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The regularities for the existence of elastic energy of initiating AE signals operators establishment is 

one of the unsolved problems of nanostructure modeling and the physics of nanosystems. The propagation 

of acoustic emission signals with the coupling of two continuous media is considered. The main variables in 

the equations of motion for particles are the force that determines the occurrence of acoustic emission and 

the displacement of particles of the medium, which determines the elastic wave propagation. A methodo-

logical basis for determining the energy spectrum of acoustic emission signals in coupled media using the 

Green function and Fourier transforms is presented. The conditions for the existence of an elastic energy 

operator for initiating acoustic emission signals are substantiated. The first basic condition that the elastic 

energy operator must satisfy is the invariance of the particles of the material structure relative to the 

translation. The second main condition for the existence of the elastic energy operator is its hermiticity 

The third basic condition, which the elastic energy operator must satisfy, is its homogeneity, which is 

based in its invariance with respect to the shift. The unequivocal correspondence between the characteris-

tics of the discrete structure of materials and parameters of propagation of AE signals in conjugate media 

is established. Based on a comparison of the calculated characteristic numbers of the spectrum and the 

load diagram for discontinuous tests, it was shown that the energy spectrum of acoustic emission signals in 

coupled continuous media is completely determined by the material power constants and the forces initiat-

ing the appearance of acoustic emission signals. Presented energy spectrum of acoustic emission signals in 

conjugated continuous media models allows to associate them with the formation of metal crystal lattice 

defects and can be used to predict the stage of material destruction. The experimental verification of the 

main theoretical models of the energy spectrum of AE signals in a medium with a developing defect, at dif-

ferent stages of the load diagram, showed their consistency and satisfactory agreement in the basic details 

of the energy spectrum structure. 
 

Keywords: Acoustic emission, Signals, Spectrum, Coupled continuous media, Eigenvalues, Eigenfunctions, 

Second-kind Fredholm equation, Fourier transform. 
 

DOI: 10.21272/jnep.11(3).03028 PACS numbers: 43.25.Ed, 06.60.Ei PACS number(s): 00.00.60, 00.00.68 

 

 

                                                                 
* volodymyr.marasanov@mail.ru 
† mvsharko@gmail.com 

1. INTRODUCTION 
 

Study of the energy spectrum of signals of nano-

sized objects is explained by the importance of solving 

questions about the propagation of vibrations charac-

teristics preceding the destruction of materials. In 

recent years, new models of continuum mechanics have 

been intensively developed. They describe composite 

and statistically heterogeneous environments of new 

structural materials, as well as the theory of defects, 

their occurrence and distribution under the influence of 

external disturbances [1-3]. The method of acoustic 

emission (AE), based on the registration of stress 

waves resulting from changes and destruction of the 

various materials structures, is currently the most 

promising means of monitoring of important objects, 

which obtain information on the dynamics of the pro-

cesses taking place in real time. The connection be-

tween the process of defect formation and the presence 

of AE signals allows us to determine the degree of effi-

ciency of structure material under changing external 

operating conditions [4-6]. Among the technical appli-

cations of AE control, coupled media in the form of 

protective coatings on metal and polymer base are of 

the greatest interest. 

Theoretical studies of the occurrence of AE signals 

with changes in the material structure are developed in 

two main areas: the development of discrete models 

[7, 8] and models of the elastic continuum [9, 10]. Con-

tinuous models reflect free damped vibrations in unlim-

ited medium, discrete ones are forced vibrations when 

scattered over local inhomogeneities and the propaga-

tion boundaries of AE signals. The periodicity of the 

crystal lattice, its structure, and the constitution of 

atoms determine the features of the energy spectra. 

With a known force field, by solving the equations of 

motion, it is possible to obtain information on changes 

in the material structure that cannot be directly meas-

ured [11, 12]. The regularities for the existence of elas-

tic energy of initiating AE signals operators establish-

ment is one of the unsolved problems of nanostructure 

modeling and the physics of nanosystems. 

 

2. ESTABLISHMENT OF INITIAL CONDITIONS 
 

The simplest model of the atomic interaction in a 

homogeneous medium can be represented as a system 

of point masses connected by springs with deflection 

rate n (see Fig. 1). 

