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The effect of the constant bias potential (Us) supplied to the substrate upon condensation and pressure
of the nitrogen atmosphere (Px) on the elemental composition, growth morphology, texture, and physical-
mechanical characteristics of vacuum-arc (AlICrTiVZrNb)Ny coatings is studied. It is established that with
increasing U, from — 110V to — 200V, the axis of preferential growth of crystallites of the fcc phase from
[100] to [110] changes. Such a change is accompanied by a decrease in the hardness (H) and the ratio H/E
(where E is the modulus of elasticity). The conditions for the formation of the preferential orientation of
the crystallites (axial texture) of vacuum-arc (AICrTiVZrNDb)N; coatings and the influence of texture on
mechanical properties are discussed. It was established that the change in Py in the range (1.7-5)-10-3 Torr
basically allows to vary the degree of filling of the coating with nitrogen atoms. Based on the revealed
regularities, the conditions for achieving high hardness for vacuum-arc coatings of nitrides AlCrTiVZrNb
high-entropy alloy are substantiated. Because of the presence in the alloy of elements with a relatively low
heat of nitride formation, in order to achieve high hardness, it is necessary to use deposition conditions
with relatively low energy of bombarding atoms. The use of a low U,=-110V at the highest pressure
Px =5-10-3Torr allows achieving an superhard state with a hardness of 44 GPa.
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1. INTRODUCTION resistance, etc. [13, 14]. This is due to the fact that
highly entropic alloys have a unique property of order-
ing in a metal lattice under extreme influences and
high temperatures [15, 16]. The ordering is due to the
fact that in the highly entropic alloys, as a result of the
intensive mixing effect, the contribution of the entropy
eve eEdLy - factor increases, which stabilizes the formation of a
alsc? fgr predlctmg the possibilities for their further solid solution with a simple crystal structure [17] and
optimization [.2’ 3. ) . . high physical-mechanical characteristics [18].

' The tradltlonal'approach in creatlng new rr}atenals The high-temperature alloy of the HfNbTaTiZr
1s to se.lect one bgsw elemgnt asa matrix tha}t is doped system has a small difference in the heat of mixing
to obtain the desired combination of mechanical and/or between different atomic pairs [19] and can form a

operational properties [4,5]. As a matrix-basis, Fe,  g41iq solution based on the bee lattice in the cast state
Cu, Al, Ni, Mg, etc. were used. However, in recent  [90] it has been developed in recent years. Also all
years, .thapks to gt.ructural éngineering 1n the components of this alloy have a high binding energy
nonequilibrium conditions of formation, it has been ;4 nitrogen. This served as the basis for the creation
possible to develop new mechanisms for the formation of high- hard nitride coatings based on the TiZrN-
of composite materials [6] and to stabilize metastable bVHfTa high- entropy alloy [21, 22].
phase-structure states [7].

Also in recent years, structural engineering has

Determination of general patterns of technological
parameters influence on the structural state with the
aim of using such regularities to obtain specified oper-
ational characteristics is the most effective method not
only for achieving the necessary properties [1], but

One of the main disadvantages of the TiZrN-
; " . > bVHI{Ta alloy is the high specific gravity of the con-
been actively used FO obtain new sta.ltes mn multlcom- stituent elements. In order to reduce the specific grav-
ponent alloys. PaI‘thl'llaI‘ attentlon' is paid to multi- ity, it is proposed to use Al and Cr instead of the heav-
component alloys haV}ng as a matrix ﬁve or more gle- iest components - Hf and Ta. Note that although the
ments 1n equal (equ'latomlc)' proportions .an.d which A1 and Cr elements also have a relatively high binding
form a disordered solid solutions [8, 9]. This is due to energy with nitrogen, but compared with Hf and Ta
the possibility of creating structural states in them, their binding energy with nitrogen is much lower [14,
thanks to which various mechanisms of their harden- 23]. In this connection, one can expect a great influ-
mng can be used, such as solid-solution, dlsperS}on, ence of the pressure of the nitrogen atmosphere and
deforma‘mon, etc. [10]. Such alloys are f:alled h.1gh- the bias potential (which determine the efficiency of
entropic alloys [1,1’ 12] and un.de.r certain comblng- nitride formation during condensation) on the struc-
tions of elements in these alloys it is possible to obtain tural state and mechanical properties of vacuum-arc
high strength, plasticity, wear resistance, corrosion coatings formed on their basis. Investigation of the
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influence of these technological parameters was the
goal of this work.

2. SAMPLES AND METHODS OF EXPERI-
MENTS

The coatings were deposited by the vacuum-arc
method on a modernized "Bulat-6" installation.

