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In the current study, we have developed a mathematical model describing the frequency response of a 

sensor or energy harvester based on a cantilever made of a ferroelectric bidomain single-crystal plate with 

metal electrodes deposited on opposite faces. The structure is subjected to vibrational excitations. The 

model allows to predict the dependence of the voltage between the electrodes vs. the vibration frequency 

and amplitude as well as resonance frequency of the sensor fabricated in form of a rectangular plate, nor-

mally with a seismic mass on its free end. The device is placed on a vibration table, whose vibration pa-

rameters are set. The relevant differential equation was composed, and an analytic solution describing the 

required dependencies was obtained. To validate the proposed model, we created a single-crystal bimorph 

by annealing a lithium niobate (LiNbO3) wafer in air to promote Li out-diffusion and formation of a 

bidomain ferroelectric structure, i.e. two oppositely polarized domains within the plate (the so called “head-

to-head” structure). Such a crystal demonstrates a bimorph-like behavior but does not comprise any inter-

face except for an interdomain wall. Thus, our bimorph is not a commonly used structure, typically consist-

ing of two bonded piezoelectric plates (generally made of PZT piezoceramics), but a homogeneous continu-

ous medium. Being made of a lithium niobate (or lithium tantalate) ferroelectric single crystal, the cantile-

ver sensor or energy harvester demonstrates a strong dependence of the voltage between the electrodes on 

the bending deformations, with almost totally absent hysteresis and ageing in a wide temperature range. 

The comparison made between the results of the modeling and the experiment shows that the proposed 

model is in good agreement with the experiment. We have demonstrated that the vibration sensors based 

on bidomain single-crystal plates possess an exceptionally high sensitivity. The proposed model can be 

used to estimate and predict the parameters of vibration sensors, accelerometers and waste energy har-

vesters based on bidomain ferroelectric crystals. 
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1. INTRODUCTION 
 

In the past 10-15 years there is an increased inter-
est to converting the mechanical energy of vibrations 

and random pulses into electrical energy. A large num-

ber of such converters [1] have been proposed, most of 

them based on the use of cantilevered piezoelectric 

beams [2, 3]. The cantilevers proposed by all the au-

thors have nearly the same structure [4, 5]: they consist 

of a substrate, mostly metallic, to one surface of which, 

along the full length of it or partially, a thin pie-

zoceramic plate with a top electrode is attached (glued). 
As the cantilever vibrates, electrical voltage is generat-

ed between the top electrode and the substrate. Occa-

sionally, a bimorph scheme is used, where piezoelectric 

plates are attached to both sides of the metallic sub-

strate (so-called parallel bimorph), whereby the voltage 

is measured between electrodes applied to piezoelectric 

plates, and the substrate [3]. 

Multiple mathematical models, describing vibrating 

cantilevers under external excitations, based on the 

Euler-Bernoulli beam equation, have been proposed. 
The most complete description of such an approach was 

given in the monograph [6]. More recent works essen-

tially reproduce and develop conceptual issues proposed 

by these authors using multiple constructions and con-

figurations of energy harvesters. 

Although many different types of cantilevers having 

different shapes and arrangements of piezoelectric and 

passive layers were offered, only few materials were 

tested. Indeed, in almost all studies the same piezoelec-

tric material PZT (lead zirconate-titanate) was used. 

Even though single-crystal piezoelectric materials (such 

as quartz, langasite, yttrium oxyborate, lithium niobate 

or lithium tantalate) exhibit a higher thermal stability 

and less internal damping than PZT [7], their main 
disadvantage – low values of piezoelectric coefficients – 

is the reason why PZT is still used in most cases. 

Previously [8] we have established a methodology 

for creating a bidomain structure in plates of lithium 

niobate and lithium tantalate single-crystal ferroelec-

trics and studied their electromechanical characteris-

tics [9]. Such “bidomain” crystals demonstrate a bi-

morph-like behavior but do not comprise any interface 

except for an interdomain wall. Bending deformation of 
this single-crystal bimorph causes the expansion of one 

domain and contraction of its counterpart. The voltages 

induced in the domains by the direct piezoelectric effect 

are added up; they are proportional to the bending 

magnitude at a fixed frequency. 

