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The goal of this work was to increase the stability of the simulation based on the Numerov method dur-
ing the calculation of the electron wave functions in a metal cluster and to ensure the stability of self-
consistent calculations of the energy characteristics of metal clusters by limitation of the electrostatic po-
tential changes. The object of the study is the method for calculation of the electron wave functions and en-
ergy eigenvalues by the Numerov and Shooting methods. At the modeling stage, in order to increase the ef-
ficiency of the model, the density functional theory (DFT) was used in conjunction with the Kohn-Shem
formalism, which allowed us to simplify the complex problem of the electron interaction in the field of
charged ions and to obtain the model of independent electrons moving in some effective potential. We used
the stabilized jellium model (SJM) and local density approximation (LDA) for the exchange and correlation
energies. The change of the electrostatic potential profile limitation is used by adding coefficients that de-
termine the contributions of the previous and current electrostatic potential profile to the resultant one.
Models of a metal cluster with a centered monovacancy and approaches for calculating its parameters were
developed. To ensure the convergence and stability of the Numerov method, methods of two-side calcula-
tion with "cross-linking" of the wave function at the empirically selected point were proposed. The method
of simulation with the optimal step is developed and implemented in the program code for calculating the
energy characteristics of metal nanoclusters containing the monovacancy. Simulation allowed to obtain the
electron density and effective potential profiles for charged and neutral clusters. The results of the calcula-
tions were compared with experimental data, as well as with ab initio computations. Developed approaches
and simulation techniques can be recommended for the analysis of low-dimensional metal systems, includ-
ing systems with a layered structure.
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1. INTRODUCTION

In modern technologies where nanomaterials, atom-
ic clusters, or island films are used, we need diagnos-
tics, defect control and determination of their energy
characteristics. On the one hand, the calculations of
such characteristics as the ionization potential and
electron affinity, the cohesive energy, the dissociation
energy and the energy vacancy formation can be used
to control the defects and melting temperature of small
metal clusters. On the other hand, it is very useful for
modeling the composite instrumental materials during
the design of metallized and glue coatings, etc.

Today, ab initio methods are commonly used which
give the greatest reliability and can describe systems of
any geometry [1-4]. However, if high-precision calcula-
tions are not required, more economical methods such
as the Kohn-Sham method [5-8] can be used. Despite
the quantitative difference between ab initio and Kohn-
Sham version we can estimate qualitative tendencies of
the energy characteristics of metal clusters.

Thus, the sufficient accuracy of the selected model,
together with its universality and efficiency, deter-
mines its choice for this study.

When vacancies appear, the problem of simulation
for energy characteristics of metal clusters becomes
more complicated. Thus, in order to reduce the simula-
tion time, it is necessary not only to simplify the model,
but also to choose the most economical approach for
solving the obtained differential equations.

Simulation is based on the Kohn-Sham method and
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stabilized jellium model (SJM).

The subject of study is the optimal method for calcu-
lating the electron density profile and potential one of
defect-free metal clusters and clusters with the cen-
tered monovacancy based on the Numerov method.

The purpose of the work is to develop the procedure
for calculating the electron wave functions, energy char-
acteristics of a metal cluster, and to increase the stability
of the simulation based on the Numerov method.

2. MODEL

When constructing the model (at the modeling
stage), we assume that a simplest low-dimensional
metal system is the spherical cluster of radius Rn. Then
the problem of analyzing the energy characteristics of
such system is reduced to the solution of the boundary
value problem with the initial assumption about a rec-
tangular finite depth potential well.

To calculate the characteristics, the formalism of
DFT on the basis of the self-consistent Kohn-Sham
method was used. The SJM is used as the model of the
metal, in which the electron-electron, ion-ion and elec-
tron-ion interactions are averaged over the Wigner-
Seitz cell volume, and therefore the energy characteris-
tics of the metal are described "on average".