A cathode of the required composition was pre-
fabricated by vacuum-arc remelting of a multicompo-
nent mixture of pure metal powders. As initial compo-
nents, metals with a purity of at least 99.9% were
used. The alloys were smelted in an MIFI-9-3 arc fur-
nace in an atmosphere of high-purity argon, and the
atmosphere was further refined by the reuse of the Zr-
Ti getter. To remove the shrinkage cavity, the surface
of the ingot was melted with an arc of low power. The
time of heating of the upper part of the ingot was se-
lected in such a way as to create and feed the crystal-
lization front with liquid metal, but as little as possi-
ble to influence the speed of its advance.

After a ten-time remelting, the highly entropy al-
loys crystallized at a rate of 20 K/s. Structure of ingot-
billet for the cathode is shown in Fig. 1. In the initial
state after smelting, the cathode composition is a bi-
phasic bee solid solution (content close to 70 vol.%) and
Laves phase (content close to 30 vol.%).

= 7 T

Fig. 1 — The structure of two-phase (dark — bec phase, light —
Laves phase) high-entropy alloy (TiZrAIVNbCr)

During deposition of the coating, a constant nega-
tive bias potential (Up) of — 110 or —200 V was fed to a
substrate to achieve good adhesion of the coating to
the substrate. The pressure of working atmosphere
(nitrogen) during the deposition was
Pn=(1.7-5)-10-3Topp. As samples for the deposition
of coatings, samples of the size (15x15x2.5 mm) made
of 12X18HIT steel (Ru=0.09 um) were chosen. The
deposition time was about 90 minutes. Coating thickness
was achieved ~ 8.0 um. The deposition parameters, as
well as the hardness (H) and the ratio of hardness to
the modulus of elasticity (H/E) are shown in Table 1.

The phase-structure state was studied on a DRON-
4 diffractometer in Cu-K, radiation. For monochroma-
tization of the recorded radiation, a graphite mono-
chromator was used, which was installed in a second-
ary beam (in front of the detector). The study of the
phase composition, structure (texture, substructure)
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was carried out using traditional X-ray diffractometry
techniques by analyzing the position, intensity, and
shape of the diffraction profiles.

Table 1 — Deposition parameters and microindentation re-
sults

No Px, H, H/E,
series L,A | Uy Torr GPa GPa
1 85 200 5103 26 0.077
2 135 110 5103 44 0,110
3 135 110 | 1,7-103 35 0.121
4 135 200 2-103 20 0.087

The study of the morphology of the cross-section
multi-period structures was carried out on JEOL
JSM840 scanning electron microscope. For electron-
microscopic studies, coatings were deposited on copper
substrates 0.2 mm thick. The study of the elemental
composition of coatings was carried out by analyzing
the spectra of characteristic X-ray radiation generated
by an electron beam in a scanning electron microscope.

Microindentation was carried out on the «Micron-
gamma» installation [24] with a load up to F'=0,5N.
Berkovich diamond pyramid with an angle of 65° was
used.

3. RESULTS AND DISCUSSIONS

The study of the cleavage surface (in the case of
brittle fracture at a low nitrogen temperature) showed
(Fig. 2) that the supply of a relatively small negative
bias potential at deposition Up=- 110V (Fig. 2a) is
accompanied by the formation of coatings with a ho-
mogeneous structural state in thickness (without pro-
nounced columnar formations). With a large potential
Up=— 200V, the structure of the coatings has a pro-
nounced columnar component (Fig. 2b).

The results of energy-dispersive elemental analysis
showed that the deposition of coatings with the supply
of a large bias potential Up=—200V leads to a de-
crease in the relative content of light nitrogen atoms
in them and an increase in the relative content of
heavy Zr and Nb atoms. For Px=5-10-3 Torr at
Us=—200V the following elemental composition is ob-
tained: Ti— 11.29 at.%, Zr — 15.4 at.%, Al — 2.76 at.%, V —
11 at.%, Nb — 18.7 at.%, Cr — 16.25 at.%, N — 24.61 at.%.
In the coatings deposited at Us=— 110V, the following
composition was obtained: Ti — 12.38 at.%, Zr —
11.62 at.%, Al — 4.3 at.%, V — 9.2 at.%, Nb — 14.7 at.%, Cr
—11.7 at.%, N — 36.1 at.%.

The change in pressure during deposition has the
greatest effect on the relative content of nitrogen at-
oms in the coating. At a pressure Px = 2-10 —3 Torr, the
content of nitrogen atoms is 22.82 at.%, and at
Px=1.7-10-3 Torr, the relative content of nitrogen
atoms decreases to 19.87 at.%.