It has been experimentally demonstrated that the 

bending strain dependence on the voltage applied to 

electrodes of a bidomain plate is marked by high linear-
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ity, and the coupling factor is comparable to the values 
specific for piezoceramic materials. In particular, this 

enabled a successful application of lithium niobate 

plates with a bidomain structure in an X-ray focusing 

system. Additionally, owing to a weak piezoelectric 

coefficient dependence on the temperature, along with 

high Curie temperatures, bimorphs based on such ma-

terials in some cases (e.g. as vibration sensors or ener-

gy harvesters) can be more effective and have a broader 

application than those based on piezoceramics. In our 
recent works we have reported the results of applying 

piezoelectric cantilevers made of lithium niobate single-

crystal bidomain plates as highly sensitive vibration 

sensors. We have demonstrated that in several aspects 

including sensitivity they considerably exceed the sen-

sors on the basis of piezoceramics. Moreover, due to 

symmetry of piezoelectric effect the same crystals can 

be used not only in vibrational sensors but also in ener-

gy harvesters, including beta-voltaic generators [10], 

and in magnetic field sensors based on composite mul-
tiferroics [11]. 

In the current work we propose a model of a sensor 

for monitoring vibrations excited by an external source 

on the basis of lithium niobate and/or lithium tantalate 

bidomain single crystals and provide a comparison of 

estimated frequency-voltage characteristics and Q-

factor with experimental data. The main difference 

from earlier models consists in the consideration of the 

piezoelectric material not as a part of some composite 
structure but as an entire cantilevered energy harvest-

er or vibration sensor. This model also incorporates a 

possible presence of the interdomain region between 

the domains [8] and is applicable to any other ferroelec-

tric materials with a bidomain structure. 

 

2. PHENOMENOLOGICAL DESCRIPTION OF 

BIDOMAIN PIEZOELECTRIC CANTILEVER 
 

2.1 Problem Statement and Basic Equations 
 

We consider the rectangular bidomain beam shown 

in Fig. 1, which is simply a cantilever fixed at one of its 

ends. There is a seismic mass fastened onto the tip of 

the bimorph. The dimensions of the cantilever are 

HWL   and those of the seismic mass m* are hwl  . 

Oscillations of the cantilever occur due to the peri-

odic displacements of the base. The balance of the tor-

ques is represented by the equation: 
 

 IMMM  fsb , (1) 

 

where bM  is the bending moment, sM  is the moment 

of the elastic force, fM  is the moment of friction, I is 

the moment of inertia of the cantilever,   is the angu-

lar acceleration. The bending moment is the sum of the 

moment of the cantilever weight which is applied to its 

center (in the case of a uniform beam), and the moment 

associated with a seismic mass or an external force (e.g. 

electrostatic) which is applied to the point located at a 

distance of l/2 from the free end of the cantilever. 

Therefore, the bending moment can be expressed as: 
 

 
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FL

mgL
bM , (2) 

 

where m is the mass of the cantilever, g is the accelera-

tion of the crystal which is a sum of the gravity acceler-

ation g0 and acceleration of the base, F is the seismic 

mass weight or another external force, and Ll . 

The moment of the elastic force can be represented as: 
 

 Lkzs M , (3) 
 

where k is the stiffness of the beam, and z represents 

the deflection of the tip of the cantilever. 

Moment of friction can be expressed as: 
 

 zLf
M , (4) 

 

where γ is the constant describing speed-proportional 

damping in the system. 

Moment of inertia of the cantilever fixed at one end 

relatively to the line of attachment is calculated as 

follows: 
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where we considered a rectangular seismic mass hav-

ing a height of h, width of w = W and density of ρ* and 

introduced the effective mass   332   mmmeff . 

