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Amorphous Semiconductor Device Modeling Program (ASDMP), developed by Professor P. Chatterjee
and widely validated by experimental results, is a detailed program where the Poisson’s equation and the
electron and hole continuity equations are simultaneously solved without any simplifying assumption. It
takes into account the trapping and recombination kinetic through the gap states. In this program, the
density of states is modeled using the standard model (SM). Such a model describes the defects by two
Gaussians near the center of the gap and two tails exponentially distributed in energy, and assumes the
density of states homogenous in space. The defect pool model (DPM) is an improved model for defect for-
mation in hydrogenated amorphous silicon based on the idea that the a-Si:H network has a large spectrum
of local environments at which a defect could be formed. So, these defects choose the sits where their for-
mation energy is minimal and this becomes possible with hydrogen motion.

Using the defect pool approach, we have developed a numerical DPM and inserted it in ASDMP at
thermodynamic equilibrium. We have used ASDMP to get the density of states in each position of a solar
cell based on a standard p-i-n structure. We have shown the effect of doping on defect concentration and
studied the impact of the position of Fermi level on the distribution of the density of states. We recognized
using ASDMP the key result that negatively charged defects in n-type material are situated lower in ener-
gy than positively charged defects in p-type material even when the correlation energy is positive.

We calculated the electric field and the band diagrams at thermodynamic equilibrium both with the DPM
and the SM. We showed that the electric field obtained from the DPM is stronger near the interfaces and
lower in the bulk where the band diagrams are flatter. This behavior of the electric field calculated with

this model is accentuated with the increase of the slope of the valence band tails.
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1. INTRODUCTION

IT is well known that a faithful modeling of the dis-
tribution of the density of defect states in hydrogenated
amorphous silicon is important for a device modeling
program to produce correct results. The electronic den-
sity of gap states has two components: two tail states
which are exponentially distributed in energy and deep
states associated with Si dangling bonds (DB). In the
standard model (SM), the DB are modeled by two
Gaussian functions near the middle of the gap separat-
ed by the correlation energy (U). This profile of the
density of defect states is assumed to be constant in
each layer of a device. Such model leads to positively
charged defects in p-type material situated at lower
energy than negatively charged defects in n-type mate-
rial. However, this is not consistent with experimental
results. This has been the model used in the one-
dimensional Amorphous Semiconductor Device Model-
ing Program (ASDMP) [1-2]. The DPM is an improved
model developed to calculate the density of DB. It con-
siders that the formation of these DB requires the
breaking of weak SiSi bonds [3-6] generally with hy-
drogen motion. Since, it has been used by many search-
ers, for example, to analyze the photodegradation effect
in a-Si:H [7], photoconductivity [8] and lifetime in het-
erojunction solar cells [9].

The DPM shows that the calculated density of
states depends on specific microscopic reaction involv-
ing hydrogen and that the best agreement with exper-
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imental result is found for a model where two SiH
bonds are involved in each reaction [10-11]. Using this
concept we have elaborated a numerical DPM which
has been successfully inserted in ASDMP at thermody-
namic equilibrium. We present the density of states
calculated with ASDMP in each position of a standard
p-i-n solar cell. We therefore investigate the impact of
the density of state profile on the outside parameters in
thermodynamic equilibrium.

2. THE DEFECT POOL MODEL

According to the DPM, the density of dangling
bonds is based on chemical equilibrium between the
weak bonds and the formed dangling bonds. The micro-
scopic reactions describing these processes are [10]:

S.S, 2D i=0
SiH+SiSt < D+SiH+D 1=1
2SiH + SiSi < SIHHSi +2D =2

SiSi are the weak bonds and i is the number of SiH
bonds involved in each reaction.

The calculation of the defect density D(E) at energy
E requires the defect chemical potential (the free-
energy change per defect). It is given by the expression

ty =(e)—kTs,—kTs, , where <e> is the mean energy of

the electrons in the dangling bond state depending on
the probability of this defect being in each of its three
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charge states, s, is the entropy associated with the

electron occupation of the defect and sjis the entropy

due to the hydrogen involvement when i=0. This
leads to the following expression of the chemical poten-
tial:

fUE), ikT

g )t

iD(E)
2HP(E)

#1y(E) = E + kT In( ), @

where f°(E) is the probability of the dangling bond

being occupied by zero electrons. H is the concentration
of hydrogen and P(E) is the energy distribution of the
dangling bonds (the defect pool function). This is
caused by the disorder of the amorphous silicon and it
is assumed to be Gaussian

L ep- BB )
exp(— .
ox/Z;z P 267

Here, o 1s the pool width and E, is the most probable

P(E) =

energy in the distribution of available sites for defect
formation.