The interactions of the nearest and next neighbors 

are shown on the basis of symmetry conditions. These 

interactions, indicated on the scheme by periodically 
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repeating contours, should be identical that is confirmed 

by the results of previous theoretical studies in [9, 13]. 
 

 
 

Fig.1 – The scheme of atomic interaction in a homogeneous 

medium 
 

The figure, bounding the region of interaction of atoms, 

has a rotary symmetry, i.e. turns into itself at all turns. 

Symmetry, in addition to the ratio of proportions, de-

termines the type of model parts consistency. 

The equation of motion of homogeneous medium 

particles under the influence of external forces initiat-

ing the appearance of AE signals is obtained from the 

condition of homogeneity of the medium and stationari-

ty of the action [9]: 
 

        
'

, , ' ', ,
n

mu n t n n u n t q n t   , (1) 

 

where u(n, t) is the displacement of atoms from the 

equilibrium positions, q(n, t) is the external forces act-

ing on the chain. 

Force constants (n, n'), which determine the prop-

erties of the model, are the parameters of elastic bonds 

between atoms [13]. From the symmetry condition it 

follows that (n, n') = (n', n). 

From the condition of homogeneity of the chain, it 

follows that for any n, n', n'': (n+n'', n'+n'') = (n, n'). 

Using Fourier transforms in (x, t) and (x, ω), the 

representations of the equation of particle motion can be 

written as: 
 

          , ' ', ' , ,x u x t x x u x t dx q x t      (2) 

 2 ( , ) ( ') ( ', ) ' ( , )u x x x u x dx q x        , (3) 

 

where  is the density of the medium material. 

The presence of internal bonds between the particles 

of the microstructure and their destruction caused by the 

formation of defects should be manifested in a change 

of the oscillatory properties of the coupled media. 

 

3. DISCUSSION OF RESULTS 
 

A model of a two-layer continuous medium is pro-

posed in the form of a chain of linear atoms connected 

by elastic bonds with a single point developing defect 

(see Fig. 2). 

Dashed lines denote the breaking of atomic bonds 

caused by the destruction of the structure, leading to the 

formation of defects and the appearance of AE signals. 

When two continuous media are coupled in each 

media, one can distinguish boundary regions S and S* 

in which the AE signals propagate. They have different 

sizes depending on the mechanical properties of the 

media materials. 

The operator of elastic bonds in the coupling of two me-

dia  is the sum of the interaction operators of the atoms of 

the corresponding media * *V V VV     , where 

,
def

V V V   *

* * ,
def

V
V V   * *

* .
def

VV V V V V       

 
 

Fig. 2 – Scheme of occurrence of AE signals in coupled media: 

○ – atoms of the first media, ● – atoms of the second media 
 

Symbol def means "equal by definition". 

The first main task of the propagation of AE signals 

in coupled continuous media is their consideration in 

the boundary areas given by the forces qS and qS'. 

The equations of particle motion in the boundary 

regions S and S* in operator form are 
 

2 ,S S Su S u q      2
* * **S S Su S u q     . 

 

Since the occurrence of the AE source is possible 

with equal probability in both media, in the following 

we omit the index * and, for V area, the equation of 

motion for particles has the form: 
 

2
V V V Vu u q    . 

 

The structure of the energy spectrum of AE signals 

can be determined using the second type Fredholm 

equation [14]: 
 

 ( ) ( , ) ( ) ( )
b

a

y x k x t y t dt f x  , (4) 

 

where k(x, t) is the kernel of integral equation,  is a 

numerical factor (characteristic number), a, b are limits 

of integration (boundary conditions), f(x) is the free term 

which is a continuous function on a segment a ≤ x ≤ b, 

y(x) is an unknown definable function. 

The task is to ensure that for a given continuous 

function of the kernel k(x, t) and function y(t), which 

characterize the received AE signal, to find function 

y(x), which characterizes initiated AE signal from the 

precursor of destruction. The collection of characteristic 

numbers λ defines a range of functions y(x). 

We assume that the kernel k(x(t)) is symmetric, 

continuous and bounded, and the free term f(x) is a 

continuous function when ax ≤ x ≤ bx, at ≤ t ≤ bt (Fig. 3). 
 