 

 
 

Fig. 1 – Schematic representation of the bidomain crystal with 

a seismic mass at the tip fastened in a clamp 

When the oscillation amplitude of the cantilever is 

small ( Lz  ), then the angle Lz , and the angular 

acceleration is Lz  . Thus, equation (1) takes the 

form (considering the signs): 
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or even easier: 
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In case of the external vibrational source producing 

harmonic excitations with a displacement of 

 tdd sin0 and considering the presence of the seis-
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mic mass m* we obtain  dgmgmF  
0 , and equa-

tion (6) takes the form: 

  tzzz  sin2 2
00   . (7) 

 

Here we used the next substitutions: 
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Solving equation (7) with regard to the substitutions, 

we find the dependence of deflection of the cantilever 

free end on the beam parameters and on the frequency 

and amplitude of the external vibrational excitation: 
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where we denoted   22
00

1 2tan    . 

The damping parameter χ can be experimentally 

determined from the quality factor Q of the system. 
Indeed, when the damping is relatively small ( 1<4 ), 

the Q-factor can be approximately taken to be: 
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The fist bending resonance frequency of the vibrat-

ing cantilever with the seismic mass can be calculated 

using the equation: 
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where the area moment of inertia is Ix = (WH3)/12, and 

EY is Young’s modulus which is determined by the 

material of the cantilever and its crystal cut. 

 

2.2 Voltage Across the Bidomain Plate 
 

Oscillations of the base with the fastened cantilever 

under the influence of an external vibration source will 

cause a periodic deformation of the bidomain crystal 

and generation of voltage at the electrodes deposited 

onto the opposite faces of the beam. When the oscillat-

ing cantilever is bent, e.g., downwards, as it is shown in 

Fig. 2a, then the electric fields E1 and E2 are induced in 

each of the domains. If the bidomain crystal plate pos-

sess an interdomain region with multidomain ferroelec-

tric structure or uneven domain boundary, then the 

strain-induced electric fields in the interdomain region 

are zero on an average. The voltage magnitude depends 

on the “quality” of the bidomain structure, i.e. on the 

symmetry of the domains relatively to the middle sec-

tion of the plate and their volumes. In order to calcu-

late the voltage induced by bending the beam, we in-

troduce the y axis that is perpendicular to the neutral 

plane of the plate in each cross section of the cantilever 

(Fig. 2b). 

 
 

a 
 

 
 

b 
 

Fig. 2 – Bending of the cantilever under the vibrational exci-

tation (a) and electric fields induced by the deformation of the 

bidomain crystal having an interdomain region (b) 
 

The voltage U at the electrodes of the bidomain 

plate can be calculated as follows: 
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where E  E1 + E2 is a resulting electric field, ∆h1 and 

∆h2 are the distances from the neutral plane of the 

plate to the lower and upper domains, respectively (the 

sum ∆h1+∆h2 is the width of the interdomain region). 

Absolute values of the electric field in the domains 

depend on the distance y from the neutral plane of the 

bidomain plate, as: 
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where P(y) is the magnitude of the electric polarization 

vector, ε and dij are the dielectric permittivity and ma-

trix of piezoelectric coefficients of the cantilever mate-

rial, respectively, ε0  8.854 pF/m is the permittivity of 

the free space, Tij(y) and S(y) are the dependencies of 

the mechanical stress and strain in the direction of the 

plate length on the y coordinate, respectively. 

For small deformations the strain S(y) can be repre-

sented as: 
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where ΔL(y) is the elongation of the plate at the coordi-

nate y, r is the radius of curvature of the bended plate, 

θ is the angle between the radii drawn to the fixed and 

free end of the plate. The deflection z at the tip of the 

cantilever can be represented through the radius of 

curvature r of the plate and the angle θ (see Fig. 2): 
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respectively. 

