X-ray Spectral Investigation of SiO\textsubscript{2}/TiO\textsubscript{2}/C Nanocomposites

B. Ilkiv1, S. Petrovska1*, Ya. Zaulychnyy2

1 Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine, 3, Krzhyzhanovsky St., 03142 Kyiv, Ukraine
2 National Technical University of Ukraine "Kyiv Polytechnic Institute", Engineering-Physical Faculty, 35, Politekhnichna St., 03056 Kyiv, Ukraine

(Received 11 March 2019; revised manuscript received 01 August 2019; published online 22 August 2019)

The electronic structure of SiO\textsubscript{2}/TiO\textsubscript{2}/C nanocomposites was investigated using the ultrasoft X-ray emission spectroscopy (USXES) method. The energy redistribution of valence electrons affected by composition of SiO\textsubscript{2}/TiO\textsubscript{2}/C hybrid materials was studied. The USXES SiL\textsubscript{\alpha}, CK\textsubscript{\alpha} and OK\textsubscript{\alpha}-spectra for the SiO\textsubscript{2}/TiO\textsubscript{2} and SiO\textsubscript{2}/TiO\textsubscript{2}/C compounds were derived. It was revealed that almost all two-phase oxides penetrate to carbon pores in the ST65+C (50 wt. % C, 17.5 wt. % SiO\textsubscript{2}, 32.5 wt. % TiO\textsubscript{2}) nanocomposite after high-frequency vibration synthesis. It was shown that penetration of TiO\textsubscript{2} to highly porous carbon is higher than SiO\textsubscript{2}. It was found that oxygen related to TiO\textsubscript{2} does not form bonds with carbon atoms. It was revealed that the contribution of s-states in ST20+C (50 wt. % C, 40 wt. % SiO\textsubscript{2}, 10 wt. % TiO\textsubscript{2}) nanocomposite increased as compared to ST20 (80 wt. % SiO\textsubscript{2}, 20 wt. % TiO\textsubscript{2}) owing to carbon Cs-states addition. It was shown that SiC is formed in ST65+C nanocomposite owing to substitution of oxygen atoms by carbon atoms in the presence of TiO\textsubscript{2} as a catalyst. Investigation of the electronic structure of SiO\textsubscript{2}/TiO\textsubscript{2}/C nanocomposites allows solving an important task of predicting their physical and chemical properties and synthesising materials with necessary properties.

Keywords: Carbon, Silica, Electronic structure, Ultrasoft X-ray emission spectroscopy.

DOI: 10.21272/jnep.11(4).04001

PACS numbers: 73.22. – f, 61.43.Gt, 71.20.Ps, 71.23. – k, 73.20.At, 78.70.En

1. INTRODUCTION

Carbon-oxide nanosystems attract attention of investors due to the possible practical application as new catalysts and adsorbents, anode for lithium-ion batteries, high-performance supercapacitors [1-3] owing to their unique properties. Nanocomposites functionality and properties exceed those of individual oxides. The papers [4, 5] are devoted to the studies of the electronic structure of silicon dioxide. According to the results of [4], the valence band of silicon dioxide consists of two sub-bands separated by an ionic band. The lower narrow band is formed of O2s states with an admixture of Si3s and Si3p-states [4]. The works [6-9] relate to the electronic structure of titanium dioxide. According to the analysis of the density of states [8], there are predominantly O2p-like valence band states and Ti3d-like conduction band states around the band edges.

Thus, the electronic structure of individual oxides of titanium and silicon was fairly well studied in previous years. However, the electronic structure of SiO\textsubscript{2}/TiO\textsubscript{2}/C nanocomposites was not so far described in any works. Since properties of materials are determined by their electronic structure, it is important to investigate the electronic structure of SiO\textsubscript{2}/TiO\textsubscript{2}/C nanocomposites. Studies of the electronic structure of carbon-oxide nanocomposites will allow synthesizing materials with necessary properties.

