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The goal of this work was to increase the stability of the simulation based on the Numerov method dur-

ing the calculation of the electron wave functions in a metal cluster and to ensure the stability of self-

consistent calculations of the energy characteristics of metal clusters by limitation of the electrostatic po-

tential changes. The object of the study is the method for calculation of the electron wave functions and en-

ergy eigenvalues by the Numerov and Shooting methods. At the modeling stage, in order to increase the ef-

ficiency of the model, the density functional theory (DFT) was used in conjunction with the Kohn-Shem 

formalism, which allowed us to simplify the complex problem of the electron interaction in the field of 

charged ions and to obtain the model of independent electrons moving in some effective potential. We used 

the stabilized jellium model (SJM) and local density approximation (LDA) for the exchange and correlation 

energies. The change of the electrostatic potential profile limitation is used by adding coefficients that de-

termine the contributions of the previous and current electrostatic potential profile to the resultant one. 

Models of a metal cluster with a centered monovacancy and approaches for calculating its parameters were 

developed. To ensure the convergence and stability of the Numerov method, methods of two-side calcula-

tion with "cross-linking" of the wave function at the empirically selected point were proposed. The method 

of simulation with the optimal step is developed and implemented in the program code for calculating the 

energy characteristics of metal nanoclusters containing the monovacancy. Simulation allowed to obtain the 

electron density and effective potential profiles for charged and neutral clusters. The results of the calcula-

tions were compared with experimental data, as well as with ab initio computations. Developed approaches 

and simulation techniques can be recommended for the analysis of low-dimensional metal systems, includ-

ing systems with a layered structure. 
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1. INTRODUCTION 
 

In modern technologies where nanomaterials, atom-

ic clusters, or island films are used, we need diagnos-

tics, defect control and determination of their energy 

characteristics. On the one hand, the calculations of 

such characteristics as the ionization potential and 

electron affinity, the cohesive energy, the dissociation 

energy and the energy vacancy formation can be used 

to control the defects and melting temperature of small 

metal clusters. On the other hand, it is very useful for 

modeling the composite instrumental materials during 

the design of metallized and glue coatings, etc. 

Today, ab іnіtіo methods are commonly used which 

give the greatest reliability and can describe systems of 

any geometry [1-4]. However, if high-precision calcula-

tions are not required, more economical methods such 

as the Kohn-Sham method [5-8] can be used. Despite 

the quantitative difference between ab іnіtіo and Kohn-

Sham version we can estimate qualitative tendencies of 

the energy characteristics of metal clusters. 

Thus, the sufficient accuracy of the selected model, 

together with its universality and efficiency, deter-

mines its choice for this study. 

When vacancies appear, the problem of simulation 

for energy characteristics of metal clusters becomes 

more complicated. Thus, in order to reduce the simula-

tion time, it is necessary not only to simplify the model, 

but also to choose the most economical approach for 

solving the obtained differential equations. 

Simulation is based on the Kohn-Sham method and 

stabilized jellium model (SJM). 

The subject of study is the optimal method for calcu-

lating the electron density profile and potential one of 

defect-free metal clusters and clusters with the cen-

tered monovacancy based on the Numerov method. 

The purpose of the work is to develop the procedure 

for calculating the electron wave functions, energy char-

acteristics of a metal cluster, and to increase the stability 

of the simulation based on the Numerov method. 

 

2. MODEL 
 

When constructing the model (at the modeling 

stage), we assume that a simplest low-dimensional 

metal system is the spherical cluster of radius RN. Then 

the problem of analyzing the energy characteristics of 

such system is reduced to the solution of the boundary 

value problem with the initial assumption about a rec-

tangular finite depth potential well. 

To calculate the characteristics, the formalism of 

DFT on the basis of the self-consistent Kohn-Sham 

method was used. The SJM is used as the model of the 

metal, in which the electron-electron, ion-ion and elec-

tron-ion interactions are averaged over the Wigner-

Seitz cell volume, and therefore the energy characteris-

tics of the metal are described "on average". 