Substituting (14’) and (14’’) into (12), and then into 

(11), one can determine the voltage on the electrodes of 

the bidomain plate depending on the deviation of the 

free end of the plate: 
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Another way to consider the imperfection of the 

bidomain crystal is utilizing the so-called “k-factor” 

which describes the effective value of the piezoelectric 

coefficient dij that can be calculated from the deflection 

of the tip when a constant voltage is applied. The de-

tailed description of this approach can be found in [10]. 

Obviously, if a bidomain crystal does not possess an 

interdomain region, or this region is very narrow, the 

terms ∆h1 and ∆h2 are equal to zero, and equation (15) 

simply transforms into: 
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Combining equations (8) and (15) and considering 

that z is a function of time for an oscillating cantilever, 

one can obtain the final equation for the calculation of 

the voltage: 
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As it follows from equation (16), the open-circuit 

voltage generated by the vibrating bidomain cantilever 

contains: 

(i) constant part associated with a static deflection 

of the beam under its own weight and weight of the 

seismic mass; 

(ii) rapidly attenuating part associated with the set-

tling of the oscillations during the starting periods of 

the vibrational excitation; 

(iii) harmonic part with the frequency of the vibra-

tional excitation ω and the phase shift θ. 

The origin of the part (i) is the fact that we did not 

consider the finite resistance of the bidomain crystal, 

therefore in the case of a real crystal the voltage in-

duced by a static bending is compensated by internal 

and external free charges, and the part (i) is equal to 

zero. The part (ii) in equation (16) decreases rapidly 

even if the Q-factor is relatively large, therefore it can 

be neglected in measurements of steady-state vibra-

tions. It is also convenient to operate not with the an-
gular frequency ω, but with the frequency  2f . 

Considering the above-mentioned simplifications and 

equation (9), we can rewrite (16) in the next form: 
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The final formula for the frequency response of the 

bidomain cantilever can be obtained simply taking the 

magnitude of the sine function in the right part of 

equation (17): 
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As it follows from equation (18), the problem of the 

vibration sensor modeling is reduced to the determina-

tion of the cantilever domain structure and the time 

dependence of its free end movement on the frequency 

and amplitude of the external excitation. 

 

3. EXPERIMENTAL VALIDATION 
 

In this section we provide an experimental valida-

tion of the proposed analytical relationships. The exper-

imentally measured voltage response to vibrations of 

the base with the fastened single-crystal bimorph is 

compared with the data predicted by equation (18).  

The bimorph for the study was produced of a 

LiNbO3 single-crystal wafer (ELAN Company Ltd, 

Russia) having the y + 128° crystallographic orienta-

tion. Two oppositely polarized ferroelectric domains (so-

called “head-to-head” bidomain structure) were formed 

in the plate with dimensions of 75 × 5 × 0.5 mm3 by the 

diffusion annealing technique, detailly described else-

where [10,12-14]. The long side of the bidomain plate 

was perpendicular to the non-polar a-axis (x1 in crystal 

physics notation) of the LiNbO3 crystal, thus the piezo-

electric constant related to the bending deformation 

was  
°12823 


y

d , Young’s modulus was   3333°12833 1 sE
yY




, 

dielectric permittivity was  
°12822 


y

T  (assuming the 

notation a, x → x1; y → x2; c, z → x3). After the heat 

treatment we deposited tantalum electrodes onto the 

opposite faces of the bidomain lithium niobate crystal 

by DC magnetron sputtering. 

In order to fasten the bidomain crystal, we used two 

gaskets and two clamps made of polycrystalline alumi-

na and fixed the structure onto a rigid base with two 

stainless-steel screws and nuts as it shown in Fig. 1. 

Two strips made of aluminum foil pressed by clamps to 

the tantalum electrodes were used for transferring the 

generated voltage to a coaxial cable and then to the 

measuring system. The length of the fastened cantile-

ver was 71 ± 0.5 mm. 

