4) 

 

Here qz , 2/12 ))/(1(  cqq   are the velocity projec-

tion on axis Z and the relativistic factor of the qth beam 

respectively, c is the speed of light, e, me are the elec-

tron charge and mass respectively, nq is the electron 

concentration of the qth beam. 

As it is known, the solution of the (2)-(4) consists of 

three formally independent stages: solution of the mo-

tion problem (2) of two-stream relativistic electron 

beam in given electromagnetic fields; solution of the 

continuity equation (3) considering that we already 

know the velocities of electron beam; solution of the 

excitation problem of electromagnetic fields (4) consid-

ering velocities and concentrations as known values. 

We solve the motion problem and the continuity 

equation by means of the modernized method of aver-

aged characteristics [1, 14]. For electromagnetic field 

excitation problem solution we utilize the method of 

slowly varying amplitudes. The features of plural 

three-wave parametric resonant interactions of SCWs 

and the electromagnetic signal are considered during 

the solution. 

In order to solve the motion problem, we pass to 

characteristic of (2) [1, 14]. The characteristic of this 

equation is an ordinary differential equation. Since we 

consider the boundary problem, we pass from the time 

derivative to coordinate derivative using the well-

known relation for the velocity  /
z

dt dz . We sup-

plement the equation system by the equations for fast 

phases ,q m
p . We consider that amplitudes of fields 

change slowly with the change of longitudinal coordi-

nate z. The slow longitudinal coordinate   /z  is 

used to describe slow amplitude changes. As a result, 

we get the equation system in standard form 
 

 
  

  
    

2

2

e

1
qz qz

z

q qz

d e
E

dz m c
, (5) 

 




1d

dz
, (6) 

 


   


, 1
,

q m

m q m

qz

dp m
k

dz
. (7) 

 

We compare system (5)-(7) with the standard [1, 14] 

and write down the vector of slow variables x, vector 

functions X, vector of fast phases ψ , and vector of 

phase velocities Ω  in explicit form 
 

     
   , ,

z qz
x xx ,   


 

1 1
,

z
X XX , 

 

 


 
  

     

2

2

e

1
1

z

qz

z

q qz

e
X E

m c
,




 

1 1
X , (8) 

 

 


    

  
  
  

,1,1 ,1, 2,1 2, , ,1

, , , ,1 , , , ,1 , ,

,..., , ,..., , ,...,

, ,..., , ,...,

q q N N q

q N q q N q q N

p p p p p

p p p p p
ψ

 
  

 


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      
  

      

,1,1 ,1, 2,1 2, , ,1

, , , ,1 , , , ,1 , ,

,..., , ,..., , ,...,

, ,..., , ,...,

q q N N q

q N q q N q q N

Ω

 
 

Further, we use the algorithm of modernized meth-

od of averaged characteristics [1, 14] for the case of 

several fast phases. According to this algorithm we 

proceed to averaged variables x : 
 

 






   


 ( )

1

1
,

z

n

qz qz n
n

u x ψ ,  






   


 ( )

1

1
,n

n
n

u x ψ .(9) 

 

Equations for slow variables have the following 

form: 
 

  










 ( )

1

1
z

qz n

n
n

d
A

dz
x ,  











 ( )

1

1 n

n
n

d
A

dz
x . (10) 

 

We restrict ourselves by the third approximation for 

1/  . The algorithm of finding out ( )nu  and ( )n
A  is 

known and described, e.g., in [1, 14]. Particularly from 

these formulas it follows that ( ) 0nu   for any n; (1) 1A  , 

( ) 0nA   for n > 1; (1) (2) 0
z z

A A   , 

 

  


 

  

   
             



3/2
2 , ,

,(1)

, ,2
1e , ,

( )1
1 exp( ) .

z

N
mqz

q m
mqz q m

Ee
u ip c c

m c i
, 

 

and so on. As a result, we obtain the solution for both 

the oscillating velocity component and constant velocity 

component (9). 