The solution of this problem is an iterative process 

of refining the effective one-electron potential, or the 

shape of a potential well, using the space distribution of 

electron density (profiles) as the variable. The numeri-

cal integration of the Schrödinger equation for the 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
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search of wave functions was carried out by the Nu-

merov method. The initial approximation for the distri-

bution of electron density has the form: 
 

 
, ,

( ) =
0, >

N

N

n r R
n r

r R





 (1) 

 

The problem of the interaction of electrons with the 

ions can be greatly simplified under the condition of 

using the DFT in conjunction with the Kohn-Sham 

formalism. As a result, we have the simple conceptual 

cluster model, in which independent electrons move in 

some effective potential. Further simplifications of the 

model are possible if assumptions [9, 10] for the SJM 

[11] using LDA for the exchange and correlation ener-

gies [12]. 

The superconducting state of small nanoclusters is 

directly related to the phenomenon of pair correlation. 

Coupling of electrons leads to a strong modification of 

the energy spectrum. There is a hypothesis that transi-

tions to the superconducting state occur in clusters 

whose electronic shells are completely filled [13, 14]. In 

filled spherical shells, the upper filled electron energy 

levels are strongly degenerate ("magic numbers" of at-

oms). The presence of even one vacancy in the cluster, 

as shown in [9, 10], may lead to changes in the magic 

numbers of atoms. 

Thus, the problem of studying the energy character-

istics of the cluster with the monovacancy appears. The 

models and simulation methods should provide the 

optimal combination of sufficient accuracy of the re-

sults amid reasonable simulation time (efficiency). 

Mathematical emulation of physical objects consists 

of two stages: modeling and simulation. The main crite-

rion for modeling quality is precision and algorithmic 

reliability (lack of algorithmic failures). The assumptions 

and simplifications, adopted at the modeling stage, are 

most affected to accuracy. However, even we have a suf-

ficiently precise model, the results of the simulation may 

be totally inadequate due to the loss of stability. Thus, 

the chosen method of solving the equations obtained at 

the stage of modeling is important. 

During the cluster model design, an assumption of its 

sphericity was made. To determine the effect of vacancy 

to the characteristics of the cluster, the characteristics of 

the spheres with the same number of atoms N at zero 

temperature were compared. In this case, the radii of 

defect-free spheres RN and spheres with a monovacancy 

RN,v differ from each other: 
 

 

1/3

0

1/3

, 0
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It is assumed here that the radius of an elementary 

Wigner-Seitz cell r0 is equivalent to the radius of the 

single atom. 

In the SJM, the vacancy is represented as a spherical 

cavity of radius r0 in a homogeneous positively charged 

background, which is created by the ions of the cluster. 

The distribution of the positive charge of a cluster with a 

vacancy is described by the Heaviside step function: 
 

 
0 ,

( ) = ( ) ( ).
v N v
r n r r R r     (3) 

Here we use the Hartree atomic units. 

The total energy of the metal sphere is represented in 

the form of electron density functional EN,v[n(r)]. The 

electrostatic potential profile ( )
v
r  is determined by the 

Poisson equation [15] taking into account (3). Spherical 

symmetry allows us to divide the variables in the wave 

equation: 
 

     2

eff

1
(r) (r) (r) = (r)

2
i i i i

v . 

 

In this case, the one-electron wave functions and en-

ergies are characterized by radial nr and orbital l quan-

tum numbers. The radii of clusters differ in accordance 

with definition (2) (see Fig. 1). 
 

 
 

  a   b 
 

Fig. 1 – The spherical cluster model: without vacancies (a); 

with a vacancy (b) 
 

The numerical integration of the wave equation was 

carried out by the Numerov method using the straight-

forward shooting method (ShM). Numerov method (also 

called as Cowell method) is a numerical method to solve 

ordinary differential equations of second order, in which 

the first-order term does not appear. It is a fourth-order 

linear multistep method [16]. 

The method is implicit, but can be made explicit if the 

differential equation is linear. For an implicit method, in 

its cycles, an algorithm for solving the resulting nonlinear 

algebraic equation is established, for example, by Newton 

method, half-division, etc. The concept of this method’s 

application is to consistently approximate the solution by 

selecting the electron energy in a given interval, focusing 

on the boundary conditions for the solution of the wave 

equation. 

