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The regularities for the existence of elastic energy of initiating AE signals operators establishment is
one of the unsolved problems of nanostructure modeling and the physics of nanosystems. The propagation
of acoustic emission signals with the coupling of two continuous media is considered. The main variables in
the equations of motion for particles are the force that determines the occurrence of acoustic emission and
the displacement of particles of the medium, which determines the elastic wave propagation. A methodo-
logical basis for determining the energy spectrum of acoustic emission signals in coupled media using the
Green function and Fourier transforms is presented. The conditions for the existence of an elastic energy
operator for initiating acoustic emission signals are substantiated. The first basic condition that the elastic
energy operator must satisfy is the invariance of the particles of the material structure relative to the
translation. The second main condition for the existence of the elastic energy operator is its hermiticity
The third basic condition, which the elastic energy operator must satisfy, is its homogeneity, which is
based in its invariance with respect to the shift. The unequivocal correspondence between the characteris-
tics of the discrete structure of materials and parameters of propagation of AE signals in conjugate media
is established. Based on a comparison of the calculated characteristic numbers of the spectrum and the
load diagram for discontinuous tests, it was shown that the energy spectrum of acoustic emission signals in
coupled continuous media is completely determined by the material power constants and the forces initiat-
ing the appearance of acoustic emission signals. Presented energy spectrum of acoustic emission signals in
conjugated continuous media models allows to associate them with the formation of metal crystal lattice
defects and can be used to predict the stage of material destruction. The experimental verification of the
main theoretical models of the energy spectrum of AE signals in a medium with a developing defect, at dif-
ferent stages of the load diagram, showed their consistency and satisfactory agreement in the basic details
of the energy spectrum structure.

Keywords: Acoustic emission, Signals, Spectrum, Coupled continuous media, Eigenvalues, Eigenfunctions,
Second-kind Fredholm equation, Fourier transform.
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1. INTRODUCTION

Study of the energy spectrum of signals of nano-
sized objects is explained by the importance of solving
questions about the propagation of vibrations charac-
teristics preceding the destruction of materials. In
recent years, new models of continuum mechanics have
been intensively developed. They describe composite
and statistically heterogeneous environments of new
structural materials, as well as the theory of defects,
their occurrence and distribution under the influence of
external disturbances [1-3]. The method of acoustic
emission (AE), based on the registration of stress
waves resulting from changes and destruction of the
various materials structures, is currently the most
promising means of monitoring of important objects,
which obtain information on the dynamics of the pro-
cesses taking place in real time. The connection be-
tween the process of defect formation and the presence
of AE signals allows us to determine the degree of effi-
ciency of structure material under changing external
operating conditions [4-6]. Among the technical appli-
cations of AE control, coupled media in the form of
protective coatings on metal and polymer base are of
the greatest interest.

Theoretical studies of the occurrence of AE signals
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with changes in the material structure are developed in
two main areas: the development of discrete models
[7, 8] and models of the elastic continuum [9, 10]. Con-
tinuous models reflect free damped vibrations in unlim-
ited medium, discrete ones are forced vibrations when
scattered over local inhomogeneities and the propaga-
tion boundaries of AE signals. The periodicity of the
crystal lattice, its structure, and the constitution of
atoms determine the features of the energy spectra.
With a known force field, by solving the equations of
motion, it is possible to obtain information on changes
in the material structure that cannot be directly meas-
ured [11, 12]. The regularities for the existence of elas-
tic energy of initiating AE signals operators establish-
ment is one of the unsolved problems of nanostructure
modeling and the physics of nanosystems.

2. ESTABLISHMENT OF INITIAL CONDITIONS

The simplest model of the atomic interaction in a
homogeneous medium can be represented as a system
of point masses connected by springs with deflection
rate ¥ (see Fig. 1).

The interactions of the nearest and next neighbors
are shown on the basis of symmetry conditions. These
interactions, indicated on the scheme by periodically
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repeating contours, should be identical that is confirmed
by the results of previous theoretical studies in [9, 13].
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Fig.1 — The scheme of atomic interaction in a homogeneous
medium
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The figure, bounding the region of interaction of atoms,
has a rotary symmetry, i.e. turns into itself at all turns.
Symmetry, in addition to the ratio of proportions, de-
termines the type of model parts consistency.