The solution of this problem is an iterative process
of refining the effective one-electron potential, or the
shape of a potential well, using the space distribution of
electron density (profiles) as the variable. The numeri-
cal integration of the Schrddinger equation for the
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search of wave functions was carried out by the Nu-
merov method. The initial approximation for the distri-
bution of electron density has the form:

nr<
n(ry =" < B 1)
0,r>Ry

The problem of the interaction of electrons with the
ions can be greatly simplified under the condition of
using the DFT in conjunction with the Kohn-Sham
formalism. As a result, we have the simple conceptual
cluster model, in which independent electrons move in
some effective potential. Further simplifications of the
model are possible if assumptions [9, 10] for the SJM
[11] using LDA for the exchange and correlation ener-
gies [12].

The superconducting state of small nanoclusters is
directly related to the phenomenon of pair correlation.
Coupling of electrons leads to a strong modification of
the energy spectrum. There is a hypothesis that transi-
tions to the superconducting state occur in clusters
whose electronic shells are completely filled [13, 14]. In
filled spherical shells, the upper filled electron energy
levels are strongly degenerate ("magic numbers" of at-
oms). The presence of even one vacancy in the cluster,
as shown in [9, 10], may lead to changes in the magic
numbers of atoms.

Thus, the problem of studying the energy character-
istics of the cluster with the monovacancy appears. The
models and simulation methods should provide the
optimal combination of sufficient accuracy of the re-
sults amid reasonable simulation time (efficiency).

Mathematical emulation of physical objects consists
of two stages: modeling and simulation. The main crite-
rion for modeling quality is precision and algorithmic
reliability (lack of algorithmic failures). The assumptions
and simplifications, adopted at the modeling stage, are
most affected to accuracy. However, even we have a suf-
ficiently precise model, the results of the simulation may
be totally inadequate due to the loss of stability. Thus,
the chosen method of solving the equations obtained at
the stage of modeling is important.

During the cluster model design, an assumption of its
sphericity was made. To determine the effect of vacancy
to the characteristics of the cluster, the characteristics of
the spheres with the same number of atoms N at zero
temperature were compared. In this case, the radii of
defect-free spheres Ry and spheres with a monovacancy
Ry, differ from each other:

R, =N",, g
Ry, = (N+1)"r,, @

It is assumed here that the radius of an elementary
Wigner-Seitz cell ry is equivalent to the radius of the
single atom.

In the SJM, the vacancy is represented as a spherical
cavity of radius ry in a homogeneous positively charged
background, which is created by the ions of the cluster.
The distribution of the positive charge of a cluster with a
vacancy is described by the Heaviside step function:

) = ROG~1,)0( Ry, —1). ®)
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Here we use the Hartree atomic units.

The total energy of the metal sphere is represented in
the form of electron density functional Ey,[n(r)]. The
electrostatic potential profile ¢ (r) is determined by the

Poisson equation [15] taking into account (3). Spherical
symmetry allows us to divide the variables in the wave
equation:

—%Vzvq (1) + 0, (O, (1) = 3, ().

In this case, the one-electron wave functions and en-
ergies are characterized by radial n, and orbital [ quan-
tum numbers. The radii of clusters differ in accordance
with definition (2) (see Fig. 1).

ﬁ

Fig. 1 — The spherical cluster model: without vacancies (a);
with a vacancy (b)

The numerical integration of the wave equation was
carried out by the Numerov method using the straight-
forward shooting method (ShM). Numerov method (also
called as Cowell method) is a numerical method to solve
ordinary differential equations of second order, in which
the first-order term does not appear. It is a fourth-order
linear multistep method [16].

The method is implicit, but can be made explicit if the
differential equation is linear. For an implicit method, in
its cycles, an algorithm for solving the resulting nonlinear
algebraic equation is established, for example, by Newton
method, half-division, etc. The concept of this method’s
application is to consistently approximate the solution by
selecting the electron energy in a given interval, focusing
on the boundary conditions for the solution of the wave
equation.