By using the ShM method it is possible to transform 

the boundary value problem into a sequence of Cauchy 

problems, which are further solved by the Numerov 

method [17]. The ShM is one of the simplest numerical 

algorithms and its key idea is to replace a boundary con-

dition problem with multiple trial runs of a simple initial 

condition task. This is also the most useful for solution of 

the time-independent Schrödinger equation if energy is 

the varied trial parameter. This method is simple, but 

may produce the sufficiently accurate results for the 

adopted spherical model of the cluster. 

The Numerov method, in combination with the ShM, 

is the optimal choice for simulation, given the economy of 

machine time (time saving is the main criterion). How-

ever, the Numerov method has problems with stability 

[18], which is due to the complex exponential nature of 

wave functions. 

Consequently, the task is to develop additional facili-

https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Linear_multistep_method
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ties to ensure the stability of the computational algo-

rithm, and therefore to obtain a reliable result. 

 

3. METHOD 
 

To conduct model experiment, the simulation tech-

nique was developed that consists of a sequence of 

tasks described as subroutines. 
 

3.1 The Main Sequence of Calculation 
 

Fig. 2 shows the general sequence of the DFT calcu-

lation, which consists of the following blocks. 

Start – the program starts, with the startup param-

eters given through the command line. 

Initialization – routine initialization of the system, 

setting it in the initial state/condition, the first approx-

imation, suitable for further calculation. 

Main loop – is the main loop, which is the iterative 

process of finding the stable state of the system. 

The loop has 2 exit conditions: 

1) number of iterations exceeds 1200; 

2) when cumulative profile’s change approaches to 

the adopted computational errors (provides the maxi-

mum accuracy). 

Finding eigenvalues – the routine for finding all 

possible electron energy terms in the current form of a 

potential well and the wave functions corresponding to 

these states. 

Finding electron density – the subroutine that dis-

tributes electrons to energy levels based on the princi-

ple of minimum energy of the system and the Pauli one. 

Then, by this distribution and by the form of the wave 

function, which corresponds to these electrons, the elec-

tron density profile is calculated as 
 

    
2

e
1

eN

i
i

n r r


  . (4) 

 

Finding potential is the subroutine for finding an ef-

fective one-electron potential consisting of the electro-

static and the exchange-correlation potentials. It uses 

the current electron density profile and the previously 

obtained electrostatic one. 

Incrementing iteration counter (n) – increases by 1 

the current value of the cycle counter. 

Calculate the difference between old and new Veff – 

calculates the difference between the previous and cur-

rent values of the effective potential as the sum of the 

modulus of their differences at each point. 

Modification coefficients – conditional modification 

of coefficients that determine the contribution of the 

previous and current electrostatic potentials to the re-

sulting one. This technique is implemented to ensure 

the stability of the simulation. 

Data output – calculation of full energies and saving 

of calculation results. In more detail, the most mean-

ingful routines are discussed below. 

When iteration process is over, the exchange-

correlation energy 
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Fig. 2 – The calculation scheme of the parameters of the 

spherical metal cluster by DFT 
 

and the total energy of the cluster 
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is calculated. Here, c1 and c2 are parameters; the kinet-

ic energy of non-interacting electrons Ts was taken into 

account in the form 
 

 3

e
=1

= ( ) ( ),

N
e

s i ff
i

T d rn r v r    

 

and the last two terms in (6) take into account the 

structure of the ion subsystem, as well as the electron-

ion interaction in the form of the Ashcroft pseudopoten-

tial. Here, the stabilization correction  
WS

v  is calcu-

lated by the formula: 
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To save the results, two text files were used, the first 

one – to save the distributions, profiles and wave func-

tions that correspond to the final state of the system, 

and the second – to save the energy characteristics of 

the system, the energy eigenvalues and their quantum 

numbers, including. 

End – the completion of the main program cycle. 

 

3.2 Headers and Footers 
 

The main loop is based on the previous system 

state, which is defined by initialization. 

The sequence of initialization consists of blocks: 

Initialization Start is the beginning of the proce-

dure. Initial filling datasets are the code area responsi-

ble for initial filling of data arrays and initial initializa-

tion of variables. 

Task first approximation Veff – to obtain the initial 

state of the system; one iteration of finding the effective 

potential by the formula (7) with the initial parameters 

(1) is executed. Finding eigenvalues – for finding eigen-

values (see Fig. 3); Finding electron density – finding 

the electron density profile; Finding potential – finding 

a potential profile (see Fig. 5). 