In order to excite vibrations with ultra-low magni-

tude and frequency (down to 0.1 nm and 1 Hz, respec-

tively) we used a home-made piezoelectric shaker based 

on two similar PZT tubes (ceramic type APC 850, APC 

International Ltd., USA), that were placed vertically on 

a massive steel plate fixed on a pneumatically stabi-

lized optical table (Standa Ltd., Lithuania). The sensor 

prototype was mounted on a light aluminum platform 

fastened on top of the PZT tubes. Finally, the sensor 

was shielded by a grounded copper box to reduce the 

electromagnetic noise from external sources. 

Mechanical vibrations were excited by applying an 

AC voltage from an external signal generator to the 

PZT tubes connected in parallel. In the present study 

we used only pure sine excitations with low magnitudes 

and frequencies (less than 10 V and 150 Hz, respective-

ly), so that the excitation of the PZT tubes was always 

linear with respect to the applied AC signal.  

In addition, the reference specimen with dimensions 

of 10  10  0.5 mm3 was cut from the same commercial 

wafer and annealed together with the sample to be 

used in the cantilever in order to estimate the width of 

the interdomain region into the formed bidomain ferro-

electric structure. After annealing, an angle lap of the 

reference specimen was prepared and etched in a 

HF : HNO3 = 2 : 1(vol.) mixture for the visualization of 

the domain structure according to [15]. The micrograph 

of the etched angle lap is shown in Fig. 3. We estimate 

the width of the interdomain region to be ca. 50 μm 

which is 10 % of the thickness of the plate. Due to the 

location of the interdomain region in the center of the 

bidomain crystal we can take both values Δh1 and Δh2 

to be equal to 25 m. 

 

 
 

Fig. 3 – A fragment of the panoramic photograph of an etched angle lap prepared in the reference specimen that was annealed in 

the same run as the bidomain crystal used in the cantilever 
 

We measured the sensor response to the external 

mechanical vibrations using the lock-in detection of the 

voltage amplitude by a SR-830 amplifier (Stanford 

Research Systems Inc., USA). The frequency response 

data measured by the amplifier was collected to a com-

puter through a 82357B GPIB interface (Keysight 

Technologies, Inc. USA). The measurement system we 

used is schematically in Fig. 4. All the lock-in data 

were obtained with a sine sweep with a step of 0.25 Hz 

and a bandwidth of the input low-pass filter of 0.23 Hz, 

with an averaging of 1000 points at each frequency. 

After collecting all the experimental data was recalcu-

lated considering impedances of the bidomain crystal 

and measuring equipment in order to obtain open-

circuit voltage generated by the vibrating cantilever. 

More detailed information for measurements and 

processing of the experimental data can be found 

in [10]. The parameters for the calculation are given in 

Table 1. 

Because we did not used any seismic mass in our 

experiments, the term mm1  in equation (18) simply 

equals 3/2. Young’s modulus along the direction defined 

by a unit vector  321 ;; ζ  in 3m symmetry class 

can be calculated as follows: 
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ζ
. (19) 

 

In the crystal wafer of the y + 128° cut the unit vec-

tor corresponding to a lateral direction normal to the 

non-polar axis x1 equals to      cos;sin;0ζ , where 

°128 is the angle of the rotation around the non-

polar axis x1. Thus, Young’s modulus in lateral direc-

tion normal to the non-polar axis x1 can be calculated to 

be  
°12833 


yYE  = 175 GPa according to equation (19) 

using the compliance matrix data from [16]. 
 

 
 

Fig. 4 – Diagram of the lock-in-based technique used for 

investigations of the sensor in the study (reproduced from [10] 

under Creative Commons Attribution License CC BY 4.0) 
 

The dielectric permittivity  
°12822 


y

T  for the rotation 

around the non-polar axis x1 to the angle °128  can 

be easily calculated as: 
 

       92.49sincos
2

33

2

11°12822 


 TT

y

T
. 