The continuity equation solution is obtained in the 

same way as in the case of the motion problem. To 

solve electromagnetic field excitation problem, we sub-

stitute the expressions for the velocity (9) and the con-

centration of partial beams into Maxwell’s equations 

(4). We consider that these expressions obtained using 

modernized method of averaged characteristics have 
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the form of series with the small parameter 1/  . We 

also expand it in Fourier series in the fast phase har-

monics. After a series of mathematical transfor-

mations, we get the system of self-consistent nonlinear 

differential equations for electric field strength har-

monics complex amplitudes of the growing SCW in the 

cubic approximation 
 

 

   m

p

N

m
mmzm

mm
m

m
m

m

FccmpEEC

ED
dz

dE
C

dz

Ed
C

m









1

,3

,12

2

,2

..i/)iexp(

 (11) 

 

In (11), the harmonic number index m takes values 

from 1 to N, 
 

 








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


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
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

2

1
2

22
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))/(1(
1i),(

q qqzmm

qzq

mmmm
k

c
kkD




  (12) 

 

is the SCW dispersion function, )(/,1 mmm ikDC  , 

2/)(/ 22
,2 mmm ikDC  ,  





2
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2
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m
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
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qz
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qzq
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mkm

kce
C








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

   



3,

2
(3)

,3
1

1
4

mm n q p
q

F e u  are the functions considering 

the cubic nonlinear terms and depending on the inter-

acting waves electric field strengths. System (11) coeffi-

cients are also dependent on the constant components 

of velocities q  and concentrations qn  of partial beams 

which are changing during the nonlinear interaction of 

SCW harmonics. Therefore, we add the equations for 

constant components to the system (11): 
 

 ),,,...,,( 21 qqNq
qz

nEEEV
dz

d



 , 

 

 ),,,...,,( 21 qqNq
q

nEEEN
dz

dn
 . (13) 

 

The development of equations similar to (11), (13) is 

described in detail in [1, 14]. Functions 








2

(3)

,3
1

1
zq q

q

V A , 







2

(3)

,3
1

1
q n q

q

N A  contain cubic nonlinear components. 

Equation system (11), (13) allows us to investigate 

multiharmonic processes in helical two-stream relativ-

istic electron beam in the framework of cubic nonlinear 

approximation. We should note that the task solved by 

the system (11), (13) is complicated enough. This sys-

tem simulates models of the nonlinear dynamics of the 

multiharmonic SCW considering the plurality (hun-

dreds and more) of three-wave parametric resonant 

interaction of dozens of harmonics and their amplifica-

tion due to the two-stream instability. 
 

 

3. ANALYSIS 
 

We consider the situation when the two-stream in-

stability takes place in helical relativistic two-stream 

electron beam. From the mathematical point of view it 

means that the dispersion equation for the SCW in 

helical two-stream beam 
 

 0
)(

))/(1(
1i),(

2

1
2

22
p



















 

q qqzmm

qz
mmmm

k

c
kkD




  (14) 

 

has complex roots. As the dispersion equations (14) ana-

lysis shows [1, 15], these complex solutions have the form 
 

 mzmmk  i/ 0 , (15) 

 

where   2210 zzz   , mi  is the nonlinear addition to 

the SCW wavenumber on condition that the SCW frequ-

ency 1  is much less than the critical frequency [1, 15] 
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where 2/)( 210    is the average velocity of the 

two-stream electron beam, 2
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At that, maximal growth rate 
 

 





cos2

sin)/(1
)(

2/3
00

22
0

2
0

opt

cp 
  (17) 

 

belongs to the wave, which frequency corresponds to 

the optimal frequency [1, 15] 
 

 

cr

23
0

22
0

2
0popt

8/3

)2/(sin)/(13







 c
 (18) 

 

The relation cropt 8/3    is right both for heli-

cal and straight two-stream relativistic electron beams.  

On condition that SCW frequency is less than the 

two-stream instability critical frequency cr  , there 

are two waves characterized by complex wavenumber 

km (see the relation (15)) amongst the solutions of equa-

tion (14). One of these waves grows exponentially (am-

plifying wave) and   has the physical meaning of 

growth rate for it. The other wave attenuates exponen-

tially (evanescent wave). Since the amplitude of the 

evanescent wave decreases rapidly, we do not take this 

wave into further account. It is also worth noting that 

equation (14) allows two real solutions corresponding to 

slow and fast waves [1, 13, 15] besides two complex 

solutions while cr  . We assume that on the input of 

the investigated system the amplitudes of slow and fast 

SCWs are small and their influence on the two-stream 

instability development processes can be neglected. 
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It follows from (15) that plural three-wave paramet-

ric resonances occur in helical two-stream electron 

beam on frequencies cr   [1, 12, 13]. Plural three-

wave parametric resonance occurrence is coupled with 

the fact consequent from (15): for the amplifying wave 
the coupling between the wavenumber real part and 

frequency is linear 
 

 zk 0/)Re(  . (19) 