At first, the one-electron effective potential is calcu-

lated by the formula: 
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where A  4 and 16 eV for Na and Al, respectively. 

Here, an exchange-correlation potential contribution 
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where the SJM parameters 
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Setting to zero iteration counter is responsible for 

resetting the main loop variable. Initialization End – 

completion of the initialization procedure. 

 

3.3 Finding Eigenvalues 
 

This subroutine, by solving the wave equation by the 

Numerov method, finds in the potential well of the clus-

ter all possible energy levels (eigenvalues) and wave 

functions which correspond to them, and then stores 

these data together with the corresponding quantum 

numbers. It is depicted in Fig. 3. 

Blocks of subroutine are: 

Initialization energy interval – this block deter-

mines the energy interval and generates the table of 

energy values in interval with the given step. 

Loop for l – on each iteration of the cycle, the energy 

eigenvalues are performed for orbital quantum number 

l. The cycle finished when no eigenvalue was found for 

the last value l. 

Finding intervals – the calculation of wave functions 

is carried out by the obtained grid of energies and in 

another array the found values at the last point can be 

saved. After viewing this array, the intervals at which 

zero crossing occurs, were obtained. 

Loop for n – the real energy eigenvalue and the 

wave function on each iteration of the cycle are calcu-

lated in the corresponding interval, marked in the 

Finding intervals block. The cycle finished when all the 

eigenvalues in a potential well are considered for a giv-

en orbital quantum number. The serial number of ei-

genvalues for a given orbital quantum number is the 

main quantum number. 

Finding eigenvalues – finding by the ShM [19] the 

specific eigenvalue of the energy level and the left part 

of the wave function (Fig. 4). 

Due to the fact of an accumulated error the full 

wave function cannot be straightforwardly obtained, as 

the result, the computational process loses stability. 

When solving the equation in the direction of in-

creasing distance from the center of the cluster we have 

 lim
r

r


  (function 
1
 in Fig. 4, upper graph). 

Similarly, when moving to the center of the cluster we 

have  
0

lim
r

r


  (dotted line of dependence 
2

 in 

Fig. 4, upper graph). 

Since the second boundary condition for the solution 

of the wave equation is  lim 0
r

r


 , then when we 

search for the eigenvalue by the ShM, we can focus not 

on the value of the wave function, but only on its sign. 

Thus, the calculation of the eigenvalue and part of the 

wave function, which is localized in the cluster and 

around it, is carried out with maximum accuracy. 
 

 
 

Fig. 4 – Loss of simulation stability and functions linking 
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Fig. 3 – The subroutine to find the energy levels in a potential well 
 

Finding full wave function – to find the full wave 

function, the real eigenvalue and part of the wave func-

tion found in the previous Finding eigenvalues block 

are used. Then, the calculation of the wave function 

from the last point to r  R + 0.5r0 is continued. Near 

the point where the derivatives of both parts of the 

functions are equal to each other (Fig. 4, "Cross-point" 

on the upper graph), the linking of the left and right 

parts of functions is performed. 

So, the total wave function consists of two parts, the 

first is calculated from the center of cluster, the second 

is calculated from the point "vacuum", with the same 

values of the orbital quantum number and energy. The 

results are loaded into separate arrays. At an empiri-

cally determined point, the results are linked. 

Since the values of functions at the point of cross-

linking may differ, due to the absence of normalization, 

it is necessary to bring them to one level, by multiply-

ing one of the parts on the corresponding coefficient. 

The result is recorded in the new array, and then the 

normalization of the entire function is performed in 

accordance with the condition 
2

3 1dr  . Calculations 

were made in the atomic system of the Hartree units 

( = = =1e m ). 

Step r in the cluster bulk equals 0.002a0 approxi-

mately. However, using this step across the entire r-

axis r  RN + 900a0, leads to a significant increase of 

computer memory and calculation time. Outside the 

cluster, the wave function varies quite slowly, so it is 

advisable to increase the sampling step there. Immedi-

ately outside the cluster it doubles and then, at r  250, 

it is doubled again and at r  550 it increases by 8 times. 

Using this technique we can to increase significantly the 

speed of computing while maintaining accuracy. 

