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In this recently work, we have obtained the analytical solutions of the modified Schrödinger equation 

(MSE) with new Coulomb potentials plus linear and harmonic radial terms (NCPLHRT) for hydrogenic at-

oms in noncommutative 3-dimensional real space-phase (NC: 3D-RSP). We applied, the generalized Bopp’s 

shift method and standard perturbation theory in the framework of two infinitesimal parameters  ,  

due to (space-phase) noncommutativity, we obtained new energy eigenvalues    nc - u-d clh
, , , , , , ,E n g Z j l s m , 

which depended with discrete atomic quantum numbers  , , ,j l s m and parameters of studied poten-

tial  , ,g Z , in addition to the corresponding new Hamiltonian operator  ˆ ˆ,nc chl i iH p x . Our research also 

conveys another innovative feature, the global group symmetry (NC: 3D-RSP) were broken simultaneously 

and replaced by the residual local subgroup (NC: 3D-RS) under interaction of hydrogenic atoms with 

NCPLHRT. 
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1. INTRODUCTION 
 

Generally, throughout the literature, the Cou-

lomb potentials plus linear and harmonic radial 

terms (CPLHRT) of the form 

  2/ rgrrZrV   have attracted great 

interest in atomic and molecular physics and quan-

tum chromodynamics, this potentials supposed to be 

responsible for the interaction between quark and 

antiquark and alternatively, it is called Killingbeck 

or Cornell plus harmonic potential [1-3]. The aim of 

our work is to extended, the study of Enrique Castro 

and Pablo Martin [1] to the case of extended quan-

tum mechanics (EQM), or noncommutative quantum 

mechanics (NCQM) to finding other new applications 

and more profound interpretations in the subatomic 

scales. On the other hand, we extend our study of [4] 

from noncommutative two dimensional real spaces 

(NC: 2D-RS) to the case of three-dimensional real 

space-phase (NC: 3D-RSP). We based on previous stud-

ies of other authors and some of our related works in 

this context. The EQM known by noncommutativity 

of space-time, introduced firstly by Heisenberg, and 

formalized by Snyder at 1947, suggest by the physi-

cal recent results in string theory.  The nonrelativ-

istic energy levels for hydrogenic atoms, which inter-

acted with new Coulomb potentials plus linear and 

harmonic radial terms (NCPLHRT) in the context of 

NC space, have not been obtained yet. In last few 

years many effort has been produced to study some 

potentials using the notions of noncommutativity of 

space and phase based essentially on Seiberg-Witten 

map and generalized Bopp's shift method and the 

star product, defined on the first order of two infini-

tesimal parameters antisymmetric 

   2 , ,
 

      as [5-9]: 
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As direct results for the above two modes of star product 

due to the space-space and phase-phase noncommutativi-

ty, allow us to finding new none nulls commutators [10-

14]: 
 

 ˆ ˆ, and ,x x i p p i
     

 
    
   

 (2) 

 

The present paper is arranged as follows. Section 2 is 

a brief outline of the ordinary SE with NCPLHRT on 

based to the main ref. [1]. The Section 3 is devoted to 

studying the MSE by applying the generalized Bopp's 

shift method and standard perturbation theory we find 

the quantum spectrum of thn  excited levels for modified 

spin-orbital interaction in the framework of the global 

quantum group (NC-3D: RSP) for NCPLHRT, then we end 

this section by derive the magnetic spectrum for 

NCPLHRT. In the fourth section, we resume the global 

spectrum and corresponding NC Hamiltonian operator 

for NCPLHRT and corresponding energy levels of hydro-

genic atoms. Conclusion of the work is placed in the last 

section. 

 
2. REVIEW THE EIGENVALUES OF THE 

SCHRÖDINGER EQUATION WITH CPLHRT 
 

 

Let us begin this section by reviewing the nonrelativ-
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istic quantum description of an atom or molecule 

with an induced by spherically symmetric potential 

that has the form [1]:  
 

    2/V r Z r gr r     (3) 

 

The parametersZ , g ( 1 1
0hE e a  ) and   are 

atomic number, the electric field (in atomic units) 

and a positive constant, respectively, The second 

term in the above equation corresponds to the scalar 

potential proportional to the radial distance. The 

Hamiltonian operator for hydrogenic atoms with a 

polynomial perturbation is [1]:  
 