By using the ShM method it is possible to transform
the boundary value problem into a sequence of Cauchy
problems, which are further solved by the Numerov
method [17]. The ShM is one of the simplest numerical
algorithms and its key idea is to replace a boundary con-
dition problem with multiple trial runs of a simple initial
condition task. This is also the most useful for solution of
the time-independent Schrodinger equation if energy is
the varied trial parameter. This method is simple, but
may produce the sufficiently accurate results for the
adopted spherical model of the cluster.

The Numerov method, in combination with the ShM,
is the optimal choice for simulation, given the economy of
machine time (time saving is the main criterion). How-
ever, the Numerov method has problems with stability
[18], which is due to the complex exponential nature of
wave functions.

Consequently, the task is to develop additional facili-
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ties to ensure the stability of the computational algo-
rithm, and therefore to obtain a reliable result.

3. METHOD

To conduct model experiment, the simulation tech-
nique was developed that consists of a sequence of
tasks described as subroutines.

3.1 The Main Sequence of Calculation

Fig. 2 shows the general sequence of the DFT calcu-
lation, which consists of the following blocks.

Start — the program starts, with the startup param-
eters given through the command line.

Initialization — routine initialization of the system,
setting it in the initial state/condition, the first approx-
imation, suitable for further calculation.

Main loop — is the main loop, which is the iterative
process of finding the stable state of the system.

The loop has 2 exit conditions:

1) number of iterations exceeds 1200;

2) when cumulative profile’s change approaches to
the adopted computational errors (provides the maxi-
mum aceuracy).

Finding eigenvalues — the routine for finding all
possible electron energy terms in the current form of a
potential well and the wave functions corresponding to
these states.

Finding electron density — the subroutine that dis-
tributes electrons to energy levels based on the princi-
ple of minimum energy of the system and the Pauli one.
Then, by this distribution and by the form of the wave
function, which corresponds to these electrons, the elec-
tron density profile is calculated as

n(r)= S| () @

i=1

Finding potential is the subroutine for finding an ef-
fective one-electron potential consisting of the electro-
static and the exchange-correlation potentials. It uses
the current electron density profile and the previously
obtained electrostatic one.

Incrementing iteration counter (n) — increases by 1
the current value of the cycle counter.

Calculate the difference between old and new 6Ves —
calculates the difference between the previous and cur-
rent values of the effective potential as the sum of the
modulus of their differences at each point.

Modification coefficients — conditional modification
of coefficients that determine the contribution of the
previous and current electrostatic potentials to the re-
sulting one. This technique is implemented to ensure
the stability of the simulation.

Data output — calculation of full energies and saving
of calculation results. In more detail, the most mean-
ingful routines are discussed below.

When iteration process is over, the exchange-
correlation energy
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Fig. 2 — The calculation scheme of the parameters of the
spherical metal cluster by DFT

and the total energy of the cluster

E,=T+ %J‘d3r¢(r)[n(r) - p(r)]+ JdSrn(r)gxc(r)

- AEJdSrp(r) + <§U>WS Id3r6’(RN —r)n(r)

6

is calculated. Here, ¢; and ¢, are parameters; the kinet-
ic energy of non-interacting electrons 7s was taken into
account in the form

NC
T = ;gi - Idgrn(r)veff(r),

and the last two terms in (6) take into account the
structure of the ion subsystem, as well as the electron-
ion interaction in the form of the Ashcroft pseudopoten-
tial. Here, the stabilization correction (Sv)yg is calcu-

lated by the formula:
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1.0529

~ 0.1423r, [ Z\E

3 (1+1.0520(r, +0.3334r)

+ 0.3334]

To save the results, two text files were used, the first
one — to save the distributions, profiles and wave func-
tions that correspond to the final state of the system,
and the second — to save the energy characteristics of
the system, the energy eigenvalues and their quantum
numbers, including.

End — the completion of the main program cycle.

3.2 Headers and Footers

The main loop is based on the previous system
state, which is defined by initialization.

The sequence of initialization consists of blocks:

Initialization Start is the beginning of the proce-
dure. Initial filling datasets are the code area responsi-
ble for initial filling of data arrays and initial initializa-
tion of variables.