To study the phase composition and the structural
state of the coatings, the X-ray diffraction analysis
method was used. Fig. 3 shows the areas of the diffrac-
tion spectra of the coatings obtained at the highest
pressure Pn=5-10-3Torr and U,=-200V (Fig. 3,
spectrum 1 Up=-110V (Fig.3, spectrum 2) and at
Pn=1.7-10-3 Torr Torr and Uy =- 110V (Fig. 3, spec-
trum 3).
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Fig. 2 — Morphology of fracture of coatings of nitrides of
AlCrTiZrNbV high-entropy alloy, obtained at a pressure of
5-10-3Torr and the bias potential Us, V: a —— 110, b —— 200
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Fig. 3 — XRD patterns of different series of coatings (indicat-
ed in Table 1): 1 — Px=5-10 -3 Torr, Us = — 200 V (series 1), 2
— Pn=510-3Torr, Pxn=5-10-3Torr, Up=— 110V (series 2),
3—Px=1.7-10 -3 Torr, Up=— 110 V (series 3)

The analysis of the obtained diffraction spectra
showed that for all deposition regimes, characteristic
the formation of two-phase coatings consisting of
phases with bec and fce crystal lattices. A feature of
coatings obtained with a smaller Up=- 110V is the
crystallite texture of the fec phase with the [100] axis
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perpendicular to the growth plane (Fig. 3, spectra 2
and 3). For coatings obtained at large Uy =-200V,
observed formation of a texture with the [110] axis
perpendicular to the surface (Fig. 3, spectrum 1). The
crystallite size for all types of coatings was nanometer
(7-15 nm). It should be noted that in the magnetron
sputtering of targets of similar composition for large
Up, besides texture [110] texture is observed [111] [25].

For crystallites of the bee phase, as a result of their
small volume content in the coating (up to 8%), only
the most intense peaks from the (110) and (200)
planes appear on all the diffraction spectra.

An important parameter of the crystallites is the
lattice period. Table 2 shows the values of the lattice
parameters for different series of coatings.

Table 2 — Periods of crystallite lattices for different series of
coatings

No series fcc lattice bec lattice
1 0.42638 nm 0.32418 nm
2 0.42578 nm 0.32417 nm
3 0.42597 nm 0.32417 nm
4 0.42740 nm 0.32419 nm

Table 2 shows that the largest lattice period is in-
herent in coatings with a [110] texture of the fcc phase
obtained at the largest Us = — 200V. The same trend is
observed for the bee component. The relative decrease
in the lattice period at Us=-— 110V may indicate a
stronger bond in it between the atoms [7].

Analysis of the obtained results of the structural
state is expedient to be carried out in comparison with
the elemental composition and mechanical character-
istics. Fig. 4 shows the hardness versus the supplied
constant bias potential U at different Pn pressures.
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Fig. 4 — Dependence of hardness on Us at different Px, Torr:
1-1.710-3,2-510-3

It can be seen that the hardness of coatings ob-
tained with Pn=1.7-10-3Torr is less than at
Px=5-10 -3 Torr. When analyzing the influences P
on hardness necessary to carry out a comparison with
the data of the elemental composition of [17, 18]. Such
an analysis shows that in coatings with the lowest
hardness obtained with Pn=1.7-10 -3 Torr a nitrogen
content of about 20 at.%, while at Px=5-10 -3 Torr,
the content of nitrogen atoms exceeds 36 %. Thus, a sig-
nificant decrease in the relative content of nitrogen at-
oms in the coating can explain the observed decrease in
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hardness for different series obtained with the same Up.

At the same time, the change in U, leads to a
change in the axis of the preferential orientation of
crystallite growth from [100] at Up=— 110V to [110]
at Up =— 200 V. The plane (110) has a less dense pack-
ing of atoms in comparison with (100), and therefore
this should lead to a decrease in the binding strength
between atoms and a drop in hardness, which is ob-
served experimentally.

The dense state of the coatings obtained at
Uy =-200YV is also indicated by the relatively small
value of the H/E parameter. For coatings obtained at
Up,=-200V, the value of this parameter is in the
range 0.77-0.87, and for coatings deposited at
Uy =-110V, the parameter H/E is 0.11-0.12 (Table 1).

4. CONCLUSION

1. The elemental composition, structure and me-
chanical properties of nitride vacuum-arc coatings

J. NANO- ELECTRON. PHYS. 10, 05046 (2018)

based on the TiZrAIVNbCr highly entropy alloy can be
substantially modified by supplied U, and changing
the pressure of the nitrogen atmosphere during depo-
sition.

2. An increase in Px in the interval
(1.7-5)-10 3 Torr leads to an increase in the nitrogen
content in the coating with an almost unchanged
structural state and a slight increase in hardness, as
well as a decrease in the H/E parameter.