In this work, a dependence of the energy redistribution of valence electrons in SiO\textsubscript{2}/TiO\textsubscript{2}/C hybrid materials on the composition has been elucidated. A character of the interatomic interaction in complex systems has been determined.

2. MATERIALS AND METHODS

Complex nanooxides were synthesized using a mixture of metal chlorides by flame synthesis technique [10]. Composition of nanooxide and nanooxide-carbon mixed systems is presented in Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_{SiO_2}, wt. %</th>
<th>C_{TiO_2}, wt. %</th>
<th>C_{C}, wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST20</td>
<td>80</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>ST65</td>
<td>35</td>
<td>65</td>
<td>–</td>
</tr>
<tr>
<td>ST94</td>
<td>6</td>
<td>94</td>
<td>–</td>
</tr>
<tr>
<td>ST20+C</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>ST65+C</td>
<td>17.5</td>
<td>32.5</td>
<td>50</td>
</tr>
<tr>
<td>ST94+C</td>
<td>3</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>A300+C</td>
<td>50</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td>A500+C</td>
<td>50</td>
<td>–</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 1 – The composition of nanooxide and nanooxide-carbon mixed systems

X-ray emission SiL\textsubscript{\alpha}, OK\textsubscript{\alpha} and CK\textsubscript{\alpha}-bands were obtained by means of the ultrasoft X-ray emission spectroscopy using X-ray spectrometer RSM-500 (Burevestnik, St. Petersburg, Russia). The energy resolution of RSM-500 was \(\Delta E \approx 0.2-0.3\) eV for the OK\textsubscript{\alpha}-spectra, \(\Delta E \approx 0.2\) eV for the CK\textsubscript{\alpha} and \(\Delta E \approx 0.4\) eV for the SiL\textsubscript{\alpha}-bands. The operating conditions of the X-ray tube were: accelerating voltage, \(U_0=5\) kV and an anode current, \(I_0=2.5\) mA. X-ray quanta were registered using a scanning detector on basis of the channel electron multiplier KRL1505 (Dr. Sjuts Optotechnik GmbH, Germany). The energy

*sw.piotrowska@gmail.com
positions of the OKα, CKα, and SiLα-bands in the samples were determined relative to that of CrKα-line of the pure metal in the first order and ZrL2-line in the second order, respectively [11]. The powder samples were rubbed directly onto the side of the distilled copper anode, cooled using running water at a temperature of 10-15 °C.

3. RESULTS AND DISCUSSION

The SiO2 and TiO2 chemical bonds appear at synthesis as well as at electron bombardment owing to interaction between the surface layer and atoms diffused to the near-surface layer. The interaction between highly porous carbon materials and two-phase-tems should be studied since some of the surface atoms that had broken bonds in individual biphasic nanoparticles are already involved in bonds. The dependence of profile change on two-phase nanoparticle composition may be defined since the OKα-emission band appears in the second order with the CKα-emission band of highly porous carbon. Ratio of intensity should be considered as well as dependence of the OKα and CKα-bands shapes on nanooxide composition should be analyzed (Fig. 1).

Fig. 1 – The USXES OKα- and CKα-bands of SiO2/TiO2/C composites compared to A300+C and A500+C.

From Fig. 1, it is clear that in the ST20 band \(\frac{I_{OK\alpha}^{ST20}}{I_{OK\alpha}^{A500+C}} = 1.4 \) that is less than in SiO2 (A300)+C composite, but somewhat greater than in SiO2 (A500)+C. From the shape of the OKα, it is obvious that the main contribution to its intensity is made by SiO2, therefore the OKα shape is similar to that obtained from the SiO2 (A300)+C composite.