Task first approximation Vey — to obtain the initial
state of the system; one iteration of finding the effective
potential by the formula (7) with the initial parameters
(1) is executed. Finding eigenvalues — for finding eigen-
values (see Fig. 3); Finding electron density — finding
the electron density profile; Finding potential — finding
a potential profile (see Fig. 5).

At first, the one-electron effective potential is calcu-
lated by the formula:

(OU)ys +0,—A, TSR
veff(r) ={ WS N

R 7
0, r>Ry, ™

where A =4 and 16 eV for Na and Al, respectively.
Here, an exchange-correlation potential contribution

_ fBﬁ 0.1423 1( ¢
U, =—3—— 1+— + ,
T u u 6%

where the SJM parameters

¢ c 3 3
u=l+—-+—-%,¢c = 1.0529#—,0‘ = 0.3334#— .
Qﬁ ffﬁ ! 4r’ 2 4

Setting to zero iteration counter is responsible for
resetting the main loop variable. Initialization End —
completion of the initialization procedure.

02
3¥n

3.3 Finding Eigenvalues

This subroutine, by solving the wave equation by the
Numerov method, finds in the potential well of the clus-
ter all possible energy levels (eigenvalues) and wave
functions which correspond to them, and then stores
these data together with the corresponding quantum
numbers. It is depicted in Fig. 3.

Blocks of subroutine are:

J. NANO- ELECTRON. PHYS. 11, 05018 (2019)

Initialization energy interval — this block deter-
mines the energy interval and generates the table of
energy values in interval with the given step.

Loop for [ — on each iteration of the cycle, the energy
eigenvalues are performed for orbital quantum number
l. The cycle finished when no eigenvalue was found for
the last value .

Finding intervals — the calculation of wave functions
is carried out by the obtained grid of energies and in
another array the found values at the last point can be
saved. After viewing this array, the intervals at which
zero crossing occurs, were obtained.

Loop for n — the real energy eigenvalue and the
wave function on each iteration of the cycle are calcu-
lated in the corresponding interval, marked in the
Finding intervals block. The cycle finished when all the
eigenvalues in a potential well are considered for a giv-
en orbital quantum number. The serial number of ei-
genvalues for a given orbital quantum number is the
main quantum number.

Finding eigenvalues — finding by the ShM [19] the
specific eigenvalue of the energy level and the left part
of the wave function (Fig. 4).

Due to the fact of an accumulated error the full
wave function cannot be straightforwardly obtained, as
the result, the computational process loses stability.

When solving the equation in the direction of in-
creasing distance from the center of the cluster we have
lrlgcly/(r) —>+o (function ¥, in Fig. 4, upper graph).

Similarly, when moving to the center of the cluster we
have ljn[}y/(r) — 10 (dotted line of dependence ¥, in

Fig. 4, upper graph).
Since the second boundary condition for the solution
of the wave equation is limy(r)—0, then when we

search for the eigenvalue by the ShM, we can focus not
on the value of the wave function, but only on its sign.
Thus, the calculation of the eigenvalue and part of the
wave function, which is localized in the cluster and
around it, is carried out with maximum accuracy.

8

6

W 10*
o

0 5 10 15 20 25 30

Fig. 4 — Loss of simulation stability and functions linking
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Fig. 3 — The subroutine to find the energy levels in a potential well

Finding full wave function — to find the full wave
function, the real eigenvalue and part of the wave func-
tion found in the previous Finding eigenvalues block
are used. Then, the calculation of the wave function
from the last point to r = R+ 0.5r( is continued. Near
the point where the derivatives of both parts of the
functions are equal to each other (Fig. 4, "Cross-point"
on the upper graph), the linking of the left and right
parts of functions is performed.

So, the total wave function consists of two parts, the
first is calculated from the center of cluster, the second
is calculated from the point "vacuum", with the same
values of the orbital quantum number and energy. The
results are loaded into separate arrays. At an empiri-
cally determined point, the results are linked.