      0 1
ˆ ,i iH p x H r V r   (4) 

 

The principal Hamiltonian operator  0H r and 

the perturbed potential  1V r  as [1]: 
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here 

2

L


is the angular momentum operator. The 

complex eigenfunctions      , , ,m
nlm nl lr R r Y      

in 3-dimensional space while the radial part  nlR r  

satisfies (Here we use atomic units 1em c   ) [1]: 
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(6) 

Where l  and nlE represent angular momentum and 

the energy while l m l    . The eigenvalues and eigen-

functions of the unperturbed states are, respectively as 

[1]: 
 

 
 

   

2
1 1

2

, , exp( / 2)

, 3 / 2; ,

l
nlm

m
l

r Nr r F

n l r Y

  

  

   

  
 (7) 

 

where N  is the normalization constant and  ,m
lY   are 

the spherical harmonics.  The eigenvalues corresponding 

the global potential were obtained in [1] as: 
 

    
, 2 2 3 / 2

RS

n l nlE n l E     (8) 

 

while the perturbed energy  RS

nlE corresponded the per-

turbed potential  1V r  obtained after applying the HVT 

and HFT method [1]: 
 

            0 1 2 3 1/41/2 1/4

0

RS jj j j
nl j j j j

j

E b b b b   


  



     (9) 

 

On the other hand, using the following relationship 

between the associated Laguerre function   1/2 2l
nL r  

and the hypergeometric function  2
1 1 , 3 / 2;F n l r   

[15]:  
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we may further rewrite the wave function for CPLHrt as : 

  
 

 
   2 1/2 2n! 3/2

, , exp( / 2) ,
3/2

l l m
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l
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l n
     

 
  

  
 (11) 

 

The purpose of the present paper is to attempt 

study the MSE with NCPLHRT potential (see below) in 

(NC: 3D-RSP) symmetries using the generalized Bopp’s 

shift method which depend on the concepts that we 

present below in the third section to discover the new 

symmetries and a possibility to obtain another applica-

tions to this potential in different fields. 

 

3. METHOD AND THEORETICAL APPROACH 
 

In this section, we shall give an overview or a brief 

preliminary for NCPLHRT, in (NC: 3D-RSP) symme-

tries. To perform this task the physical form of modi-

fied Schrödinger equation (MSE), it is necessary to 

replace ordinary three-dimensional Hamiltonian opera-

tors  ˆ ,i iH p x , ordinary complex wave function r
 

  
 

 

and ordinary energy nlE  by new three Hamiltonian 

operators  ˆ ˆ ˆ,nc clh i iH p x , new complex wave func-

tion  r  and new values nc clhE  , respectively. In addi-

tion to replace the ordinary old product by new star 

product   , which allow us to constructing the MSE in 

(NC-3D: RSP) symmetries as [16-19]: 

 

        ˆ ˆ ˆ ˆ ˆ ˆ, ,clh nl i i nc clhH p x r E r H p x r E r
i i

 



   
         

   
 (12) 

 

 

 

The Bopp’s shift method employed in the solutions 

enables us to explore an effective way of obtaining the 

NCPLHRT in EQM, it based on the following new com-

mutators: [16-19]: 

                  

   

   

ˆ ˆ ˆ ˆ, 0 , ,

ˆ ˆ ˆ ˆ ˆ ˆ, 0 , ,
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 (13) 

 

The new generalized positions and momentum coor-
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dinates   ˆ ˆ,i ix p   in (NC: 3D-RSP) symmetries are de-

pended with corresponding usual generalized positions 

and momentum coordinates  ,i ix p  in ordinary quan-

tum mechanics by the following, respectively [16-19]: 
 

    ˆ ˆ, , ,
2 2

ijij

i i i j jx p x p x p p x
i i i

  
     

 

 (14) 

 

The above equation allows us to obtain the two op-

erators ( 2r̂  and 2p̂ ) in (NC-3D: RSP), respectively [20-

22]: 
 

     2 2 2 2 22 ˆ ˆ, ,  ,      r p r p r p    L L  (15) 

 

The two couplings L  and L  are 

 12 23 13x y zL L L      and  12 23 13x y zL L L    , 

respectively and ( xL ,  yL and zL ) are the three compo-

nents of angular momentum operator L  while the new 

parameter ij  equal / 2ij .  Thus, the reduced Schrö-

dinger equation (without star product) can be written 

as: 
 