 

It means that if the frequency of the m th harmonic 

1 mm  is m times greater than the first harmonic 

frequency 1 , then the m th harmonic wavenumber real 

part )Re( mk  is also m times greater than the first har-

monic wavenumber real part: 
 

 )Re(//)Re( 1010 kmmk zzmm   . 

 

Therefore, the phase of m th harmonic defined by 

the wavenumber real part 
 

 111 )Re()Re( pmzkmtmzktp mmm   (20) 

 

is m times greater than the first harmonic phase. It 

leads to the fulfilment of three wave parametric reso-

nance conditions for the plurality of SCW harmonics 

meeting the requirement cr   

 

 
321 mmm ppp   (21) 

 

or, according to (11), 
 

 321 mmm  , (22) 

 

where 
1m , 

2m , 
3m  are integer numbers. The condition 

(22) is realized with the vast number of harmonics, e.g. 

5 = 3 + 2, 5 = 6 – 1, 3 = 4 – 1, etc. Therefore, we deal 

with situation in which the plurality of three-wave 

parametric resonances (21) is realized, i.e. plural par-

ametric resonant interactions take place. Such plural 

interactions are accounted in the system (11), (13). 

Thus, due to the linear dispersion relation plural par-

ametric resonant interactions between SCW harmonics 

are realized in the system on the condition  < cr. As a 

result of the plurality of three-wave parametric reso-

nant interactions and also of the harmonics exponen-

tial growth because of the two-stream instability, the 

SCW with a broad multiharmonic spectrum forms. In 

this spectrum, higher harmonics have higher ampli-

tudes than lower harmonics. 

As follows from (16), (17), both critical frequency cr 

and maximal growth rate Г(opt) increase with an in-

crease of the beam input angle α. It means that for the 

helical REBs having the same frequency of the main 

SCW harmonic, the spectrum width defined by the 

frequency 1 and two-stream instability critical fre-

quency cr are larger compared with straight beams. 

Maximal two-stream instability growth rate is larger 

for helical beams than for straight ones, as follows from 

(17). These features of helical two-stream REBs are 

illustrated in Fig. 2 showing the two-stream instability 

growth rates dependences on frequency with different 

input angles α. These dependences are achieved 
through the numerical solution of (14). 

 

Fig. 2 – Two-stream instability growth rates as a function of 

frequency for different beam input angles  
 

Fig. 2 is achieved for the two-stream REB with the 

following parameters: 111
2p1p s105.1  , 8.41  , 

2.42  . Curve 1 corresponds to the case  0 , curve 2 

– to the case 10 , curve 3 – to the case  20 , 

curve 4 – to the case  30 . First harmonic frequency 
112

1 s104.0  . When the SCW first harmonic fre-

quency 1  is much less than the critical frequency, plu-

ral three-wave parametric resonances between SCW 

harmonics occur in the frequency domain cr1   m . 

It follows from Fig. 2 that for helical two-stream beams 

this domain expands with increasing beam input angle 

 . This means that the use of helical two-speed electron 

beams is preferable in multiharmonic FELs, the primary 

task of which is the formation of a powerful electromag-

netic signal with a broad frequency spectrum [1, 12, 13]. 

It also follows from Fig. 2 that two-stream instability 

development happens with higher growth rates in heli-

cal two-stream electron beams than in straight beams. 

Thus, the utilization of helical beams in TSFELs leads to 

the electromagnetic waves amplification rates increase. 

Note, that the same fact for the FELs with helical elec-

tron beams has been concluded in [5, 11], but the reason 

of such increase has not been indicated. It follows from 

the above-stated analysis that the electromagnetic sig-

nal amplification rates increase in two-stream SFELs 

relates to the increase of the two-stream instability in 

helical REBs. It is also worth noting that both two-

stream instability optimal frequency and critical fre-

quency for helical electron beams are higher compared 

with the straight beams. It means that two-stream 

SFELs with helical electron beams can operate on high-

er frequencies than SFELs utilizing straight beams. 