Since the values of functions at the point of cross-
linking may differ, due to the absence of normalization,
it is necessary to bring them to one level, by multiply-
ing one of the parts on the corresponding coefficient.
The result is recorded in the new array, and then the
normalization of the entire function is performed in

2
accordance with the condition J.“{" dr® =1. Calculations

were made in the atomic system of the Hartree units
(e=m=h=1).

Step Ar in the cluster bulk equals 0.002a, approxi-
mately. However, using this step across the entire r-
axis r= Ry + 900q,, leads to a significant increase of
computer memory and calculation time. Outside the
cluster, the wave function varies quite slowly, so it is
advisable to increase the sampling step there. Immedi-
ately outside the cluster it doubles and then, at r = 250,
it is doubled again and at r = 550 it increases by 8 times.
Using this technique we can to increase significantly the
speed of computing while maintaining accuracy.

Increment [ — repetition of the cycle for the next .

Ranking eigenvalues — ranking of eigenvalues and
corresponding wave functions with increasing energy.

3.4 Finding Potentials

The one-electron potential is determined by the sum
of the electrostatic, exchange-correlation and stabilized
components:

0 (1) = )+ 0, () +(80), ORy, =1

where the first and second terms depend on the electron
density profile.
Due to the fluctuations of the calculated profile, the
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stability of the simulation may be very low. To ensure
the stability of the simulation, several techniques have
been proposed, as described in Fig. 5. Subroutine for
potential profiles finding is the following:

astart:3/Namm ( Flndlng potential start )
b..=1-a

start start

profile]

Calculation of exchange- Yy
correlation potentiall | .
based on the current electron Calculation pr
le

Y

Calculation of current

electrostatic potential basedf — — - Calculation (p
n

on the current electron profile

L2 |

(n,,,>200)&&((n,,,%100)==0)

iter— iter

8:10">6V /N >8-10 8§V /N>810"

Y Y
a*=0.01 a*=0.1 | |a*=0.004
b=1-a b=1-a b=1-a
- y
Limiting the A
change in thef — — 4 ¢,=a '(pn,|+b P,
electrostatic profile]
= y
Preservation A
of the currentf — — ©,..=0,
electrostatic profile|
- Y
Upgrade effective] | -
one-electron profile V“f"_vw_'-(p“-'-deﬁ
\ 4

( Finding potential end )

Fig. 5 — Subroutine for potential profiles finding

Calculation of exchange-correlation potential v, (r)

is based on the known electron density profile. An elec-
trostatic potential was obtained from the Poisson equa-
tion under boundary [10]:

#(r)=4r {i j.dr'r'z[n(r’) —p(]+ Tdr'r’[n(r') - p(r’)]} .

In order to ensure the convergence of the iterative
process, the artificial limitation of electrostatic potential
change has been proposed. It is done by the expression:

¢,(r) = ag,_,(r) +bh(r), )

where a and b are the weight coefficients, a + b = 1.

For small clusters (IV< 10), the initial values of a
and b are empirically chosen equal to 0.7 and 0.3, re-
spectively. In other cases, b = 3/N is used. However, as
the number of iterations increases, and if it exceeds
200, the selection of b requires a modification, which is

J. NANO- ELECTRON. PHYS. 11, 05018 (2019)

shown in the corresponding part of the subroutine of
finding the potential profiles shown in Fig. 5.
The limit value 7 =Auv,, /Ar for change of the total

profile v, (r) becomes comparable to the numerical error

of the calculation. The critical value 7, ~8-107 a.u. was
empirically determined. Thus, 7, describes the maxi-

mum accuracy of the profile calculation for the selected
data type (80-bit, longdouble, accuracy 19-20 charac-

ters after the floating point).
Finally, the method of determining the coefficient b
for expression (9) on each 100-th iteration is:

b=b/250,7>8-10"",
b=5b/100,8-10"" > >8.107
b=b/10,7<8-107'

The block diagram of this technology is also shown
in Fig. 5.

4. RESULTS AND DISCUSSION

Part of the results, namely the calculated electron
density n(r) and effective potential v.u(r) profiles for
charged and neutral free-defect clusters (solid lines)
and clusters with the vacancy (dashed lines) for the
purpose of illustration is shown in Fig. 6, where: 1 —
negatively charged, 2 — neutral, 3 — positively charged
cluster. Cluster of Na contains N = 12 atoms.