 
 

Fig. 3 – Spatial and temporal localization of the transmission 

of AE signals 
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The boundary problem of determining the energy 

spectrum of AE signals in coupled media is finding 

solutions to differential equations that satisfy the 

boundary conditions of two media S and S*. 

The kernel of the Fredholm equation of the second 

type can be determined through the differential opera-

tor of the equation of the medium particle motion. 

The Fredholm equation of the second type allows its 

reduction to a boundary value problem, if it is possible 

to choose the Green function, which determines the 

kernel of a given integral equation. 

As to the boundary conditions of the problem of de-

termining the energy spectrum of AE signals in coupled 

continuous media, the function G(x, ) describes the 

vibration of the medium caused by the force located at 

the origin of coordinates and represents the displace-

ment field created by the unit force acting on one atom 

of the chain. If the Green function is found, then the 

solution of the boundary problem takes the form 
 

( ) ( , ) ( )
b

a

y x G x f d    . 

 

We represent it in the form of a sum of total and 

particular solutions. To find the particular solution, it 

is necessary that the Green function G(x, ) satisfies 

the equation: 
 

2 ( , ) ( ') ( ', ) ' ( )G x x x G x dx x        , 

 

where (x) is the Dirac function. 

Considering the x coordinate as a parameter, the 

transition from the discrete argument n to the quasi-

continuous arguments x and k can be made. The ker-

nels of the presentation forms are related by 
 

           

     
'

, ' ' , , ' ' ' ,

, ' ' ' ,

n

q n n n u n q x x x u x dx

q k k k u k dk

   

 

 



 

 

Functions q(n), q(x), q(k) are kernels of the functional 

‹q | u› in n, x and k representations. They can be inter-

preted as the scalar product of functions q and u: 
 

|q u u q . 

 

They are Hermitian-conjugate, which corresponds 

to the third condition for the existence of an elastic 

energy operator. Hermitian form + in n, x, and k rep-

resentations has the form: 
 

( , ') ( ', ), ( , ') ( ', ),

( , ') ( ', ).

n n n n x x x x

k k k k

 



     

  
 

 

In this case 
 

2 2

1

2
( , )

( )

ixke
G x dk

k


  



 . 

 

Having constructed the Green function, G(x, ), a 

particular solution of the equation can be expressed 

through it (3) 
 

( , ) ( ', ) ( ', ) 'u x G x x q x dx    . 

 

The general solution of equation (3) is: 
 

 
0

( ) ( )( , ) ik x ik x
m m

m

u x a e m e m  






  , 

 

where αm and m are arbitrary constants. 

It is a superposition of solutions corresponding to 

each root km(). Its solution is complicated by the ful-

fillment of the numbering conditions of complex inte-

grand roots. An alternative is the transition to the 

Green function presented in [7] 
 

0 0( , ') ( ') ( , ) ( ')
S

G x x G x x E x y G y x dy    , 

 

where G0(x – x') is the zero Green function 
 

0

( , ) ( ) ( )
def

n
n

n

E x y e x e y




  . 

 

Each sufficiently smooth function can be expanded 

in a series of bases. Functions concentrated on the 

interval S of the elastic energy operator  that deter-

mine the internal characteristics of the medium can be 

expanded in a series of bases 
 

0

'( ) ( ') '
' ( )

x S
m ik x

m

i
e x x x e m dx

k








  


 , 

 

where en(x) is a functional basis, {em(x), en(x)} is the 

biorthogonal basis. 

The factorization  gives the functions of ±(k)-type 
 

1

2

Im ( ')
( ) exp '

'

k
k dk

i k k


 
     

  

0

1( ) ( )( )
l

ikxk x e dx 
     

0

1( ) ( )( ) ( )ikx

l

k x e dx k
  



        

 

Thus, the biorthogonal basis is completely deter-

mined by the assignment of force constants. 

The introduction of k- and ω-representations allows 

us to study the frequency spectrum of AE signals. The 

shape of the propagating AE signal depends not only on 

the offset time, but also on the frequency ω. Therefore, 

along with the displacement functions, their Fourier 

images should also be considered. 