Increment l – repetition of the cycle for the next l. 

Ranking eigenvalues – ranking of eigenvalues and 

corresponding wave functions with increasing energy. 

 

3.4 Finding Potentials 
 

The one-electron potential is determined by the sum 

of the electrostatic, exchange-correlation and stabilized 

components: 
 

eff xc ,W
( ) = ( ) ( ) ( )

N vS
v r r v r v R r     , 

 

where the first and second terms depend on the electron 

density profile. 

Due to the fluctuations of the calculated profile, the 
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stability of the simulation may be very low. To ensure 

the stability of the simulation, several techniques have 

been proposed, as described in Fig. 5. Subroutine for 

potential profiles finding is the following: 
 

 
 

Fig. 5 – Subroutine for potential profiles finding 
 

Calculation of exchange-correlation potential ( )
xc
v r  

is based on the known electron density profile. An elec-

trostatic potential was obtained from the Poisson equa-

tion under boundary [10]: 
 

2

0

1
( ) = 4 [ ( ) ( )] [ ( ) ( )]

r

r

r dr r n r r dr r n r r
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   
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  
  . 

In order to ensure the convergence of the iterative 

process, the artificial limitation of electrostatic potential 

change has been proposed. It is done by the expression: 
 

 
1

( ) = ( ) ( ),
n n
r a r b r  


  (9) 

 

where a and b are the weight coefficients, a + b  1. 

For small clusters (N < 10), the initial values of a 

and b are empirically chosen equal to 0.7 and 0.3, re-

spectively. In other cases, b  3/N is used. However, as 

the number of iterations increases, and if it exceeds 

200, the selection of b requires a modification, which is 

shown in the corresponding part of the subroutine of 

finding the potential profiles shown in Fig. 5. 

The limit value 
eff
v r     for change of the total 

profile 
e
( )

ff
v r  becomes comparable to the numerical error 

of the calculation. The critical value 198 10
cr

   а.u. was 

empirically determined. Thus, 
cr

  describes the maxi-

mum accuracy of the profile calculation for the selected 

data type (80-bit, longdouble , accuracy 19-20 charac-

ters after the floating point). 

Finally, the method of determining the coefficient b 

for expression (9) on each 100-th iteration is: 
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The block diagram of this technology is also shown 

in Fig. 5. 

 

4. RESULTS AND DISCUSSION 
 

Part of the results, namely the calculated electron 

density n(r) and effective potential veff(r) profiles for 

charged and neutral free-defect clusters (solid lines) 

and clusters with the vacancy (dashed lines) for the 

purpose of illustration is shown in Fig. 6, where: 1 – 

negatively charged, 2 – neutral, 3 – positively charged 

cluster. Cluster of Na contains N  12 atoms. 

Despite the fact that electronic distributions are 

rapidly decreasing (it can be seen from Fig. 6), the tail 

potentials reach far enough (the calculation was made 

approximately to r  RN + 900a0). Using the calculated 

profiles, the total energy of the cluster and then its 

characteristics can be obtained [10]. 

In [1], the results of ab initio calculations for neu-

tral clusters NaN  55, 147, 309, the optimal form of 

which is the icosahedron, were reported about. The 

numbers N = 55, 147, and 309 correspond to 2-, 3-, and 

4-atom layers of defect-free clusters. It was also shown 

that the monovacancy formation energy in a cluster 

essentially depends on the place of the vacancy creation 

and on the final position of the displaced atom. 

The values are in good agreement. In order to 

demonstrate the dependence of vacancy position for 

N = 147, two values are given: 0.43/0.63 eV, which cor-

respond to the displacement of an atom from the cen-

ter/from the first atomic shell of the icosahedron to a 

flat section of its surface. 

Table 1 presents the vacancy formation energies 
vac,Sh

,N v
  for comparison. Although the comparison of the 

values of vac,Sh

,N v
 shows a difference of about 0.4-0.5 eV, 

the size dependence of ab initio calculations of [1] is 

reproduced in our simple model. 
 