The equation of motion of homogeneous medium
particles under the influence of external forces initiat-
ing the appearance of AE signals is obtained from the
condition of homogeneity of the medium and stationari-
ty of the action [9]:

mii(n,t)+z;d)(n,n')u(n',t):q(n,t), (1)

where u(n,t) is the displacement of atoms from the
equilibrium positions, g(n, t) is the external forces act-
ing on the chain.

Force constants ®(n, n'), which determine the prop-
erties of the model, are the parameters of elastic bonds
between atoms [13]. From the symmetry condition it
follows that ®(n, n') = ®(n', n).

From the condition of homogeneity of the chain, it
follows that for any n, n’, n': ®(n+n'", n'+n'y = ®(n, n’).

Using Fourier transforms in (x, f) and (x, @), the
representations of the equation of particle motion can be
written as:

p(x)il(x,t)+[d)(x—x’)u(x',t)dx'=q(x,t), 2)
—pa)zu(x,a))—i—j'q)(x—x')u(x',a))dx':q(x,a)), 3)

where pis the density of the medium material.

The presence of internal bonds between the particles
of the microstructure and their destruction caused by the
formation of defects should be manifested in a change
of the oscillatory properties of the coupled media.

3. DISCUSSION OF RESULTS

A model of a two-layer continuous medium is pro-
posed in the form of a chain of linear atoms connected
by elastic bonds with a single point developing defect
(see Fig. 2).

Dashed lines denote the breaking of atomic bonds
caused by the destruction of the structure, leading to the
formation of defects and the appearance of AE signals.

When two continuous media are coupled in each
media, one can distinguish boundary regions S and S*
in which the AE signals propagate. They have different
sizes depending on the mechanical properties of the
media materials.

The operator of elastic bonds in the coupling of two me-
dia ¥is the sum of the interaction operators of the atoms of
the corresponding media ¥ =Y +Y.+¥y«, where

def def . . def . .
Wy = VOV, W = VOV, Wi, = VIV 1 VY.
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Fig. 2 — Scheme of occurrence of AE signals in coupled media:
o — atoms of the first media, ® — atoms of the second media

Symbol 2¢f means "equal by definition".

The first main task of the propagation of AE signals
in coupled continuous media is their consideration in
the boundary areas given by the forces gs and gs-.

The equations of particle motion in the boundary
regions S and S¥ in operator form are

~@” pglg + SOU=qg, —@ Pgaligs +S ¥ DU = g .

Since the occurrence of the AE source is possible
with equal probability in both media, in the following
we omit the index * and, for V area, the equation of
motion for particles has the form:

2
—w" puy, +Dyuy, =qy .

The structure of the energy spectrum of AE signals
can be determined using the second type Fredholm
equation [14]:

W) = Af k(x,)y()dt + f(x) | )

where k(x, t) is the kernel of integral equation, 1 is a
numerical factor (characteristic number), a, b are limits
of integration (boundary conditions), f(x) is the free term
which is a continuous function on a segment a <x<b,
y(x) is an unknown definable function.

The task is to ensure that for a given continuous
function of the kernel k(x, f) and function y(¢), which
characterize the received AE signal, to find function
y(x), which characterizes initiated AE signal from the
precursor of destruction. The collection of characteristic
numbers A defines a range of functions y(x).

We assume that the kernel k(x(f)) is symmetric,
continuous and bounded, and the free term f(x) is a
continuous function when ax < x < by, as < t < b; (Fig. 3).

t
A
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Fig. 3 — Spatial and temporal localization of the transmission
of AE signals
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The boundary problem of determining the energy
spectrum of AE signals in coupled media is finding
solutions to differential equations that satisfy the
boundary conditions of two media S and S*.

The kernel of the Fredholm equation of the second
type can be determined through the differential opera-
tor of the equation of the medium particle motion.