 
 

     

ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ,

i i nc clh

nc clh i i nc clh

H p x r E r

H p x r E r 

 



 

   
     

   

 

 (16) 

 

The new operator of Hamiltonian  ˆ ˆ,nc clh i iH p x  

can be expressed as: 
 

    
2ˆ

ˆ ˆ ˆ,
2

nc clh i i clh

p
H p x V r    (17) 

 

The NCPLHRT  ˆclhV r  is given by: 

 

   2ˆ ˆ ˆ ˆ/clhV r Z r gr r     (18) 

 

After straightforward calculations, we can obtain 

the important terms ( ˆ/Z r , ˆgr  and 2r̂ ), which will 

be use to determine the NCPLHRT in (NC: 3D- RSP) 

symmetries as: 
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We further the equations (19) and (15) into Equa-

tion (17) we obtained the global our working new Ham-

iltonian operator  nc- lh
ˆ

cH r  for NCPLHRT satisfies the 

equation in (NC: 3D-RSP) symmetries: 
 

   lh lh 3
ˆ ˆ, ,

2 22
nc c c i i

Z g
H rp H p x

rr


 
     

 

L
L


(20) 

 

where the operator  lh ,c i iH p x  is just the ordinary 

Hamiltonian operator for CPLHRT in commutative 

space: 
 

   
2

2
lh , /

2
c

p
H p x Z r gr r

i i
     (21) 

 

while the rest four terms are proportional’s with two 

infinitesimals parameters (  and ) and then we can 

considered as a perturbations terms   per- lhcH r   in 

(NC: 3D-RSP) symmetries for NCPLHRT as: 
 

   per- lh 3 2 22
c

Z g
H r

rr






 
     

 

L
L  (22) 

 

3.1 The Exact Modified Spin-Orbital Spectrum 

for NCPLHRT in Global (NC: 3D- RSP) Sym-

metries 
 

In this subsection, we apply the same strategy, 

which we have seen in our previously works [19-22], 

under such particular choice, one can easily reproduce 

both couplings (
 

L and 


L  ) to the new physical forms   

( LS
 

 and LS
 

), respectively, to obtain the new 

forms of  so-clh , ,H r   for 3D-NCPLHRT as follows:  

 

  so-chl 3
, ,

2 22

Z g
H r LS

rr


  

    
       

   

 (23) 

 

Here 
1

137
   is a new constant, which play the role 

of fine structure constant, we have chosen the two vec-

tors (  and  ) parallel to the spin S


 of hydrogenic 

atoms. Furthermore, the above perturbative terms 

 per- hlcH r  can be rewritten to the following new form: 

 

  2
hl 3

, ,
2 2 22

so c

Z g
H r G

rr

 
 

   
       

   

 (24) 

 

With

2

2G J L S
  

   , this operator traduces the cou-

pling between spin S


 and orbital momentumLS
 

.  The 

set (  , ,so chlH r   , 2J , 2L , 2S and )zJ  forms a com-

plete of conserved physics quantities and for 1 / 2S
 

 , 

the eigenvalues of the spin orbital coupling operator are 

1

2

1 1 3
( 1) ( 1)

2 2 4
k l l l l

  
        

  
corresponding: 

1 / 2j l    (spin up) and 1 / 2j l   (spin down), respec-

tively, then, one can form a diagonal  3 3  matrix, 

with diagonal elements are  lh 11so cH  ,  lh 22so cH   and 

 lh 33so cH   for NCPLHRT in (NC: 3D-RSP) symmetries, 

as:  

After profound calculation, one can show that, the 
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new radial function  nlR r  satisfying the following 

differential equation for NCPLHRT in the symmetries 

of (NC: 3D- RSP): 
 

 

 

 

lh 311

lh 322

lh 33

2 22

if 1 / 2 

2 22

if 1 / 2

0

so c

so c

so c

Z g
H k

rr

j l

Z g
H k

rr

j l

H


 


 

 

 



  
       

  

 

  
       

  

 



 (25) 

 
 

 
2

2

2 2 3

2 ( 1)
2 / 0

2 22 2

nl
nl nl

d R r l l Z g
E Z r gr r R r

rdr r r


 

 
   

           
  

 

L
L  (26) 

 

The two terms which composed the expression of 

 per- lhcH r  are proportional with two infinitesimals 

parameters (  and ), thus, in what follows, we pro-

ceed to solve the modified radial part of the MSE that 

is, equation (21) by applying standard perturbation 

theory for their exact solutions at first order of two 

parameters   and . 
 