 

The Q-factor can be found from the experimental 

data by dividing the resonance frequency by the full 

width at half maximum (FWHM) of the resonance peak 

in the graph U2(f), that is shown in Fig. 5. According to 

these measurements Q = 313. 
 

 
 

Fig. 5 – Frequency response of the voltage amplitude squared 

near the resonance frequency (FWHM from the Lorentz fit is 

0.31 Hz) 
 

As the resonance frequency is measur ed to be 

97.12 Hz, it is possible to estimate Young’s modulus of 

the cantilever by using equation (10). The calculated 

value is  
measYE 33

  = 168 GPa, which is quite close to the 

above mentioned value of Young’s modulus derived 

from the compliance matrix  
°12833 


yYE  = 175 GPa ac-

cording to [16] and to the same parameter 

 
°12833 


yYE  = 170 GPa obtained by Pendergrass [17]. 

The difference between these three values can be ex-

plained by a possible change in the crystal composition 

during the diffusion annealing, as well as by the strong 

dependence of Young’s modulus estimated using equa-

tion (10) on the length (   4
33 ~ LE

measY
 , therefore a small 

error in measuring the length leads to a significant 

change of the computed value of Young’s modulus). 
 

Table 1 – Geometric and material parameters of the bidomain 

LiNbO3 single-crystal used for the calculations 
 

Parameter Value Reference 

Length, L, mm 71 ± 0.5  

Thickness, H, mm 0.5  

Width, W, mm 5  

Vibrational displacement 

amplitude, d0, nm 
0.1, 1, 10, 100  

Thickness of the lower 

polydomain region, Δh1, 

μm 

25  

Thickness of the upper 

polydomain region, Δh1, 

μm 

25  

Q-factor 313  

Resonance frequency, f0, 

Hz 
97.12  

Elements of compliance 

matrix, 
E
ijs , TPa-1 

Es11  = 5.78 

Es33  = 5.02 

Es44  = 17.0 

Es13  = –1.47 

Es14  = –1.02 

 [16] 

Piezoelectric coefficient, 

 
°12823 


y

d , pC/N 26  [9] 

Dielectric permittivity 

along optical axis, 
T
33  

84.45  [18] 

Dielectric permittivity 

perpendicularly to optical 

axis, 
T
11  

28.85  [18] 

 

Fig. 6 displays the frequency response of the canti-

lever based on the bidomain LiNbO3 crystal to the 

vibration of the base in the entire investigated range. 

The experimental data are in a good agreement with 

the frequency response modelling (obtained from equa-

tion (18)). The difference between the graphs is lower 

than 20 % in almost all points and can be minimized to 

less than 1 % by changing material parameters, e.g. 

Young’s modulus, piezoelectric coefficient and dielectric 

permittivity, which can differ from the literature data 

due to the use of thermally treated out-diffused crystals 
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in this study. The most important observation is that 

the shape of the modelled frequency response is the 

same as the shape of the experimental graphs both in 

the low-frequency and after-resonance region. 
 

 
 

Fig. 6 – Frequency responses of the cantilever made of a bi-

domain LiNbO3 single-crystal (gray dots) and results of model-

ling using equation (18) (black solid lines) being subject to sine 

vibrational excitations with different displacement amplitudes 

 

4. CONCLUSIONS 
 

In the study we suggested a model suitable for vi-

bration sensors of energy harvesters based on ferroelec-

tric bidomain single-crystal plates fastened as a canti-

lever. We considered a harmonic movement of the base 

with the cantilever in the direction perpendicular to 

the plate excited by some external vibrational source. 

We calculated the vertical displacement of the cantile-

ver’s tip depending on the frequency and magnitude of 

the vibration. The voltage between the electrodes of the 

cantilever was determined as the integral of the work 

done by the electrostatic force transferring a single 

charge in a solid which contains two ferroelectric do-

mains with oppositely directed spontaneous polariza-

tion vectors, as well as a polydomain region between 

the domains. The obtained analytical equation was 

used to model the frequency response of the device. The 

result was compared with the experimental data col-

lected using a lock-in and a home-made shaker tool. 