The Fredholm equation of the second type allows its
reduction to a boundary value problem, if it is possible
to choose the Green function, which determines the
kernel of a given integral equation.

As to the boundary conditions of the problem of de-
termining the energy spectrum of AE signals in coupled
continuous media, the function G(x, w) describes the
vibration of the medium caused by the force located at
the origin of coordinates and represents the displace-
ment field created by the unit force acting on one atom
of the chain. If the Green function is found, then the
solution of the boundary problem takes the form

y(x)= ZI)G(x, w)f(w)do .

We represent it in the form of a sum of total and
particular solutions. To find the particular solution, it
is necessary that the Green function G(x, w) satisfies
the equation:

—p&’G(x, @)+ [ D(x —x")G(x', w)dx" = 5(x)

where 8(x) is the Dirac function.

Considering the x coordinate as a parameter, the
transition from the discrete argument n to the quasi-
continuous arguments x and & can be made. The ker-
nels of the presentation forms are related by

q(n)= Z;(D(n,n')u(n'), q(x)=[®(x,x")u(x")dx",
q(k)=[D(k,k")u(k")dE’,
Functions ¢(n), q(x), g(k) are kernels of the functional

« | win n, x and k representations. They can be inter-
preted as the scalar product of functions q and u:

(alu)=(uTa)

They are Hermitian-conjugate, which corresponds
to the third condition for the existence of an elastic
energy operator. Hermitian form ®* in n, x, and k& rep-
resentations has the form:

@ (n,n')=d(n',n), O (x,x') =D(x',x),
" (k, k') = O(k, k).

In this case
eixk
G(x,w) = j ————dk.
270" (k) - &’
Having constructed the Green function, G(x, @), a
particular solution of the equation can be expressed
through it (3)

u(x,w) = [G(x—x",w)q(x', w)dx'.
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The general solution of equation (3) is:
u(x’w): 2 (a eli’m(w)x +ﬂ e—Lk (m)x) ,
m=0

where am and S are arbitrary constants.

It is a superposition of solutions corresponding to
each root km(w). Its solution is complicated by the ful-
fillment of the numbering conditions of complex inte-
grand roots. An alternative is the transition to the
Green function presented in [7]

G(x,x) =G (x—x")— [ E(x, y)G(y—x")dy,
s
where G%x — x) is the zero Green function

def «
E(x,y) = goen(x)e”(y).

Each sufficiently smooth function can be expanded
in a series of bases. Functions concentrated on the
interval S of the elastic energy operator @ that deter-
mine the internal characteristics of the medium can be
expanded in a series of bases

e"(x)= f ®_(x—x")e "m*dx’,

cp(k)

where en(x) is a functional basis, {e™(x), en(x)} is the
biorthogonal basis.
The factorization @ gives the functions of ®-(k)-type

1

[ d

CDi(k):ex[ Imo(k) }

tk-Fk'

(k) = [y (x)(1-e ™ )dx
0
O (k)= [ ¥ (x)(1-e ™ )dx = D, (~k)
o

Thus, the biorthogonal basis is completely deter-
mined by the assignment of force constants.

The introduction of k- and w-representations allows
us to study the frequency spectrum of AE signals. The
shape of the propagating AE signal depends not only on
the offset time, but also on the frequency w. Therefore,
along with the displacement functions, their Fourier
images should also be considered.

For the Fourier transform, the same notation should
be kept, but with the argument &

u)=] W)J(X)dX:i [ alku(ic)k

where q(x) = Zuq(n)dB(x — na), q(k) = B(k)Znq(n)e-inak,
Here, B(k) is the segment characteristic function
B[-ra<k<ra], on which the Fourier transform is
different from zero, dB(x — @) is a function representing
the one-dimensional kernel of the identity operator.
Function g(n) decreases as n — « and reflects the
damping of elastic waves in the medium. At the same
time, it enters a linear functional depending on u(n)

(qu) = S amk(n)
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The force constants ®(n, n') are functions of two
variables (x, t), defined on a square lattice with a step
a. Multiplying them on the left by u(n) and on the right
by v(n'), we will get the form @ | ® | v linear in the
second argument and antilinear in the first one.