3. The change in Up from — 110 V to — 200 V in the
determining measure affects the structural state, ac-
companied by a change in the texture axis from [100]
to [110]. Such structural changes are accompanied by
a decrease in hardness and a decrease in the parame-
ter H/E.

4. The highest hardness of 44 GPa of vacuum-arc
nitride coatings based on the AICrTiZrNbV high-
entropy alloy is achieved by supplied a relatively low
Up=-110V during the condensation process at the
highest pressure Px = 5-10 —2 Torr.

Brouiue BesimvuuHY noTeHIialy 3MilleHHS i TUCKY a30THOI atMocdepu HAa CTPYKTYPY i BiacTu-
BOCTi BaKyyMHO-IyroBux nmokputTie Ha oCcHOBI AICrTiZrNbV BHCOKOEHTPOMiMHOTO CIJIABY

0.B. Coboanl, A.O. Aagpees2, B.®. I'opbaun3, I'.O. [Tocrensunk!, B.O. Crondosuii2, O.B. 3saronbcruiil

v Hayionanvruti mexuiunuii ynisepcumem «Xapkiscokuti nonimexuivnuii incmumym», eyn. Kupnuuosa 2, 61002
Xapkis, Yrpaina
2 HauionanvHuli Haykosutl uenmp XapKiecoKull (hiauko-mexHivHuil ikcmumym, 8yn. Axkademiuna, 1, 61108 Xap-
Kie, Ykpaina
3 Incmumym npobnem mamepianozuascmaa im. Opanuyesuua, syn. Kpocuscarnoscvroeo, 3, 03142 Kuis-142, Vrpaina

JlocmimreHo BILIMB TOCTiHOTO moTeHIiany amimeHHs (Up) axiil mo1aeThess Ha MIKIAIKY TP KOHIEH-
camii 1 Tricky as3oTHOI arMmocepm (PN) Ha eJIeMEeHTHWH CKJIaJ, MOPQOJIOTiI0 POCTY, TEKCTYpy 1 (hi3mMKo-
MexaHiyHl xapakrepuctuikn BakyyMHO-ayroBux (AlCrTiVZrNb)Ny mokpwurrie. Beramosieno, mo 31 36i1b-
meussaM Uy Big — 110 B mo — 200 B BigOyBaeThes amina oci epeBaskuoro 3pocranus kpuctamitie [TIK dbasu
Bixm [100] mo [110]. Taka 3amiHa CyIpoBOIKYyeThCS 3MeHIneHHAM TBepmocti (H) 1 Bimnomenns H/E (me E —
MOy JIb Py HOCTi). OOGroBopeHo yMOBH (popMyBaHHS IIEPEBAKHOI OPUEHTALIll KPUCTAIITIB (AKCHAJIBHOM Te-
kcrypu) BaryymHO-IyroBux (AlCrTiVZrNDb)Ny moxpuTTiB 1 BIUIMB TEKCTypM HA MEXaHIYHI BJIACTHUBOCTI.
Beranosieno, mo 3mina Py B giamazoni (1.7-5)-10-3 Topp B 0CHOBHOMY J103BOJIsIE BAPIIOBATH CTYIIIHb HAIIO-
BHEHHs [TOKPUTTSA aToMaMu a30Ty. Ha 0CHOBI BUABJIEHMX 3aKOHOMIPHOCTEH OOTPYHTOBAHI YMOBH JOCATHEH-
HS BHCOKOI TBEPHOCTI B BAKYYMHO-IYTOBHUX IIOKPUTTIB HITpuIy BucoKoeHTpomitiHoro criaBy AlCrTiVZrNb.
Yepes HASABHICTh B CIJIABI €JIEMEHTIB 3 BiTHOCHO HU3BKOIO TEILJIOTOI0 YTBOPEHHS HITPHUIY JJIS JTOCATHEHHS
BHCOKOI TBEPIOCTI HEOOX1JHO BUKOPHUCTOBYBATH YMOBH OCAIYKEHHS IIPHU BiJHOCHO HEBUCOKIM eHepril bombap-
Iyro4yux aromiB. Bukopucranus B pobori HeBucororo Uy =— 110 B npu manbuisuemy tucky Pn=5-10 -3 Torr
JTO3BOJISIE JIOCATTH HAATBEPOTo cTaHy 3 TBepicTio 44 I'Tla

Kmiouosi ciosa: Bakyymua myra, AICITiZrNbV, ITorenmian amimenus, Tuck, CrpyrrypHa imxenepis, @a-

3oBuii ckian, Tekcrypa, TsepmicTs.
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