Identifying the weak-bond states with the valence
band-tail, the calculation leads to the following expres-
sion of the density of states at equilibrium:

pkT po'2
D(E) = y( )P P(E+5), 3)

f(E) E,

where
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N,, is the density of tail states extrapolated to the

valence band and E_, is the characteristic energy of

the exponential.
This density of states is assumed to be frozen-in at
temperatures above the equilibration temperature 7".
D(E) is divided into three components of different
charge density:

D'(E) = D(E)f"(E),
D(E) = D(E)f(E), (6)
D (E)=D(E)f(E),

where f* and f- are the occupation functions of am-

photeric DB occupied by zero, one or two electrons,
respectively.

3. SIMULATION PROGRAM

The detailed one-dimensional Amorphous Semicon-
ductor Device Modeling Program (ASDMP) has been
developed by Prof. P. Chatterjee to analyze the transport
properties of a device as a function of position [1]. Ini-
tially, it was conceived to model amorphous device and

J. NANO- ELECTRON. PHYS. 11, 02008 (2019)

it was extended later to crystalline silicon cells and HIT
structures [12]. This program includes the electrical
and optical parts.

The electrical part is based on the Poisson’s equa-
tion and hole and electron continuity equations. These
three equations are solved simultaneously under non
equilibrium steady state condition.

At thermodynamic equilibrium, only the Poisson’s
equation has to be solved

Py __px)
o e @

where ¢is the dielectric constant, p(x) is the net charge
density and w(x) is the value of the vacuum level at
some point x of the device. The dependent variable is
w(x), and it is calculated using the finite difference and
the Newton-Raphson method. The initial guess for y(x)
is a straight line appending the boundary values.

This initial guess for y(x) is used to calculate the in-
itial value of the Fermi level position measured from
the valence band given by

Ep—E, = —3(L) - @y, —y(x) + 7(x) + E (x) .(8)

Here, y(L) is the electron affinity at x = L, where L is
the length of the device, ®,; is the distance in energy
from the Fermi level to the conduction band, y(x) and
E (x) are, respectively, the electron affinity and gap

energy at some point x. Here, y(x) =0 is chosen to be
the position in energy of the vacuum level at x = L.

This value of the Fermi level enables to calculate
the occupation functions of the amphoteric dangling
bonds in each charge state, the defect density D(E), its

three components D*,D° D~

and holes. Then, a better estimate of w(x) is calculated
and used for another iteration. The procedure is con-
tinued until the convergence, the criterion of which is
taken to be equal to 109 at thermodynamic equilibri-
um. The DPM has not been inserted in ASDMP at non-
thermodynamic equilibrium yet.

and trapped electrons

4. RESULTS AND DISCUSSION

In this section, we describe and discuss the results
obtained by ASDMP for a solar cell based on a standard
p-i-n structure. Using both the defect pool model (DPM)
and the standard model (SM), we analyze the distribu-
tion of the defects in mobility gap and its effects on the
output parameters at thermodynamic equilibrium. For
our calculation, we have adopted a set of standard pa-
rameters typical for good quality a-Si:H. They are
summarized in Table 1.

Fig. 1 shows the defect state density versus the en-
ergy for three positions in the device located in p-layer,
i-layer and n-layer. The position of the Fermi level
affects the defect distribution. The DB in n-layer are
condensed in the lower region of the gap, while those of
the p-layer are in the upper part. Additionally, we can
see that the values of DOS in the doped layers
~ 1018 V-1 cm=3 are much higher than in the intrinsic
one ~ 5.10%6 V-1 cm-3.
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Table 1 — Standard parameters used for calculation of defect distribution
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Parameters Standard Model(SM) Defect Pool Model(DPM)
Layer P i n p i N
Mobility gap (Eg)(eV) 1.9 1.9 1.9 1.9 1.9 1.9
Layer Thickness X(nm) 14 700 14 14 700 14
Electron affinity x(eV) 3.89 3.9 4.0 3.89 3.9 4.0
Characteristic energy VB tail Evo(eV) 0.055 0.045 0.055 0.055 | 0.045 | 0.055
Characteristic energy CB tail (eV) 0.035 0.025 0.035 0.035 | 0.025 | 0.035
Switched energy (eV) 0.89 0.89 0.89
Effective DOS in valence and conduction bands (cm=3) | 2.1020 2.1020 2.1020 2.1020 | 2.1020 | 2.1020
Exponential tail Prefactors Nvo, Neo(cm—3) 4,102t 4,102t 4.1021 4,102 | 4,102 | 4.1021
Donor/Acceptor doping (cm—3) 1.1018 -- 1.1018 1.1018 1.1018
Equilibrium Fermi level (eV) 0.80 1.05 1.30
Energy Separation A(eV) 0.44 0.44 0.44
Pool peak position Ep(eV) 1.27 1.27 1.27
Pool width o (eV) 1.85 1.78 1.85
Hydrogen concentration H (cm™3) 5.1021 | 5.102! | 5.102!
Correlation energy U(eV) 0.5 0.5 0.5 0.2 0.2 0.2
Defect state density freeze-in temperature T* (K) 500 500 500
Total DOS under the donor/acceptor Gaussian (cm—3) 8.1018 8.1018 8.1018
Position of donor Gaussian peak from Ev (eV) 0.75 0.75 0.75
Position of acceptor Gaussian peak from Ec(eV) 0.65 0.65 0.65
NOf Si-H bonds involved by every reaction i 2 2 2
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Fig. 1 — Calculated density of dangling bond states in three
positions of a p-i-n solar cell. These DOS are maintained at
temperatures above the equilibrium temperature 7%