The invariance of the form «w | ® | v relative to n-, x-
and k-representations implies from the invariance of
the scalar product

(1010)Z Sl (nn)o () -

ﬂu(x)dD(x,x')u(x')dxdx':i [ (kYo (ks k") o(k") dEdE’
(1010)Z Sl (nn)o () -

ﬂu(x)@(x,x')u(x')dxdx':i [ (kYD (ks k") o(k") ddE’

The functions ®(n), ®(x) and (k) are one-dimensional
kernels of the elastic energy operator @. Each form of
the elastic energy operator @ can be uniquely assigned
to a linear operator by defining it as

<m>=<vl®lu>,

i.e. the kernel of the form is also the kernel of the elas-
tic energy operator defined by it.

The second main task of the propagation of AE sig-
nals in coupled continuous media is their consideration
in the boundary regions specified by displacements
rather than forces.

The process of propagation of AE signals in media will
be considered as continuous. What follows when Ax — 0:

y(x+Ax) = llj’k(x+Ax,t)y(t)dt+f(x+Ax) P (5))]
or subtracting (5) from (4)

y(x+Ax)—y(x):},lj;[k(x+Ax,t)—k(x,t)]y(t)dt+
+f(x+Ax)—f(x)

we have the Fredholm equation of the second kind with
a difference kernel.

Each dynamic variable u(y) can be represented by a
linear operator. Each linear operator corresponds to a
linear equation, on the basis of which its own values
are found.

The linear form of the displacement u(y) relative to
the variable y is written as

U(y)=P, 5, +B,y's+w+P, 3"V +P y,+.+B s

where ya,y'a, ... , Ya®V; ¥, ¥'b, ..., ¥V are values of the
vector function and its derivatives, Pao, ..., Pan-1, Pbo,
Pb, ... and Pbn 1 are fixed linear operators in complex
vector space Rm.

For any function y, linear differential equation [(y)
can be represented as the result of applying the opera-
tor Pj(x) to the vector y —(x)

Uy) =Fy(x)y™ +B(x)y" ™ +.ct B(x)y,
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where 1/Po(x), P1(x), ..., Pn(x) are operator functions.

The same differential expression can generate dif-
ferent differential operators depending on the choice of
boundary conditions.

In the case when several forms of particle displace-
ment Ui(y), U2(y), ..., Us(y) are given, the boundary
problems of determining the energy spectrum of AE
signals in conjugate media are reduced to a system of
integral equations

CU(»)+CU (y,)+...+CU(y,)=0
CU,(y,)+CUs(y,)+...+CUy(y,) =0

CU,(y)+CU, (y,)+..+CU, (y,)=0

where Ci1, Co, ..., Cy are constants.

Its solution reduces to finding the linear operator L
and the eigenfunctions y1, y2,..., ¥, for which this oper-
ator becomes zero.

The linear operator L with the definition area y € D
is generated by the differential expression /(y) and the
boundary conditions

Ly=1ly.

The eigenvalues of the operator L are those values
of the parameter A, which determine the energy spec-
trum of the AE signal, for which the homogeneous
boundary-value problem has nontrivial solutions, i.e.

Wy) =4y, v=12,.,m.

The spectral characteristics of AE signals can be
found if the law of their distribution on the frequency
®(k) is known. With the total number of atoms in the
chain N — o the vibration spectrum becomes continu-
ous and the frequency distribution function v(w) has
the form [7]:

a|dk

For a chain with the interaction of nearest neighbors,
the frequency distribution function takes the form:

2

2 2
[

v(w) =
Al Orpax ~

Maximum @max is reached at k =+"4. At ® < @Wmax
AE signals will propagate in both media. Signals with
high frequencies decay exponentially. The energy spec-
trum of developing defects is determined by the struc-
ture of the interfaced media and the forces determining
the occurrence of AE signals: internal forces holding
the structure in an equilibrium state, forces destroying
the structure due to the imperfection of the material,
and force constants determined by the physical and
mechanical properties of the material.