For the Fourier transform, the same notation should 

be kept, but with the argument k 
 

 
 

where q(x)  nq(n)B(x – na), q(k)  B(k)nq(n)e–inak.. 

Here, B(k) is the segment characteristic function  

B[–/a ≤ k ≤ /a], on which the Fourier transform is 

different from zero, B(x – a) is a function representing 

the one-dimensional kernel of the identity operator. 

Function q(n) decreases as n → ∞ and reflects the 

damping of elastic waves in the medium. At the same 

time, it enters a linear functional depending on u(n) 
 

 
 

         dkkukqdxxuxquq
2

1

   
n

def

nunquq
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The force constants (n, n') are functions of two 

variables (x, t), defined on a square lattice with a step 

a. Multiplying them on the left by u(n) and on the right 

by υ(n'), we will get the form ‹u |  | › linear in the 

second argument and antilinear in the first one. 

The invariance of the form ‹u|Φ|› relative to n-, x-

and k-representations implies from the invariance of 

the scalar product 
 

     

           
1

2

def

nn

u u n n n n

u x x x x dxdx u k k k k dkdk

 

 


   

  



 

'

| | , ' '

, ' ' ' , ' ' '

     

           
1

2

def

nn

u u n n n n

u x x x x dxdx u k k k k dkdk

 

 


   

  



 

'

| | , ' '

, ' ' ' , ' ' '

 

The functions (n), (x) and (k) are one-dimensional 

kernels of the elastic energy operator Φ. Each form of 

the elastic energy operator Φ can be uniquely assigned 

to a linear operator by defining it as 
 

| | |q u   , 

 

i.e. the kernel of the form is also the kernel of the elas-

tic energy operator defined by it. 

The second main task of the propagation of AE sig-

nals in coupled continuous media is their consideration 

in the boundary regions specified by displacements 

rather than forces. 

The process of propagation of AE signals in media will 

be considered as continuous. What follows when Δx → 0: 
 

( ) ( , ) ( ) ( ) ,
b

a

y x x k x x t y t dt f x x         (5) 

 

or subtracting (5) from (4) 
 

b

a

y x x y x k x x t k x t y t dt

f x x f x

         

   

( ) ( ) ( , ) ( , ) ( )

( ) ( )  

 

we have the Fredholm equation of the second kind with 

a difference kernel. 

Each dynamic variable u(y) can be represented by a 

linear operator. Each linear operator corresponds to a 

linear equation, on the basis of which its own values 

are found. 

The linear form of the displacement u(y) relative to 

the variable y is written as 
 

0 1 1 0 1

1 1
0

( ) ( )( ) ' ... ...
n n

n n
a a a a a b b b bU y P y P y P y P y P y

 

       

 

where ya,y'a, … , ya
(n–1); yb, y'b, … , yb

(n–1) are values of the 

vector function and its derivatives, Pa0, … , Pan–1, Pb0, 

Pb1, … and Pbn–1 are fixed linear operators in complex 

vector space Rm. 

For any function y, linear differential equation l(y) 

can be represented as the result of applying the opera-

tor Pj(x) to the vector y(n – j)(x) 
 

1
0 1

( ) ( )( ) ( ) ( ) ... ( )n n
nl y P x y P x y P x y    , 

 

where 1/P0(x), P1(x), … , Pn(x) are operator functions. 

The same differential expression can generate dif-

ferent differential operators depending on the choice of 

boundary conditions. 

In the case when several forms of particle displace-

ment U1(y), U2(y), … , Uq(y) are given, the boundary 

problems of determining the energy spectrum of AE 

signals in conjugate media are reduced to a system of 

integral equations 
 

1 1 1 2 1 2 1

1 2 1 2 2 2 2

1 1 2 2

0

0

0

( ) ( ) ... ( )

( ) ( ) ... ( )

...

( ) ( ) ... ( )

n n

n n

m m n m n

CU y C U y C U y

CU y C U y C U y

CU y C U y C U y

   


   


    

 

 

where C1, C2, … , Cn are constants. 

Its solution reduces to finding the linear operator L 

and the eigenfunctions y1, y2,…, yn, for which this oper-

ator becomes zero. 