Intensity of the OKα-band sharply decreases with an increase in the TiO2 content in ST65+C composite and \(\frac{I_{OK\alpha}^{ST65+C}}{I_{OK\alpha}^{ST20}} = 0.2 \). The OKα-emission band widens to high- and low-energy branches and becomes similar to the OKα-band shape in pure TiO2. Increase of TiO2 content up to 94 % leads to increasing intensity of the OKα-band \(\frac{I_{OK\alpha}^{ST94+C}}{I_{OK\alpha}^{ST65+C}} = 0.7 \) and its shape becomes similar to TiO2 shape. It should be mentioned that shapes of the CKα-emission bands obtained from ST20+C, ST65+C and ST94+C composites are similar, because all the features in these spectra are at the same values of photon energy (hv).

A sharp decrease in the intensity of the oxygen emission band in the ST65+C composite indicates the penetration of almost all two-phase oxides into carbon pores after high-frequency vibrational synthesis. However, after the ST94+C synthesis the three-fold increase in the intensity of the OKα obviously indicates that the decrease in the SiO2 content still leads to an increase in the intensity of the OKα, apparently due to less ST94 penetration into the pores of carbon than ST65. However, the number of ST94 nanoparticles unlocked in pores is still 1.6 times less than that in the A500+C composite. This fact indicates the higher penetration of TiO2 than SiO2 into highly porous carbon.

The CKα-emission bands of highly porous carbon and ST20+C, ST65+C and ST94+C composites should be compared on a common energy scale to determine the nature of mechanical or chemical penetration of nanoparticles into carbon pores (Fig. 2).

Fig. 2 – The USXES CKα-bands of highly porous carbon after 40 % burning off and of SiO2/TiO2/C composites: ST20+C (a); ST65+C (b); ST94+C (c)

Comparison of the CKα-bands (Fig. 2a) shows the following result: the main changes are revealed at low-energy part, where the low-energy profile shifts to the short-wave range owing to the intensity decrease of the composite CKα-band that leads to spectrum narrowing and to distinct expression of low-energy sub-band. The largest intensity decrease of the CKα-band is observed in 274.5-276 eV and 271.3-273 eV energy ranges leading to narrowing of the spectrum by 0.5-0.6 eV.

The significant decrease in the intensity of the low-energy part of the CKα-band was observed when going from highly porous carbon to ST65+C composite (see Fig. 2b). The CKα-band intensity decrease is observed in the whole long-wave part in the energy range 267-275 eV. This effect leads to spectrum narrowing by 0.5-1.2 eV. This is in accordance with a sharp decrease of intensity of the CKα-emission band. The CKα-spectrum of ST65+C becomes broader due to increasing intensity of the “f” peculiarity near emission threshold corresponding to the top of valence band.

Considering the comparison of the CKα-bands of highly porous carbon and ST94+C composite (Fig. 2c), one can assume that the differences between these bands are much smaller than in Fig. 2b. The profile narrowing is smaller than when comparing the CKα-bands of highly porous carbon and ST65+C composite.

The shape changes of the OKα-emission bands should be carried out by means of peak reduction to the same intensities for establishing shape dependence (Fig. 3).
Taking into account that 80 % SiO₂ is present in ST20 composite, one can assume that the main peak of its OKₐ-band is the narrowest. The OKₐ-band of ST65+C composite was found to be wider in both low- and high-energy range and simultaneously is narrower than the OKₐ-band of ST94+C-composite. The fine structure mainly changes in the low-energy part in case of the OKₐ-band widening, and its shape approaches to the OKₐ-band shape in pure TiO₂ nanopowder. Such changes of the OKₐ-bands of double phases indicate that oxygen related to TiO₂ may not be involved in the formation of bonds with carbon atoms. To understand the nature of the interaction of oxygen when forming composites ST+C it is worth to compare the OKₐ-bands of pure ST-systems and composites (Fig. 4).

Fig. 3 – The USXES OKₐ-bands of ST20+C, ST65+C, ST94+C in the second order normalized to the same intensity.