Since equation (3) includes the quadratic term w2,
which reflects the frequency characteristic of particle
motion in contiguous media, as well as the quantity o,
which varies over time, as a concrete example, the
corresponding Fredholm equation of the second kind
can be written as:

03028-4



ENERGY SPECTRUM OF ACOUSTIC EMISSION SIGNALS ...

()= AJ (xt + % )y(t)dt = (),
0]

where k(x, t) = xt+x2t2 is equation lernel, ax=x, bx = x%
a: = t, by = t2 are border conditions.

Here, the integration limits from zero to one denote
the propagation zone of the AE signal. Then the Fredholm
equation takes the form:

y(x) = Ax [ ty()dt+ [ 2y(t)dt) + f(x) .
If the following notations are introduced

o = ty(t)dt, v, = [ y(t)dt,

then
y(x)=A(xy, +x21)2)+f(x).

After integration, a system of linear algebraic equa-
tions for v1 and vz will be obtained

v = /1(i + %J +W
3 4
)
= L +2 [+ W,
Yy (4 5 j 2
where Wi = Jo! xf(x)dx, Wa = [o! x2f(x)dx.
Therefore,
A A
[1—§jl}1 —ZUZ = VVI

A A
—ZUI +(1-gjl}2 = %

The solution to this system exists only when the fol-
lowing condition is fulfilled:

1A 4
det 3 4 #0.

A A

_Z 1=-Z

4 5

Characteristic numbers will be

2
A1) 2 s,
3 5) 16

A1 = 4(16 — N24T), A2 = 4(16 + N247).
If A=4 and f(x) = x2, it will be

—lu—u—
3

Ol |

u+lu—
1Tl

Therefore, v1 = -15/64 and vz = —-11/64.
Taking into account the coefficients found, the se-
cond type Fredholm equation takes the form:

15) 11 , 2
x)=4|x|—— |-—x" |+x7,
Y “64) 61 }

where y(x) is the triggered AE signal from the precur-
sor of the material destruction.
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The values of A and y(x) are eigenvalues and an ei-
genfunction of the kernel k(x, t).

The conversion of discrete signals caused by stress-
es in the structure of materials into a continuous ana-
Iytic function is possible through a set of §-functions
using Fourier series.

It will be interesting to apply the Fourier transform
to this boundary value problem

1 +00 )
F(o)= =T s(x)e

27T o

Substituting the expression y(x) into this formula,
its frequency spectrum through delta functions of the
first and second order will be found

F(o)=-2 [ (0)+ 2 25 0)

It follows that the better the function is concentrat-
ed in time, the more it is blurred in the private area.
When the scale of the function changes, the product of
the probability densities of the time and particular
ranges remains constant, which is confirmed by the
results of studies carried out in [11].

In [12], the results of experimental studies on the
establishment of interconnections of the occurrence of
AE signals to changes in the structure of materials
caused by different loading of steel St3sp samples are
presented (Fig. 4).

Both graphs show the structure of the spectrum of
AE signals, which is in accordance with the value of the
characteristic number 1=4. Some inconsistencies be-
tween the numerical values of the amplitudes in the
theoretical and experimental spectrum are due to the
absence of coating in the experiment, as well as ignoring
the parameters of the physical and mechanical proper-
ties of bases and coatings in the theoretical model.

The initiation of AE signals, caused by changes in
the structure, in the first approximation can be consid-
ered using the evolutionary concepts of the dislocation
theory as lattice damage (Fig. 5).

The presence of defects in the lattice causes diffu-
sion of atoms, increasing their mobility, which mani-
fests itself in the initiation of AE signals.

The first basic condition that the elastic energy op-
erator must satisfy is the invariance of the particles of
the material structure relative to translation. The elas-
tic energy does not change during the conversion
u(x) — u(x) +uo, because the distance between the par-
ticles does not change (Fig. 5a). The property of trans-
lational invariance of energy is manifested in the exist-
ence of longitudinal, shear and spin vibrations and in
the quantitative redistribution of energy from the pre-
cursors of AE signals.