The linear operator L with the definition area y ∈ D 

is generated by the differential expression l(y) and the 

boundary conditions 
 

Ly ly . 
 

The eigenvalues of the operator L are those values 

of the parameter , which determine the energy spec-

trum of the AE signal, for which the homogeneous 

boundary-value problem has nontrivial solutions, i.e. 
 

1 2( ) , , ,...,l y y v m  . 
 

The spectral characteristics of AE signals can be 

found if the law of their distribution on the frequency 

ω(k) is known. With the total number of atoms in the 

chain N → ∞ the vibration spectrum becomes continu-

ous and the frequency distribution function ν(ω) has 

the form [7]: 
 

( )
a dk

v
d


 

  

 

For a chain with the interaction of nearest neighbors, 

the frequency distribution function takes the form: 
 

2 2

2

max

( )v 
  




 

 

Maximum ωmax is reached at k = ±/a. At   max 

AE signals will propagate in both media. Signals with 

high frequencies decay exponentially. The energy spec-

trum of developing defects is determined by the struc-

ture of the interfaced media and the forces determining 

the occurrence of AE signals: internal forces holding 

the structure in an equilibrium state, forces destroying 

the structure due to the imperfection of the material, 

and force constants determined by the physical and 

mechanical properties of the material. 

Since equation (3) includes the quadratic term ω2, 

which reflects the frequency characteristic of particle 

motion in contiguous media, as well as the quantity ω, 

which varies over time, as a concrete example, the 

corresponding Fredholm equation of the second kind 

can be written as: 
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1
2 2

0

( ) ( ) ( ) ( )y x xt x t y t dt f x   , 

 

where k(x, t)  xt+x2t2 is equation lernel, ax  x, bx  x2; 

at  t, bt  t2 are border conditions. 

Here, the integration limits from zero to one denote 

the propagation zone of the AE signal. Then the Fredholm 

equation takes the form: 
 

1 12 2

0 0
( ) ( ( ) ( ) ) ( )y x x ty t dt x t y t dt f x    . 

 

If the following notations are introduced 
 

1 1 2
1 20 0

( ) , ( )ty t dt t y t dt    , 

then 
2

1 2( ) ( ) ( )y x x x f x     . 

 

After integration, a system of linear algebraic equa-

tions for υ1 and υ2 will be obtained 
 

1 2
1 1

1 2
2 2

3 4

4 5

W

W

 
 

 
 

  
    

  


       

 

 

where W1  ∫01 xf(x)dx, W2  ∫01 x2f(x)dx. 

Therefore, 
 

1 2 1

1 2 2

1
3 4

1
4 5

W

W

 
 

 
 

  
    

  


       

 

 

The solution to this system exists only when the fol-

lowing condition is fulfilled: 
 

1
3 4

0

1
4 5

det

 

 

 
  

  
 
  

 

. 

 

Characteristic numbers will be 
 

2

1 1 0
3 5 16

    
     

  
, 

 

1  4(16 – √ 2  4  1  ), 2  4(16 + √  2  4  1 ). 

If   4 and f(x)  x2, it will be 
 

 
1 2

1 2

1 1

3 4

1 1

5 5

 

 


  

  


 

 

Therefore, υ1 = –15/64 and υ2 = –11/64. 

Taking into account the coefficients found, the se-

cond type Fredholm equation takes the form: 
 

2 215 11
4

64 64
( )y x x x x

  
     

  
, 

 

where y(x) is the triggered AE signal from the precur-

sor of the material destruction. 

The values of λ and y(x) are eigenvalues and an ei-

genfunction of the kernel k(x, t). 

The conversion of discrete signals caused by stress-

es in the structure of materials into a continuous ana-

lytic function is possible through a set of δ-functions 

using Fourier series. 

It will be interesting to apply the Fourier transform 

to this boundary value problem 
 

   
1

2
.i xF y x e 








    

 

Substituting the expression y(x) into this formula, 

its frequency spectrum through delta functions of the 

first and second order will be found 
 

     
27 15

8 2 2 2
.F

 
       

 
 

It follows that the better the function is concentrat-

ed in time, the more it is blurred in the private area. 