The one-electron density of states is given by the
expression g(E) = D(E + kT In(2)) + D(E -U — kT 1n(2)),
where g(E) depends on T even when D(E) does not. In
Fig. 2 we present g(F) and its components for the same
positions as above in n and p layers at T'= 300 K. Fig. 2
shows that in n-layer (a), the positions of neutral and
positively charged defects are shifted to higher ener-
gies, while in p-layer (b), they are positions of neutral
and negatively charged defects which are shifted to
lower energies. These results obtained by ASDMP for a
p-i-n structure are similar to the ones obtained by Pow-
ell and Deane for doped and undoped materials.

The value of the energy separation between the
doubly occupied D- state in n-type and the empty D*
state in p-layer A is well-known experimentally. We
have taken A =0.44eV [13]. For the correlation energy,
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Fig. 2 — One-electron density of states and their components
formed at equilibrium temperatures as D*, Do, D- calculated in
two positions of the p-i-n solar cell

we have taken the commonly used value of 0.2 eV. But
the value of the pool width o is less known, so the
program calculates the value of o, which gives an
energy separation of A=0.44eV .

The electric fields calculated using both the SM and
DPM are compared in Fig. 3. We can see that the DPM
leads to a stronger field near the p/i and i/n interfaces.
This field is lower in the bulk. In this case, there is an
excess of hole trapping near the p/i interface leading to a
high positive charge and electron trapping near the i/n
one leading to a high negative charge. Consequently,
strong electric fields are developed near the interfaces
and, obviously, the bulk field becomes lower. For these
reasons, the band diagrams plotted in Fig. 4 are flatter
in the bulk when they are calculated from the DPM.
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Fig. 3 — The electric field within the device calculated with
both the SM and DPM at the thermodynamic equilibrium.
T=300K, T% =500 K
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Fig. 4 — Band diagrams calculated from both the SM and
DPM under thermodynamic equilibrium 7' = 300 K, 7% = 500 K
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Fig. 5 — The electric field within the device calculated with
different values of characteristic energy Evo

Now, we consider the effect of the slope of the va-
lence band on the electric field. In Fig. 5 we have plot-
ted the electric field versus the position in the structure
for different values of the slope of the valence band
Eyo. When E,q rises, the electric field increases near

the interfaces and decreases in the bulk. This is obvi-
ous since the augmentation of E,q leads to a greater

density of defects (Eq. (3)) and then to an increase in
carrier trapping.

5. CONCLUSIONS

Using the concept of the defect pool, we have formed
a numerical model and inserted it in ASDMP at ther-
modynamic equilibrium. We have calculated the densi-
ty of states in each position of a standard solar cell
based on p-i-n structure. The doping causes an increase
in the dangling bond density and the distribution of
these DB is affected by the Fermi level position. We
have calculated the one-electron density of states both
in n-type and p-type layer. In n-type, neutral and posi-
tively charged defects are shifted to higher energies
and in p-type, neutral and negatively charged defects
are shifted to lower energies. We showed that negative-
ly charged defect transitions in n-type material occur at
lower energy than positively charged defect ones in p-
type material.