The second main condition for the existence of the
elastic  energy  operator is its  hermiticity
®(n,n") = d(n',n), which is based on the fact, that the
operator defined by the kernels can be extended to a
wider class of functions characterizing the formation of
defects. This can be shown experimentally in the form
of exits to the surface of displacing atoms (Fig. 5b),
vacancies (Fig. 5¢), edge and screw dislocations, linear
and planar defects, heterovalent substitution, anti-
structural defects (Fig. 5d).
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Fig. 4 — Characteristics of AE signals and their processing using Fourier transform: a) 1650 kg, b) 2170 kg
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Fig. 5 — Simple defect structures: a) ideal lattice, b) substitu-
ent impurity, c) lattice vacancy, d) interstitial admixture and
two self- interstitial defects

The third basic condition, which the elastic energy
operator must satisfy, is its homogeneity, which is
based on its invariance with respect to the shift. To
determine the force constants, it is necessary to have
additional information on the structure of interatomic
interactions inside the base and the coating, as well as
on the nature of the coupling fields of both boundary
media.

The analytical apparatus for determining the ener-
gy spectrum of the precursors of the occurrence of AE
signals in conjugate media makes it possible to consid-
er discrete and continuous models with the use of
space-time and frequency-wave representations at the
same time as a single formalism.

4. CONCLUSIONS

With local changes in the structure and breakage of
atomic bonds, the sources of AE signals appear. Fourier
transforms allow the region of changes in the structure
of the material, in which the changes under the action
of a disturbing force took place, to be transferred to the
congruent region of initiation of AE signals.

Representation of the equation of particle motion
during the development of internal defects in the form
of Fourier series with a basis of eigenfunctions using
the Green function allows spectral analysis of differen-
tial operators and decomposition of given functions by
their own value.

In the case when the forces initiating the appear-
ance of AE signals are specified in the boundary region,
the Fredholm equation of the second kind with a sym-
metric kernel is most applicable. In the case when
displacements of particles of the medium are specified
in the boundary region, which determine the conditions
for propagation of AE waves, the Fredholm equation
with a difference kernel is most applicable.

The experimental verification of the main theoreti-
cal models of the energy spectrum of AE signals in a
medium with a developing defect, at different stages of
the load diagram, showed their consistency and satis-
factory agreement in the basic details of the energy
spectrum structure.

The conditions for the existence of an elastic energy
operator for initiating AE signals: homogeneity, invari-
ance of the particles of the material structure relative
to translation, the hermitability of the operator allows
them to be associated with the formation of metal crys-
tal lattice defects and can be used in predicting the
stages of metal constructions failure.
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EnepreruuHuii CIIeKTP CUTHAJIIB aKyCTUYHOI eMicii B crioryuyeHux
CYIJIBHUX CEpPeqoBUIaAX

B.B. Mapacanos?!, A.B. [llapko?, A.O. Illapko?!

1 XepconcoKutl HQUIOHAIbHUL MexHIuHUX yHigepcumem, 8yJi. Bepucnascvke woce, 24, 73008 Xepcown, Yrpaina
ePCOHCHKQ 0ePIHCABHA MOPCbKQ aKxademis, npocnexkm Ywarxosa, 20, epcoH, YEpaina
2 X 0 0 Vi 20, 73009 X Vi