When the scale of the function changes, the product of 

the probability densities of the time and particular 

ranges remains constant, which is confirmed by the 

results of studies carried out in [11]. 

In [12], the results of experimental studies on the 

establishment of interconnections of the occurrence of 

AE signals to changes in the structure of materials 

caused by different loading of steel St3sp samples are 

presented (Fig. 4). 

Both graphs show the structure of the spectrum of 

AE signals, which is in accordance with the value of the 

characteristic number λ = 4. Some inconsistencies be-

tween the numerical values of the amplitudes in the 

theoretical and experimental spectrum are due to the 

absence of coating in the experiment, as well as ignoring 

the parameters of the physical and mechanical proper-

ties of bases and coatings in the theoretical model. 

The initiation of AE signals, caused by changes in 

the structure, in the first approximation can be consid-

ered using the evolutionary concepts of the dislocation 

theory as lattice damage (Fig. 5). 

The presence of defects in the lattice causes diffu-

sion of atoms, increasing their mobility, which mani-

fests itself in the initiation of AE signals. 

The first basic condition that the elastic energy op-

erator must satisfy is the invariance of the particles of 

the material structure relative to translation. The elas-

tic energy does not change during the conversion 

u(x) → u(x) +u0, because the distance between the par-

ticles does not change (Fig. 5a). The property of trans-

lational invariance of energy is manifested in the exist-

ence of longitudinal, shear and spin vibrations and in 

the quantitative redistribution of energy from the pre-

cursors of AE signals. 

The second main condition for the existence of the 

elastic energy operator is its hermiticity 

(n,n')  (n',n), which is based on the fact, that the 

operator defined by the kernels can be extended to a 

wider class of functions characterizing the formation of 

defects. This can be shown experimentally in the form 

of exits to the surface of displacing atoms (Fig. 5b), 

vacancies (Fig. 5c), edge and screw dislocations, linear 

and planar defects, heterovalent substitution, anti-

structural defects (Fig. 5d). 
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Fig. 4 – Characteristics of AE signals and their processing using Fourier transform: a) 1650 kg, b) 2170 kg 
 

 
 

Fig. 5 – Simple defect structures: a) ideal lattice, b) substitu-

ent impurity, c) lattice vacancy, d) interstitial admixture and 

two self- interstitial defects 
 

The third basic condition, which the elastic energy 

operator must satisfy, is its homogeneity, which is 

based on its invariance with respect to the shift. To 

determine the force constants, it is necessary to have 

additional information on the structure of interatomic 

interactions inside the base and the coating, as well as 

on the nature of the coupling fields of both boundary 

media. 

The analytical apparatus for determining the ener-

gy spectrum of the precursors of the occurrence of AE 

signals in conjugate media makes it possible to consid-

er discrete and continuous models with the use of 

space-time and frequency-wave representations at the 

same time as a single formalism. 

 

4. CONCLUSIONS 
 

With local changes in the structure and breakage of 

atomic bonds, the sources of AE signals appear. Fourier 

transforms allow the region of changes in the structure 

of the material, in which the changes under the action 

of a disturbing force took place, to be transferred to the 

congruent region of initiation of AE signals. 

Representation of the equation of particle motion 

during the development of internal defects in the form 

of Fourier series with a basis of eigenfunctions using 

the Green function allows spectral analysis of differen-

tial operators and decomposition of given functions by 

their own value. 

In the case when the forces initiating the appear-

ance of AE signals are specified in the boundary region, 

the Fredholm equation of the second kind with a sym-

metric kernel is most applicable. In the case when 

displacements of particles of the medium are specified 

in the boundary region, which determine the conditions 

for propagation of AE waves, the Fredholm equation 

with a difference kernel is most applicable. 

The experimental verification of the main theoreti-

cal models of the energy spectrum of AE signals in a 

medium with a developing defect, at different stages of 

the load diagram, showed their consistency and satis-

factory agreement in the basic details of the energy 

spectrum structure. 