3.2 The Exact Modified Spin-Orbital Spectrum 

of Hydrogenic Atoms Under NCPLHRT In-

teractions and Spontaneous Symmetry 

Breaking of (NC: 3D- RSP): 
 

The purpose here is to give a complete prescription 

for determine the energy level of thn  excited states, of 

hydrogenic atoms with NCPLHRT, we first find the 

corrections  u- lh , , ,cE n g Z   and   d- lh , , ,cE n g Z  for 

hydrogenic atoms which have 1 / 2j l   (spin up) 

and 1 / 2j l   (spin down), respectively, at first order of 

two parameters (  and   ) obtained by applying the 

standard perturbation theory to find the following: 
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Now, we can write the above two equations to the new form: 
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 (27.2) 

 

Moreover, the expressions of the four factors 

 , , ,iT n g Z ( 1,4i  ) are given by: 
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(28) 

 

To evaluate the above four factors, which depended 

with the parameters of potential  , ,g Z , we apply the 

following special integration, the results of eq. (29) (see 

below) depended with the generalized hypergeometric 

function  3 2 , , ; , 1;1F m n          which obtained 

from the generalized function  1 1,..., , ,...., ,p q p qF z     

for 3p   and 2q  , in addition to the usual Gamma func-

tion  x . After straightforward calculations, we can 

obtain the explicitly results [23]:  

      
   

   
 1.

. 3 2
0

1 1
exp , , ; , 1;1

! ! 1 1
m n

n m
t t L t L t dt F m n

m n


      

       
  




      
      

    
  (29) 

 

Thus, it is easily to obtain the explicitly results:  
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 (30) 

 

It is well known that  0,1..., 1 0l n   , then 

(  1/2l  and  3 / 2l  ) are representing two negative 

values and we having    1/2 3 / 2l l         ,   

which gives 

      2 3 4, , , , , , , , , 0T n g Z T n g Z T n g Z     , allowed 

us to obtain the exact modifications  u- lh , , ,cE n g Z   

and  d- lh , , ,cE n g Z   of thn  excited states of hydrogenic 

atoms with NCPLHRT, which produced by modified 

spin-orbital effect  , ,so clhH r    as: 
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 (31) 

 

Thus, our research also conveys another innovative 

feature exact, the extended global quantum group 

symmetry (NC: 3D-RSP) is broken simultaneously and 

replaced by new quantum subgroup symmetry (NC: 

3D-RS) under interaction of hydrogenic atoms with 

NCPLHRT. 

 

3.3 The Exact Modified Magnetic Spectrum of 

Hydrogenic Atoms Under NCPLHRT Inter-

actions in Residual Group (NC: 3D- RS): 
 

Further to the important previously obtained re-

sults, now, we consider another physically meaningful 

phenomena produced by the effect of NCPLHRT relat-

ed to the influence of an external uniform magnetic 

field B , to avoid the repetition in the theoretical calcu-

lations, it’s sufficient to apply the following replace-

ments: 
 

3 32 22 2

2 2

Z g Z g
B BL

r rr r

B B BL

  

 
  

  

   

    
             
    



   

(32) 

Here   and k 
 

  are two infinitesimal real pro-

portional’s constants, and we choose the arbitrary ex-

ternal magnetic field B B k
 

  parallel to the (Oz) axis, 

which allow us to introduce the new modified magnetic 

Hamiltonian m clhH   in (NC: 3D-RSP) symmetries as:  

 

 mod3 2 22
m clh z

Z g
H

rr


  

   
       

   

 (33) 

 

Here mod z zBJ


   denote to the modified Zee-

man effect while z SB
 

    is the ordinary Hamiltoni-

an operator of Zeeman Effect. To obtain the exact non-

commutative magnetic modifications of ener-

gy  mag- lh , ,cE n m  , we just replace k  and   into the 

eq. (31) by the following parameters: m  and  , respec-

tively:

 

  
   
   

 2 2
3 2

3/2 3/2
, , , , ,2 , 1/2; 2 , 3/2;1

2 3 / 2 3/2

l
mag clh

l n lZ
E n m g Z N F n l l n l l Bm

l l n
  



     
        

      

 (34) 

 

We have l m l    , which allow us to fixing ( 2 1l  ) 

values for discreet numberm .  