OgHuM 3 HEBUPINIEHUX HPO0JIeM MOAETIOBAHHA HAHOCTPYKTYP 1 PISMKH HAHOCHCTEM € 3aKOHOMIPHOCTL
ICHyBaHHS IIPYJKHOI eHeprii iHimioBanHa oneparopiB AE curaasmis. PosriissHyTo HOIMIMpeHHA CUTHAIB aKyc-
THUYHOI eMicii 31 3B'A3KOM IBOX OedrepepBHUX cepenoBull. OCHOBHUMHU 3MIHHUMH B PIBHAHHAX PyXy YaCTH-
HOK € CHJIA, II[0 BU3HAYAE BUHUKHEHHS aKyCTUYHOI eMicil 1 3MIIIeHHs] YaCTUHOK CEePeJIOBUINA, 10 BU3HAYAE
HoIIMpeHHs IpyskHOI xBuyl. HaBeqeHo MeTo/0I0riuHy OCHOBY JUISI 3HAXOJPKEHHSI €HEPreTUYHOIO CIIEKTPa
CHUTHAJIIB aKyCTHYHOI eMmicii y 3B'f3aHUX cepeJoBUINAX 3 BUKopucTaHHAM (QyHKINI ['piHa 1 mepeTBOpeHHS
Oyp'e. OGIPYHTOBAHO YMOBH iICHYBAHHS OII€PATOPA IPYKHOI €Heprii [JIsl iHIIIIOBAHHS CUTHAJIB aKyCTHYHOI
emicii. [Iepmrofo 6a30B010 YMOBOIO, SIKY IIOBHHEH 3a0BOJIBHSATH OIIEpATOP IPYIKHOI eHeprii, € IHBapiaHTHICTD
YACTHHOK CTPYKTYPH Marepiajly LIof0 HepeTBOpeHHs. JIpyroo OCHOBHOIO yMOBOIO iCHYBaHHS OIIepaTropa
Ipy:KHOI eHeprii e I repMeTUYHICTE. TpeTss OCHOBHA yMOBA, SIKYy IIOBUHEH 3aJ0BOJIHATH OIIEPATOpP IPYIKHOI
eHeprii, — foro OJTHOPITHICTD, STKA IPYHTYEThCA HA 1i IHBAPIaHTHOCTI I0/I0 3CYBY. BCTAHOBJIEHO OTHO3HATHY
BIAMOBIIHICTh MiK XapaKTePUCTUKAMH TUCKPETHOI CTPYKTYPH MAaTeplalliB i mapaMeTpaMiu IOIMUPEHH CUT-
"ams AE B crosyuenux cepemosuiiax. Ha ocHOBI MOpPIBHAHHS PO3PaXyHKOBUX XaPAKTEPUCTUYHUX UUCEI
CHEKTpY Ta JlarpaMy HABAHTAKEHHs [JIsi PO3PUBHMUX BHUIIPOOYBAHB OYJIO MOKA3AHO, IO €HEePreTHYHHI
CIEKTD CUTHAJIB aKyCTHYHOI eMicCil B 3B'S3aHUX 0e3[IePEePBHUX CePeIOBUINAX MOBHICTIO BU3HAYAETHCS CHJIIO-
BAMH KOHCTAHTAMHM MAaTepiajy Ta CHJIaMHM, IO 1HIIMIOTh 0SBy CUTHAJIM aKycTHuHoi emicii. Ilpemcrasite-
HUU eHepPreTUYHU CIIeKTP CUTHAJIB aKyCTUYHOI eMIicCil B CIPSKEHUX MOJEJAX 0e3lepepBHUX Cepe[OBHIILL
JI03BOJISIE ACOIIIOBATH iX 3 YTBOPEHHAM Ie)eKTIB KPUCTAIYHOI PEIIITKN MeTaIy 1 MosKe OyTH BUKOPUCTAHUI
IS TIPOTHO3YBAHHSA CTAll pyHHyBaHHA MaTepiany. ExcreprMenTasbHa IepeBipKa OCHOBHUX TEOPETHIHUX
MopeJiell eHepreTUYHoro crerrpy curHamiB AE B cepemoBuimni 3 medeKToM, 10 PO3BHBAETHCA, HA PISHUX
erarax JiarpaMy HaBaHTAKeHHS [T0KA3aJ1a IX Y3TOKEeHICTh 1 3a/I0BLIbHY 3ro/ly B OCHOBHHUX JIETaJISAX CTPYK-

TYPH €HEePTreTUYHOTO CIIEKTPY.

Kmouori cioea: Axycrmuna ewicisi, Curuasnu, Crexrp, Biacul smavenus;, Biacui dyuxiii, PiBusuas

®penarospma pyroro poxay, [lepersopents Dyp'e.
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