The material parameters such as Young’s modulus, 

piezoelectric coefficients and dielectric permittivity 

were obtained from the literature considering the 

y + 128°-cut of the lithium niobate bidomain plate. We 

showed a high coherence of the modelled and experi-

mental data, particularly, the shape of the frequency 

response graph both at low (~10 Hz) and high (at least 

twice the resonance) excitation frequencies. Mean-

while, this coherence holds in a wide range of excita-

tion amplitudes, at least from 0.1 nm to 100 nm. The 

numerical disagreements between the computed and 

measured results can be explained by the difference 

between the parameters of LiNbO3 obtained for calcu-

lation from literature and properties of the cantilever 

we used. Indeed, the depletion of lithium during the 

diffusion annealing which we utilized to form bidomain 

ferroelectric structure may be accompanied by a signif-

icant change of the piezoelectric coefficient  
°12823 


y

d , 

dielectric permittivity  
°12822 


y

T  and Young’s modulus 

 
°12833 


yYE  relatively to the literature data [19]. 

The modelling results predicts a very high sensitivity 

of the vibration sensors based on lithium niobate 

bidomain crystals. Moreover, the high Curie temperature, 

absence of hysteresis and creep between deformation and 

generated voltage, as well as a high Q-factor make the 

bidomain crystals promising for the usage in high tem-

perature sensors and energy harvesters [20]. 
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У дослідженні розроблена математична модель, що описує амплітудно-частотний відгук сенсора 

або пристрою збору скидної енергії, виготовленого з сегнетоелектричної бідоменної монокристалічної 

пластини, по відношенню до величини вібраційного збудження. Математична модель дозволяє про-

гнозувати залежність напруги на електродах від частоти і амплітуди вібраційного збудження, а та-

кож резонансної частоти сенсора, що представляє собою прямокутну пластину, в загальному випадку 

з сейсмічної масою на вільному кінці, який встановлюється на вібраційному столику, параметри ко-

ливань якого задаються. Складено відповідне диференційне рівняння, що описує шукані залежності, 

і отримано його аналітичне рішення. Для перевірки запропонованої моделі був створений монокрис-

талічний біморф за допомогою відпалу підкладки з ніобату літію (LiNbO3) на повітрі для оберненої 

дифузії літію і формування бідоменної структури, що представляє собою два зустрічно поляризованих 

домени в одній пластині (так звана структура «голова-до-голови»). Такий кристал аналогічний бімор-

фу, проте на відміну від нього не містить будь-яких міжфазних меж, за винятком міждоменної. Таким 

чином, виготовлений біморф являє собою не поширену збірну конструкцію, що складається найчасті-

ше з металевої підкладки, до якої прикріплені п'єзоелектричні пластини, як правило, з п'єзокераміки, 

а однорідне безперервне середовище. Перевага такого біморфу полягає у тому, що, будучи виготовле-

ним з сегнетоелектричного монокристала ніобату (або танталата) літію, сенсор або пристрій збору 

скидної енергії має великий коефіцієнт перетворення деформації згинання в електричну деформацію, 

а отже, високу чутливість, а також широкий температурний діапазон застосування та практично пов-

ну відсутність гістерезису і старіння. Проведено порівняння результатів моделювання з експеримен-

тальними даними, з якого випливає, що запропонована модель добре відповідає результатам експе-

рименту. Показано, що сенсори коливань на бідоменних монокристалічних пластинах мають виклю-

чно високу чутливість. Запропонована модель дозволяє оцінювати і прогнозувати параметри сенсорів 

вібрації, акселерометрів і пристроїв збору скидної енергії на основі бідоменних сегнетоелектричних 

кристалів. 
 

Ключові слова: Біморф, Бідоменний кристал, Сенсор вібрації, Збір скидної енергії, Моделювання. 

 

 