Table 1 – Comparison of energy vacancy formation 
 

No 

vac,Sh

,N v
 , eV vac,blow

,N v
 , eV 

Present [1] Present [1] 

55 1.80 1.35 0.49 0.49 

147 1.58 1.18 0.66 0.63 
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Fig. 6 – Profiles of electron distribution and effective potential 

for charged and neutral clusters of Na12 
 

Depending on the number of atoms in the cluster, 

the calculation of its characteristics can last from 3 to 

28 hours on the Intel Xeon 5345 2.2 GHz processor. So, 

in order to calculate the energy characteristics of neu-

tral, positively and negatively charged clusters with 

and without the vacancy, consisting of different num-

bers of atoms, it was decided to use a supercomputer 

SCIС-3 of the Institute of Cybernetics National Acad-

emy of Sciences of Ukraine (Rpeak = 7.4 Tflops). 

As the research in SCIС-3 has shown, parallel sim-

ulation is hard to organize, but it can be distributed 

according the calculation flows for clusters with differ-

ent parameters (charge, availability of vacancies). 

Therefore, the program was supplemented with MPI 

[20] procedures, but their functions were limited by the 

distribution of calculations flows for clusters with dif-

ferent parameters (for one metal). 

The problem of obtaining the energy characteristics 

of metallic nanoclusters with the vacancy by mathe-

matical modeling is solved in this work. 

The scientific novelty. The simulation method on the 

basis of "two-sided" solution of the boundary value prob-

lem by ShM and Numerov method is proposed, taking 

into account limitation of the electrostatic potential 

change, which ensures the absence of algorithmic fail-

ures and allows to increase the efficiency of simulation. 

This allowed for the first time to obtain the total energy 

of neutral and charged defective clusters, on the basis of 

which direct calculations of dissociation, cohesion, va-

cancy formation energies, electron affinity, ionization 

potential, and electric capacitance were made. The sim-

ulation results are in good agreement with similar cal-

culations and experiments for defect-free clusters. 

The practical significance of obtained results is the 

automation of calculations of low-dimensional metal 

system energy characteristics, both charged and neu-

tral. Prospects for further research: calculation of the 

parameters of low-dimensional metal systems of arbi-

trary geometry and topology of clusters. 
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Метою даної роботи було підвищення стійкості симуляції на основі методу Нумерова при розраху-

нку хвильових функцій електронів в металевому кластері та забезпечення стабільності самоузгодже-

них розрахунків енергетичних характеристик металевих кластерів, шляхом обмеження зміни елект-

ростатичного потенціалу. Об'єктом дослідження є методика розрахунку хвильових функцій електро-

нів методом Нумерова та знаходження власних значень енергетичних рівнів методом пристрілки. На 

етапі моделювання, з метою підвищення ефективності моделі було використано метод функціоналу 

густини (DFT) у поєднанні з формалізмом Кона-Шема, що дозволило спростити складну задачу про 

взаємодію електронів в полі заряджених іонів та отримати модель, в якій незалежні електрони руха-

ються в деякому ефективному потенціалі. Для розрахунку обмінних і кореляційних енергій ми вико-

ристовували модель стабільного желе (SJM) та наближення локальної густини (LDA). Зміна обме-

ження профілю електростатичного потенціалу здійснювалася шляхом введення коефіцієнтів, що ви-

значають внески попереднього та поточного профілів електростатичного потенціалу до результуючо-

го. Розроблено модель металевого кластера із центрованою моновакансією та методику для розрахун-

ку його параметрів. Для забезпечення збіжності та стійкості методу Нумерова запропоновано методи-

ку двостороннього обчислення з "зшиванням" хвильової функції в емпірично обраній точці. Розробле-

но методику симуляції з оптимальним кроком, яку реалізовано в програмному коді для розрахунку 

енергетичних характеристик металевих нанокластерів, що містять моновакансії. Моделювання до-

зволило отримати профілі електронної густини та ефективного потенціалу для заряджених та нейт-

ральних кластерів. Результати розрахунків порівнювалися з даними експерименту, а також із ab 

initio обчисленнями. Розроблені підходи та методики моделювання можуть бути рекомендовані для 

аналізу низькорозмірних металевих систем, систем із шаруватою структурою в тому числі. 
 

Ключові слова: Металеві кластери, Енергетичні характеристики, Метод функціоналу густини, Хви-

льова функція, Метод Нумерова, "Зшивання" функцій, Стійкість моделювання. 