Despite the fact that electronic distributions are
rapidly decreasing (it can be seen from Fig. 6), the tail
potentials reach far enough (the calculation was made
approximately to r = Ry + 900a,). Using the calculated
profiles, the total energy of the cluster and then its
characteristics can be obtained [10].

In [1], the results of ab initio calculations for neu-
tral clusters Nay= 55, 147, 309, the optimal form of
which is the icosahedron, were reported about. The
numbers N =55, 147, and 309 correspond to 2-, 3-, and
4-atom layers of defect-free clusters. It was also shown
that the monovacancy formation energy in a cluster
essentially depends on the place of the vacancy creation
and on the final position of the displaced atom.

The values are in good agreement. In order to
demonstrate the dependence of vacancy position for
N =147, two values are given: 0.43/0.63 eV, which cor-
respond to the displacement of an atom from the cen-
ter/from the first atomic shell of the icosahedron to a
flat section of its surface.

Table 1 presents the vacancy formation energies

EX;Z’S}' for comparison. Although the comparison of the

values of &y™ shows a difference of about 0.4-0.5 eV,

the size dependence of ab initio calculations of [1] is
reproduced in our simple model.

Table 1 — Comparison of energy vacancy formation

N g]\i]a(;,sh , eV 81\\7;;2,blow , eV
o R B

Present [1] Present [1]
55 1.80 1.35 0.49 0.49
147 1.58 1.18 0.66 0.63
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Fig. 6 — Profiles of electron distribution and effective potential
for charged and neutral clusters of Naiz

Depending on the number of atoms in the cluster,
the calculation of its characteristics can last from 3 to
28 hours on the Intel Xeon 5345 2.2 GHz processor. So,
in order to calculate the energy characteristics of neu-
tral, positively and negatively charged clusters with
and without the vacancy, consisting of different num-
bers of atoms, it was decided to use a supercomputer
SCIC-3 of the Institute of Cybernetics National Acad-
emy of Sciences of Ukraine (Rpeak = 7.4 Tflops).

As the research in SCIC-3 has shown, parallel sim-
ulation is hard to organize, but it can be distributed
according the calculation flows for clusters with differ-
ent parameters (charge, availability of vacancies).
Therefore, the program was supplemented with MPI
[20] procedures, but their functions were limited by the
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distribution of calculations flows for clusters with dif-
ferent parameters (for one metal).

The problem of obtaining the energy characteristics
of metallic nanoclusters with the vacancy by mathe-
matical modeling is solved in this work.

The scientific novelty. The simulation method on the
basis of "two-sided" solution of the boundary value prob-
lem by ShM and Numerov method is proposed, taking
into account limitation of the electrostatic potential
change, which ensures the absence of algorithmic fail-
ures and allows to increase the efficiency of simulation.
This allowed for the first time to obtain the total energy
of neutral and charged defective clusters, on the basis of
which direct calculations of dissociation, cohesion, va-
cancy formation energies, electron affinity, ionization
potential, and electric capacitance were made. The sim-
ulation results are in good agreement with similar cal-
culations and experiments for defect-free clusters.

The practical significance of obtained results is the
automation of calculations of low-dimensional metal
system energy characteristics, both charged and neu-
tral. Prospects for further research: calculation of the
parameters of low-dimensional metal systems of arbi-
trary geometry and topology of clusters.

AKNOWLEDGEMENTS

The work is related to the topics of scientific works
performed at the Department of Micro- and Nanoelec-
tronics of the Zaporizhzhya National Technical Univer-
sity (ZNTU): "Dimensional electronic effects in metallic
nanostructures and nanodefects of metal" (approved by
the order of the MESU No. 1193, dated 25.10.2012), as
well as the budget theme "Modeling of devices, struc-
tures and materials of micro- and nanoelectronics" (ap-
proved by order ZNTU No 220, dated 14.04.2015, regis-
tration No 04315).