We have compared the output parameters obtained
from the SM and DPM. Using the DPM, we found that in
the intrinsic layer, near the interfaces, electric field is
stronger and the band diagrams are more bonded. In the
bulk, the field decreases and the bands become flatter.
This has been explained by the high density of trapped
charges near the interfaces. This behavior of the electric
fields is accentuated when the slope of the valence band
increases. This is because the defect density becomes
higher leading to an excess of carrier trapping.
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Defect Pool Numerical Model in Amorphous Semiconductor Device Modeling Program

M. Rahmouni, S. Belarbi
Université des Sciences de la Technologie Mohamed-Boudiaf, El Mnouar, BP 1505, Oran, Algeria

[Iporpama mopesnoBanHs amMopdHHUX HamiBHpoBimHUKOBuX npuiamis (ASDMP), pospobiena mpodeco-
pom P. Chatterjee i mmpoko miaTBepReHa eKCIIePUMEHTAIBHUME Pe3yJIbTaTaMu, € JeTAJIbHOI IPOrpaMoio,
ne piBasgHHS [lyaccona i piBHAHHSA Ge3nepepBHOCTI eJIeKTPOHIB 1 JIPOK PO3B’A3YIThCS OJHOYACHO 0e3 KO-
HOTO crpoleHHsi. BoHa BpaxoBye KiHETHKY 3aXOIJIeHHs 1 pekoMOiHAaILil yepe3 cTaHU y 3a00pOHeHIN 30HI. Y
i IIporpami NLJIBHICTD CTAHIB MOJEJTIOETHCS 34 JTOIIOMOTol0 cTaHmaptHol mogesi (SM). Taka momesnns onucye
nederT 1BOMA rayciaHamMu HOOIU3Y IeHTPa 3a00POHEHOI 30HU T4 JBOMA XBOCTAMM, €KCIIOHEHIAIBHO PO3-
HOJIJIEHUMH 34 eHeprieo, 1 MpUIlyCKae, 10 IIUIBHICTDH CTAHIB ofgHOpimHa y mpocropi. Defect pool model
(DPM) € BIOCKOHAJIEHOI MO0 (POPMYBaHHSA JAe(EKTIB y TiAporeHi30BaHOMY aMOp(HOMY KpeMHIii Ha oc-
HOBI i/1el, 10 CiTKa HEBIIOPSAKOBAHUX aToMIB a-Si:H Mae BeIUKHI CIEKTD JIOKAJIBLHUX CEPEIOBUIN, B AKUX
moske OyTu cpopmoBanwmit nedexr. Takum gwmsHOM, 1l KedeKTH BUOUPAIOTH MICI, Je IX eHepris yTBOPeHHs
MIHIMAJIBHA, 1 I CTAE MOKJIMBUM 3 PYXOM BOJHIO.

Buxopucrosyroun migxig mo omwmcy gederTis, Mu poadpobuan uuceabrny DPM i sacrocysanu ii y ASDMP
IpY TePMOIUHAMIUHIHN piBHOBa3l. Mu Bukopucrasu ASDMP, 106 oTpuMaTy IIIBHICTD CTAHIB Y KOYKHIMA 0-
3UIli] COHSYHOTO eJIEMEHTa Ha OCHOBI CTAHIAPTHOL CTPYKTYpH p-i-n. [lokaszaHo BILIMB JOIIHTY HA KOHIEHT-
paitio medeKTiB Ta JOCTIIKeHO BILUIMB MOJIOKeHHA piBHA PepMi Ha PO3IOIII MIIJIBHOCTI cTaHiB. Mu BusHa-
s Bukopuctanasa ASDMP k/ouoBUM pe3ysibTaToM TOTO, IO HETaTHBHO 3apSKeH] JedeKTHu B Marepiaii
N-TUILy PO3TAIIOBAHI HU/KYE 34 €HEepPrielo, HisK MO3UTUBHO 3apsKeH] JedeKTru B MaTepiaji p-TUILy, HaBITh
SIKIIIO0 €HePris KOPeJIsIii I03UTUBHA.

Mu pospaxyBaiu eJeKTpUYHE T0JIe 1 JiarpaMu CMyT [P TepPMOJUHAMIUHIM piBHOBa3i ax 3 DPM, tax i 3
SM. Mu mokasaiu, 1o eJekTpudHe moje, orpuMmane Big DPM, cunbHinme mob6ausy iHTepdeiicis i HmKde B
ob'emi, e giarpamu cmyr Oiibin mwrocki. Taka moBeJiHKA €JIEKTPUYHOTO I0JIsI, PO3PAXOBAHOIO 32 JAHOI MO-
JIeJLITIO, TTKPECIIIOETHCS 31 301/IbIIEHHAM HAXUILY XBOCTIB BAJIEHTHOL 30HU.

Knrouosi ciiosa: Hydrogenated amorphous silicon, Defect pool model, p-i-n.
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