The dynamics of multiharmonic SCW formation in 

the helical two-stream REB is illustrated in Fig. 3. These 

results are achieved by means of (11), (13). Fig. 3a repre-

sents the spectrum of SCW electric field strength on 

15z  cm, Fig. 3b – on 38z  cm, Fig. 3c – on 

44z  cm for the helical beam with the input angle 

 20 . The calculations were performed with the same 

parameters as in case of Fig. 2. 50 SCW harmonics were 

accounted during the computation ( 50N ). On the 

system input (z  0) the first harmonic amplitude is 

V/cm10 , other harmonics are zero. As we can see, high-
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er harmonics are excited on the initial stage (Fig. 3a) of 

multiharmonic spectrum formation due to the plural 

parametric resonances. Amplitudes of these harmonics 

decrease with the increase of harmonic number. Next 

(Fig. 3b), the abnormal spectrum in which higher har-

monics have higher amplitudes forms due to the two-

stream instability (its growth rate is different for differ-

ent harmonics (see Fig. 2)). At that, not the first harmon-

ic is maximal as in case of Fig. 3a, but the fifth harmon-

ic. And eventually, Fig. 3b represents the formed spec-

trum of SCW. The frequency of the harmonic with max-

imal amplitude is equal to the optimal frequency opt, 

which corresponds to the two-stream instability maxi-

mal growth rate. On the other hand, as we can see in 

Fig. 3b, the harmonics exceeding critical frequency cr  

are also excited in the system. Minimum of amplitude 

corresponds not to the critical frequency (29th harmonic), 

but to the frequency min (39th harmonic). There are also 

non-zero harmonics with frequency exceeding min. 

These harmonics are improper in this frequency domain 

and occur due to the parametric resonance (interference) 

of longitudinal waves. 
 

 
 

 
 

 
 

Fig. 3 – The dependence of SCW harmonic amplitudes mE  on 

the frequency. First harmonic frequency 112
1 s104.0   

 

 
 

Fig. 4 – The dependence of SCW harmonic amplitudes mE  on 

the frequency. Beam input angle is  0 . The spectrum on 

92z  cm is presented. On the system input ( 0z ) the first 

harmonic amplitude is V/cm10 , other harmonics are zero. 

First harmonic frequency 112
1 s104.0  . The calculations 

were performed with the same parameters as in case of Fig. 3 
 

SCW spectrum in case of straight two-stream REB 

is different. Fig. 4 represents the SCW electric field 

strength spectrum for the straight two-stream REB  

(  0 ). Calculation parameters are the same as in 

case of Fig. 3. Comparing Fig. 3c and Fig. 4, we can 

conclude that multiharmonic SCW spectrum width for 

helical beam is ~ 2 times greater than for straight 

beam. It can be also seen that maximal amplitude of 

SCW harmonic in case of straight two-stream REB is 

~ 2.5 times less than in case of straight beam, but the 

harmonic number in helical REB appears to be greater. 

Therefore, overall powers of multiharmonic SCWs 

in both cases are comparable. One should also note that 

helical two-stream REB forms multiharmonic SCW 

with higher frequency than straight REBs. Thus, aver-

age frequency of multiharmonic SCW for helical beam 

2 times exceeds the average frequency of multiharmon-

ic SCW of straight beam. 
 

 
 

Fig. 5 – Dependence of SCW electric field strength harmonics 

on longitudinal coordinate z for the beam input angles  0  

(curves 1) and  20  (curves 2) 
 

Fig. 5 represents the dependences of 50 SCW elec-

tric field strength amplitude harmonics on longitudinal 

coordinate z for beam input angles  0  (curves 1) 

and  20  (curves 2). Calculation parameters are the 
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same as in case of Fig. 3. On the input of the investi-

gated system SCW is monochromatic with the frequen-

cy 111
1 s104   in both cases, i.e. consists of one har-

monic. It follows from Fig. 5 that electric field strength 

harmonics amplification rates for the helical beam 

(curves 2) are higher than for the straight beam (curves 

1). It confirms conclusions made on the basis of (17) 

and Fig. 2. It also follows from these figures that satu-

ration levels of the helical electron beam are ~ 2.5 

times less than those of the straight beam. Based on 

Fig. 5, one can conclude that two-stream FELs utilizing 

helical electron beams can have smaller longitudinal 

dimensions due to the higher amplification rates com-

pared to FELs based on straight beams. 