11. J.P. Perdew, A. Zunger, Phys. Rev. B, PRB. 23, 5048 (1981).

12. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

13. V.Z. Kresin, Y.N. Ovchinnikov, Phys. Rev. B. 74, 024514
(2006).

14. A. Halder, V.Z. Kresin, Phys. Rev. B. 92, 214506 (2015).

15. J. Mathews, R.L. Walker. Mathematical Methods of Physics
(Addison Wesley: 1976).

16. F. Caruso, V. Oguri, Rev. Bras. EnsinoFis. 36, 2310 (2014).

17. A.Udala, R.Reedera, E.Velmrea, P.Harrisonb, Proc.
Estonian Acad. Sci. Eng. 12, 246 (2006).

18. C. Tatu, M. Rizea, N.N. Puscas, U.P.B. Sci. Bull., Series A.
69, 57 (2007).

19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific
Computing (Cambridge University Press: 2007).

20. T.Wang, K. Vasko, Z. Liu, H. Chen, W. Yu, Int. J. High
Perform. Comput. Appl. 30, 241 (2016).

MopenmorauHs cpepUIHUX METATEBUX HAHOKJIACTEPIB, 1[0 MiCTATh MOHOBAKAHCIiIO

B.I1. Pesa, O.B. Bacunenxo, B.B. Ilorocos

Hauionanvruii ynisepcumem 3anopisvka nosimexwnika, 8yJi. /Kyroscvkoeo, 64, 3anopixcocs 69063, YVipaina

05018-7


https://doi.org/10.1103/PhysRevB.73.035425
https://doi.org/10.1016/j.physletb.2018.11.017
https://doi.org/10.1140/epjb/e2019-90491-5
https://doi.org/10.1140/epjb/e2019-90491-5
https://doi.org/10.1016/j.physe.2018.12.014
https://doi.org/10.1016/j.physe.2018.12.014
https://doi.org/10.1016/j.cpc.2018.08.004
https://doi.org/10.1016/j.cpc.2018.08.004
https://doi.org/10.1088/0953-8984/23/40/405303
https://doi.org/10.1088/0953-8984/23/40/405303
https://doi.org/10.1063/1.3187934
https://doi.org/10.1063/1.3187934
https://doi.org/10.1021/jp809729p
https://doi.org/10.1021/jp809729p
https://doi.org/0.15407/ujpe62.09.0790
https://doi.org/10.1063/1.5017961
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevB.74.024514
https://doi.org/10.1103/PhysRevB.92.214506
https://doi.org/10.1590/S1806-11172014000200010
https://www.researchgate.net/publication/228621325_Comparison_of_methods_for_solving_the_Schrodinger_equation_for_multiquantum_well_heterostructure_applications
https://www.researchgate.net/publication/228621325_Comparison_of_methods_for_solving_the_Schrodinger_equation_for_multiquantum_well_heterostructure_applications
https://www.researchgate.net/publication/289786565_Eigenvalue_problem_for_Schrodinger_equation_using_numerov_method
https://www.researchgate.net/publication/289786565_Eigenvalue_problem_for_Schrodinger_equation_using_numerov_method
https://doi.org/10.1177/1094342015618017
https://doi.org/10.1177/1094342015618017

V.I. REvA, O.V. VASYLENKO, V.V. PoGgosov J. NANO- ELECTRON. PHYS. 11, 05018 (2019)