When going to ST65, the shape of the SiLₐ-band changes in the energy range corresponding to the minimum of this band in SiO₂. The intensity of the SiLₐ-band increases in the above-mentioned range and becomes greater than “a”-peak intensity (Fig. 5b). Such intensity increase is observed in the energy range where the maximum of the SiC SiLₐ-emission band is located [12]. Such sharp increase of the SiLₐ-band intensity is associated with SiC formation owing to substitution of oxygen atoms by carbon atoms in the presence of TiO₂ as a catalyst. The only one peak in the range of photon energies, which corresponds to the maximum “c” of the SiLₐ-band in silicon carbide, appears in the SiLₐ-spectrum of ST94+C-composite.

Since the content of SiO₂ in ST94 is very small, some background enhancements at $h\nu = 85$ eV and in the energy range $h\nu = 95$-100 eV can be considered as the maxima “B” and “F” of the SiLₐ obtained from SiC due to the fact that oxygen was replaced by carbon in 6 % of SiO₂.

4. CONCLUSIONS

To conclude, we have investigated the electronic structure of SiO₂/TiO₂/C nanocomposites using the ultrasoft X-ray emission spectroscopy (USXES) method. Our study revealed the penetration of almost all two-phase oxides into carbon pores in the ST65+C composite after high-frequency vibration synthesis. It was found that less ST94 penetrate into the pores of carbon than ST65. We also revealed the higher penetration of TiO₂ than SiO₂ into highly porous carbon. Furthermore, we found that oxygen related to TiO₂ may not be involved in the formation of bonds with carbon atoms. It was shown that the contribution of s-state in ST20+C composites increased as compared to ST20 owing to carbon Cs-states addition. The SiC formation in ST65+C owing to substitution of oxygen atoms by carbon atoms in the presence of TiO₂ as a catalyst was revealed.

ACKNOWLEDGMENTS

The present research was supported by STCU (project 4481).
РЕФЕРЕНСИ

11. V.V. Nemoshkalenko, V.G. Aleshin, Teoreticheskie osnocy rentgenovskoj emissonnoj spektroskopii (Theoretical basis of X-ray emission spectroscopy) (Kyiv: Naukova dumka: 1974) [in Russian].

Рентгеноспектральне дослідження нанокомпозитів SiO₂/TiO₂/C

Б. Ільків¹, С. Петровська¹, Я. Зауличний²

¹ Національна академія наук України, Інститут проблем матеріалознавства ім. І.М. Францевича, вул. Кржижанівського, 3, 03142 Київ, Україна
² Національний технічний університет України «Київський політехнічний інститут», Інженерно-фізичний факультет, вул. Політехнічна, 35, 03056 Київ, Україна

Електронна структура нанокомпозитів SiO₂/TiO₂/C досліджена методом ультрам’якої рентгенівської емісійної спектроскопії (УМРЕС). Енергетичний перерозподіл валентних електронів в гібридних SiO₂/TiO₂/C матеріалах було вивчено в залежності від складу. Були отримані УМРЕС SiL₂, SC₂ та OK₁₂-спектри SiO₂/TiO₂ та SiO₂/TiO₂/C сполук. Було виявлено, що близько відношення SiO₂/TiO₂ у поріс прикладання більше, ніж SiO₂. Було виявлено, що високочастотний вібраційний синтез в нанокомпозиті ST65+C (50 мас.% SiO₂, 17.5 мас.% TiO₂) було показано, що проникнення TiO₂ у високопористу вуглець більше, ніж SiO₂. Було виявлено, що високочастотний вібраційний синтез у ST20+C (50 мас.% SiO₂, 40 мас.% TiO₂) було показано, що проникнення TiO₂ у високопористу вуглець більше, ніж SiO₂. Було встановлено, що кисень, який відноситься до TiO₂, не творить з’єднань з атомами вуглецю.

Ключові слова: Вуглець, Оксид кремнію, Електронна структура, Ультрам’яка рентгенівська емісійна спектроскопія.