 

4. RESULTS AND DISCUSSION 
 

 

We are now in a position to attack the main objec-

tive of our study, let us resume the nonrelativistic mod-

ified eigenenergies   nc -u , , , , ,clhE n j l s m   and 

 nc -d , , , , ,clhE n j l s m   of a hydrogenic atoms under 

NCPLHRT  obtained from solving MSE for thn  excited 

states in (NC: 3D-RSP) symmetries. On based to our 

original results presented on the Eqs. (31) and (34), in 

addition to the ordinary energy nlE  for NCPLHRT, 

which presented in the eq. (8): 
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This is the main goal of this work, It’s clearly, that 

the obtained eigenvalues of energies are real’s and 

then the NC diagonal Hamiltonian nc clhH    is Hermiti-

an, furthermore it’s possible to writing the three ele-

ments:  lh 11nc cH  ,  lh 22nc cH   and  lh 33nc cH   of NC 

nonrelativistic Hamiltonian describing hydrogenic at-

oms  with NCPLHRT as follows: 
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Where the new kinetic energy 
2

nc
 and the two 

modified interactions int uclhH  and int dclhH  are given by: 
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Thus, the ordinary kinetic term for CPLHRT 
2

 
 
 

 

and ordinary interaction ( 2/Z r gr r   ) are replaced 

by new modified form of kinetic term 
2

nc 
 
 

 and new 

modified interactions ( int lhucH   and int lhdcH  ). On the 

other hand, it is evident to consider the quantum num-

ber m  takes ( 2 1l  ) values and we have also two val-

ues for
1

2
j l  , thus every state in usually three-

dimensional space of energy for new NCPLHRT will be 

 2 2 1l  sub-states. To obtain the total complete de-

generacy of energy level of NCPLHRT in NC 3-

dimension spaces-phases, we need to sum for all al-

lowed values of l . Total degeneracy is thus, 
 

  
1

2

0

2 2 1 2
n

i

l n




   (39) 

 

Note that the obtained new energy eigenvalues 

(  nc -uclh , , , , , , ,E n g Z j l s m  

and  nc -dclh , , , , , , ,E n g Z j l s m ) depend to new discrete 

atomic quantum numbers  , , ,n j l s  andm  in addition 

to the parameters ( , ,g Z ) of the NCPLHRT. Paying 

attention to the behaviour of the spectrums (35) and 

(36) (  nc -uclh , , , , , , ,E n g Z j l s m  

and  nc -dclh , , , , , , ,E n g Z j l s m ), it is possible to recover the 

results of commutative space when we consid-

er    , 0,0  .   

 

5. CONCLUSION 
 

In this paper three-dimensional MSE for NCPLHRT 

has been solved via Bopp’s shift method and independent 

time standard perturbation theory in (NC: 3D-RSP) sym-

metries, we resume the main obtained results: 

1) The exact energy spectrum (  nc -uclh , , , , , , ,E n g Z j l s m  

and  nc -dclh , , , , , , ,E n g Z j l s m ) for thn  excited levels, for 

hydrogenic atoms, 

2) Ordinary interaction ( 2/Z r gr r   ) were replaced by 

NCPLHRT ( int uclhH   and int dclhH  ) for hydrogenic atoms, 

3) The ordinary kinetic term 
2


  modified to the new form 

2 2

nc L L 
  

   
  for NCPLHRT, 

4) We have shown that, the group symmetry (NC: 3D-RSP) 

corresponding NCPLHRT were broken simultaneously and 

replaced by the new residual symmetry sub-group (NC: 

3D-RS).   

5) It has been shown that, the MSE presents useful 
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rich spectrums for improved understanding of hydro-

genic atoms  influenced by the NCPLHRT and we have 

seen also that the modified of spin-orbital and modified 

Zeeman effect were appears du the presence of the two 

infinitesimal parameters  ,  which are induced by 

position-position noncommutativity property of space. 
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