Mertoro maHoi poboTH OyJI0 MIABUINEHHS CTIAKOCTI CUMYJIAINT Ha ocHOBI MeToay HymepoBa mpu pospaxy-
HKY XBHJILOBHX (DYHKITIH €JIEKTPOHIB B METAJIeBOMY KJjacrepi Ta 3abe3lreueHHs CcTa0lIbHOCTI CaMOY3TroIKe-
HUX PO3PAXYHKIB €HEPTeTHYHNX XaPAKTEPUCTHK METAJIEBUX KJIACTEPIB, MUISIXOM OOMEIKeHHS 3MIHU eJIKT-
pocraTuuHoro morenitiany. O0'€eKTOM TOCTIKEHHS € METOJUKA PO3PaXyHKY XBUJIBOBUX (DYHKITIN €JIEKTPO-
HiB MetomoMm HymepoBa Ta 3HaXOI:KeHHS BJIACHUX 3HAYEHb €HEPTreTHUYHUX PIBHIB MeTo10M IpucTplikn. Ha
eTarl MOJIeTIOBAHHS, 3 METOI0 IMIBUMIEHHS e(EeKTHBHOCTI MOJel 0yJI0 BUKOPUCTAHO METO] (PYHKITIOHALY
ryctunau (DFT) y moennauni 3 dopmasiamom Koma-Illema, 1110 103BOJIMIIO CIIPOCTUTH CRJIAMHY 3a7ady IIPO
B3a€MOIII0 eJIEKTPOHIB B II0JI 3aPSIIPKEHNX 10HIB T4 OTPUMATH MOJIEeJb, B AKIH HE3aJIeKH1 eJIeKTPOHH pyXa-
I0TBCS B JIETKOMY eekTuBHOMY moTeHIias. J{Jsg po3paxyHKy OOMIHHUX 1 KOPEJIAIIHHAX eHeprii MU BHKO-
PHCTOBYBAJIH MOJIeJb crabiiabHoro skeje (SJM) ta mabmmxenus JsokasbHol ryctuau (LDA). 3mina oOme-
JKEHHSA IIPOQLITI0 eJIEKTPOCTATHYHOTO MIOTEHINALY 3MIACHIOBAJIACS IILJIAXOM BBEJEHHS KOe(IIlieHTIB, IO BU-
3HAYAIOTh BHECKH II0IEPEHBOr0 Ta IIOTOYHOIO IIPO(MIIIB eJIEKTPOCTATUYHOIO IOTEHIIAY J0 Pe3yJIbTYI0U0-
ro. Po3po6yiero moziesib MeTasieBoro kacrepa i3 IeHTPOBAHO MOHOBAKAHCIEID Ta METOLAUKY JIJIsI pO3paxyH-
Ky Mioro mapamerpis. Jsa 3abesmeuenus 3015KHOCTI Ta cTiKocTi MeToxy HyMepoBa 3amporroHOBAHO METOIH-
Ky JBOCTOPOHHBOTO OOYMCICHHA 3 "3IIMBAHHAM" XBUJILOBOI (PYHKIIII B eMIIIpUYHO 00pamiit Tourri. Pospobie-
HO METOJMKY CUMYJISIII 3 ONTUMAJIBLHUM KPOKOM, SIKY Peai30BaHO B IIPOrPAMHOMY KOII JJIs PO3PAXYHKY
€HEePreTHYHUX XAPAKTEePHUCTHK METAJIeBUX HAHOKJIACTEPIB, IO MICTATH MOHOBakKaHcil. MojeoBaHHS J10-
3BOJIMJIO OTPUMATH TPOQIIIL €JIEKTPOHHOI TYCTHHH Ta eeKTUBHOTO MIOTEHINATY IS 3apSAIKeHUX Ta HeHT-
panpHUX KiaacTepiB. Pesynpratu po3paxyHKIB HOPIBHIOBATIHCS 3 JAHHMHU €KCIIEPUMEHTY, a TakoX 13 ab
initio obunceHHaMu. Po3pobseH] MiIX0yu Ta METOOUKHA MOJEIOBAHHS MOYKYTh OyTH PEKOMEHIIOBAHI JIJIs
aHaIi3y HU3bKOPO3MIPHHUX METAIEBHX CHUCTEM, CHCTEM 13 IIAPyBATOI CTPYKTYPOIO B TOMY UKCJIL.

Knrouori ciosa: Meranesi kinacrepu, Exeprernuni xaparrepucturu, MeTton QyHKI[IOHAIY IYCTUHHE, XBHU-
npoBa yukia, Merox Hymeposa, "SmmBaunsa" gy, CTIMKiCTh MOAETIOBAHHI.
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