The conditions for the existence of an elastic energy 

operator for initiating AE signals: homogeneity, invari-

ance of the particles of the material structure relative 

to translation, the hermitability of the operator allows 

them to be associated with the formation of metal crys-

tal lattice defects and can be used in predicting the 

stages of metal constructions failure. 
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Енергетичний спектр сигналів акустичної емісії в сполучених  

суцільних середовищах 
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2 Херсонська державна морська академія, проспект Ушакова, 20, 73009 Херсон, Україна 

 
Одним з невирішених проблем моделювання наноструктур і фізики наносистем є закономірності 

існування пружної енергії ініціювання операторів АЕ сигналів. Розглянуто поширення сигналів акус-

тичної емісії зі зв'язком двох безперервних середовищ. Основними змінними в рівняннях руху части-

нок є сила, що визначає виникнення акустичної емісії і зміщення частинок середовища, що визначає 

поширення пружної хвилі. Наведено методологічну основу для знаходження енергетичного спектра 

сигналів акустичної емісії у зв'язаних середовищах з використанням функції Гріна і перетворення 

Фур'є. Обґрунтовано умови існування оператора пружної енергії для ініціювання сигналів акустичної 

емісії. Першою базовою умовою, яку повинен задовольняти оператор пружної енергії, є інваріантність 

частинок структури матеріалу щодо перетворення. Другою основною умовою існування оператора 

пружної енергії є її герметичність. Третя основна умова, яку повинен задовольняти оператор пружної 

енергії, – його однорідність, яка ґрунтується на її інваріантності щодо зсуву. Встановлено однозначну 

відповідність між характеристиками дискретної структури матеріалів і параметрами поширення сиг-

налів АЕ в сполучених середовищах. На основі порівняння розрахункових характеристичних чисел 

спектру та діаграми навантаження для розривних випробувань було показано, що енергетичний 

спектр сигналів акустичної емісії в зв'язаних безперервних середовищах повністю визначається сило-

вими константами матеріалу та силами, що ініціюють появу сигнали акустичної емісії. Представле-

ний енергетичний спектр сигналів акустичної емісії в спряжених моделях безперервних середовищ 

дозволяє асоціювати їх з утворенням дефектів кристалічної решітки металу і може бути використаний 

для прогнозування стадії руйнування матеріалу. Експериментальна перевірка основних теоретичних 

моделей енергетичного спектру сигналів АЕ в середовищі з дефектом, що розвивається, на різних 

етапах діаграми навантаження показала їх узгодженість і задовільну згоду в основних деталях струк-

тури енергетичного спектру. 
 

Ключові слова: Акустична емісія, Сигнали, Спектр, Власні значення, Власні функції, Рівняння 

Фредгольма другого роду, Перетворення Фур'є. 

 

https://doi.org/10.1016%20/j.ymssp.%202016.02.007
https://doi.org/10.1016%20/j.apacoust.%202015.12.018
https://doi.org/10.1016%20/j.apacoust.%202015.12.018
https://doi.org/10.1016%20/j.ymssp.%202019.01.021
https://doi.org/10.1016%20/j.ymssp.%202019.01.021
https://doi.org/10.1016/j.compositesb.%202018.09.018
https://doi.org/10.1016/j.compositesb.%202018.09.018
https://doi.org/10.1007/s10921-018-0536-7
https://doi.org/10.13164/re.%202018.1119
https://doi.org/10.13164/re.%202018.1119
https://doi.org/10.1109%20/UKRCON.%202017.8100329
https://doi.org/10.1109%20/UKRCON.%202017.8100329
https://doi.org/10.1109%20/UKRCON.%202017.8100329
https://doi.org/10.1016%20/j.neucom.2018.12.057
https://doi.org/10.1016%20/j.neucom.2018.12.057
https://doi.org/10.1109/ELNANO.2018.8477473
https://doi.org/10.1109/ELNANO.2018.8477473
https://doi.org/10.1109/ELNANO.2018.8477473
https://doi.org/10.1016%20/j.measurement.2018.12.049
https://doi.org/10.1016%20/j.measurement.2018.12.049
https://doi.org/10.21272/%20jnep.9(2).02012
https://doi.org/10.21272/%20jnep.9(2).02012
https://doi.org/10.21272/jnep.9(4).04024
https://doi.org/10.21272/jnep.9(4).04024
https://doi.org/10.21272/jnep.10(1).01019
https://doi.org/10.21272/jnep.10(1).01019