 

4. CONCLUSIONS 
 

Thus, we elaborated cubic nonlinear theory of plu-

ral three-wave parametric resonant interactions of 

SCW harmonics amplification due to the two-stream 

instability in the transit section of klystron-type 

TSFEL with helical REB. The case when the frequency 

of the first SCW harmonic is much less than the critical 

frequency of the two-stream instability was considered. 

The research shows that due to the linearity of 

growing SCW dispersion characteristic in two-stream 

REB, the three-wave parametric resonant interactions 

condition fulfills for the substantial number of SCW 

harmonics with frequency less than critical one. Due to 

these resonances, the multiharmonic SCW is excited 

and it is also amplified due to the two-stream instabil-

ity. As a result, the multiharmonic SCW, which spec-

trum width is defined by the 1st harmonic frequency 

and critical frequency cr , forms. 

We found that in helical two-stream REB the criti-

cal frequency increases with the increasing beam input 

angle at the focusing magnetic field. It means that 

multiharmonic SCW frequency spectrum width for 

helical REB increases compared with straight beam. 

Also, the average frequency of multiharmonic SCW for 

helical beam exceeds average frequency of multi-

harmonic SCW in a straight beam. 

We demonstrated that for helical two-stream REBs 

growth rates are higher compared with the growth 

rates of straight beams. Due to this fact the saturation 

occurs earlier. It means that klystron-type TSFELs 

utilizing helical two-stream beams can have smaller 

longitudinal dimensions compared with TSFEL klys-

trons based on straight beams. 

We showed that for helical two-stream REBs the 

multiharmonic SCW saturation levels are smaller com-

pared with straight REBs. At that, overall energy of 

such wave remains comparable to the case of straight 

REBs due to the increase of such SCW harmonics 

number. 

Thus, the use of helical electron beams in multi-

harmonic TSFELs of klystron type leads to the en-

hancement of their amplification characteristics, the 

increase of the frequency spectrum width and the fre-

quencies of excited waves’ harmonics. Longitudinal 

dimensions of such devices are expected to be smaller. 
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за умови, коли частота першої гармоніки такої хвилі набагато менше критичної частоти двопотокової 

нестійкості. Показано, що через лінійність дисперсійної характеристики зростаючої хвилі просторово-

го заряду в гвинтовому двопотоковому релятивістському електронному пучку умова трихвильових па-

раметричних резонансних взаємодій виконується для великого числа гармонік такої хвилі, частота 

яких менше критичної частоти. Завдяки таким резонансам відбувається збудження мультигармоніч-

ної хвилі просторового заряду, яка підсилюється як за рахунок трихвильових параметричних резона-

нсів, так і за рахунок двопотокової нестійкості. У підсумку формується мультигармонічна хвиля прос-

торового заряду, ширина спектра якої визначається частотою 1-ї гармоніки і критичної частотою дво-

потокової нестійкості. Продемонстровано, що ширина частотного спектра мультигармонічної хвилі 

просторового заряду збільшується зі збільшенням кута вльоту електронів по відношенню до поздовж-

нього фокусувального магнітного поля і перевищує ширину частотного спектра таких хвиль в прямо-

лінійних електронних пучках. Також з'ясовано, що довжина насичення хвиль просторового заряду в 

гвинтових електронних пучках в два і більше разів менше, ніж в прямолінійних пучках. Тому при-

строї, які використовують гвинтові двошвидкісні релятивістські електронні пучки, матимуть менші 

поздовжні габарити. Запропоновано використовувати гвинтові двошвидкісні релятивістські елект-

ронні пучки в мультигармонічних двопотокових супергетеродинних лазерах на вільних електрона з 

метою збільшення ширини частотного спектра, зменшення їх поздовжніх габаритів у порівнянні з 

приладами, які вживають прямолінійні електронні пучки. 
 

Ключові слова: Двопотокова нестійкість, Двопотокові супергетеродинні лазери на вільних електронах, 

Гвинтові електронні пучки. 


