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ues reduce to known results in quantum mechanics if    , 0,0  .  We have shown also that, the global 
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space (NC: 3D-RS) under three-dimensional NMGECSCP interactions. 
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1. INTRODUCTION 
 

The more general exponential cosine screened Cou-

lomb potential (MGECSCP) are used to investigate 

important interactions in various fields of physics such 

as plasma physics, nuclear physics, condensed matter 

physics, and atomic physics [1-5]. In view of what has 

been mentioned, we would like to study the results of 

the interactions of this potentials in a large space of 

quantum mechanics, currently known by the noncom-

mutative quantum mechanics or extended quantum 

mechanics, which known firstly by Heisenberg and was 

formalized by Snyder at 1947, suggest by the physical 

recent results in string theory [6]. Over the past few 

years, theoretical physicists have shown a great deal of 

interest in solving Schrödinger equation for various 

potentials in NC space-phase to obtaining profound 

interpretations at microscopic scale [7-11] and in par-

ticularly, our previously works in in (NC: 3D-RSP) [12-

14]. It is well known that, the notions of noncommuta-

tivity of space and phase based essentially on. 

Seiberg-Witten map, the Bopp's shift method and 

the star product, which modified the ordinary product 

   ,fg x p  to the new form   * ,f g x p  at first order 

of two infinitesimal antisymmetric constants tensors 

 2 , , kk

k 
    
 

 
 

 as (Throughout this pa-

per using atomic units 1e m   and 1z  ) [6-12]:  
 

     , , .
2 2

i i p px xf g x p fg f g f g x p


 
   

 
        

 
 (1) 

 

The above equation presents the noncommutativity 

effects of space and phase, allow us to obtaining the 

following new non nulls commutators for NC coordi-

nate and momentum in GQG of (NC: 3D-RSP) symme-

tries as follows [11-14]: 
 

 

ˆ ˆ[ , ] ,
*

ˆ ˆ[ , ] ,
*

ˆ ˆ[ , ] .
*

x p i

x x i

p p i

 

  

 











 (2) 

 

On the other hand, the studies of new more general 

exponential cosine screened Coulomb potential 

(NMGECSCP) for one electron atoms has attracted 

wide attention. Motivated by the studies of M. K. Ba-

har in ref. [5] and others in this paper, we find the new 

bound state solution of the time independent 

Schrodinger equation for NMGECSCP in (NC: 3D-RSP) 

model. However, the solutions of modified radial 

Schrodinger equation for any angular momentum 

quantum number l , with NMGECSCP, for one electron 

atoms, using generalized Bopp’s shift method in (NC: 

3D-RSP) which is the aim of this paper, has not yet 

been reported. The present paper consists of five sec-

tions. To make this present work self-contained, it is 

organized as follows:  In the second section, we have 

briefly review the SE with 3D-MGECSCP. In the third 

section, we shall briefly give the fundamental concepts 

of the generalized Bopp's shift method, and then we 

derive the deformed potential and NC spin-orbital 

Hamiltonian operator for one-electron atoms with 3D-

MGECSCP. In the next step, we apply the perturbation 
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theory to find the modified spectrum 

 , 1 / 2, ,gec dE p j l l s    and  , 1 / 2, ,gec uE p j l l s    

corresponding of one-electron atoms at first order of 

two parameters   and  for thn excited stats and then 

we end this section by deduce the spectrum 

 , , ,z gecE n r D m
e e  produced automatically by the 

external magnetic field. In section four, we resume the 

global spectrum for NMGECSCP and we conclude the 

corresponding global NC Hamiltonian operator 

ˆ
nc gecH  in GQG of (NC: 3D-RSP) symmetries. Finally, 

section five is devoted to a brief summary and conclu-

sion. 

 

2. REVIEW THE SPECTRUM OF 3D-MGECSCP 

IN ORDINARY QUANTUM MECHANICS 
 

The MGECSC potential in the presence of external 

electric field F is considered for hydrogen like atoms [5]: 

    

2

22
2

2 2
2

2

1 1 1 2

2
1 cos ,

3 3 3 1

6

r

gec

c b
b r

rZe cr
V r br e eFr Ze eFr

r c b bc
r





 

  





    
       

     
        

      
   
  

 (3) 

 

where b , c and   are the screening parameters of 

MGECSC potential. The first part in eq. (3) is 

MGECSC potential while the second part is contribu-

tion of external electric field on system.  The radial 

part    p

lR r  of the normalized wave functions 

 
   

 , , ,

p

l m
plm l

R r
r Y

r
      for 3D-SE satisfied the 

following equation for MGECSC potential in the pres-

ence of external electric field F [5]: 
 

 
   

 2
1 2

2 1 2
0,

2 2
l

l

d R r l l
r r R r

rdr r
  
 

       
 

 (4) 

where ansatzs are in the following form: 
 

  

2

1 2

2 2

2 2

2 1 2
2 2 , 2F and

3 3 3 1

3

l

c b
E b

c b bc


 

 

 




 
    

  


 (5) 

 

With lE are the energy values. According to the 

references [5], the complete orthonormalized wave 

function  , ,rplm    for MGECSC potential in the 

presence of external electric field F  in 3-dimensional 

spaces, is given by:  

  

 

   

   

2 1
0

2 1
0 1

2 1
0 1

exp , for 0,
2

, , exp , for 1,
2

..... exp , for any  p
2

m
l

m
l

p m
p l

a r r r Y p

r a a r r r r Y p
plm

a a r a r r r r Y








  


    


  







  
   

 
  

      
 

  
    
  

 (6) 

 

with 2
2   , 

1

1l
  


 and 1l    while 

 0 1, ,... pa a a  can be calculated by using normalization 

condition.  

 

3. THEORETICAL FRAMEWORK 
 

3.1 Theoretical Overview of Generalized Bopp’s 

Shift Method in 3-dimensional Spaces-phases for 

NMGECSCP 
 

In order to obtain DSE in (NC: 3D-RSP) symme-

tries, we replace ordinary Hamiltonian opera-

tor  ˆ ,i iH p x , ordinary complex function  , ,plm r   , 

ordinary energy lE  and ordinary product by NC Ham-

iltonian operator  ˆ ˆ ˆ,nc gec i iH p x , new complex function 

 r , new energy nc gecE   and new star 

 product   , respectively. Allow us to writing the new 

3D-DSE for NMGECSCP as follows [12-14]:  
 

      ˆ ˆ ˆ, .nc gec i i nc gecH p x r E r     (7) 

 

The new Hamiltonian operator  ˆ ˆ ˆ,nc gec i iH p x  acts 

on a suitable by   on the wave new complex function 

 r  of the new system to give us the energy eigen-

values nc gecE   of the new system energy in (NC: 3D-

RSP) symmetries. It is important to notice that, the 

new Hamiltonian operator  ˆ ˆ ˆ,nc gec i iH p x  can be ex-

pressed in three general varieties: both NC space and 

NC phase (NC: 3D-RSP), only NC space (NC: 3D-RS) 

and only NC phase (NC: 3D-RP) as, respectively: 
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ˆ ˆˆ ˆ ˆ ˆ, ;    for   (NC: 3D-RSP),
2 2

ˆ ˆˆ ˆ ˆ ˆ, ;                        for   (NC: 3D-RS),
2

ˆ ˆˆ ˆ ˆ ˆ, ;
2

gec

gec

gec

ij ij
H p x H p p x x x pnc i i i i j i i j

ij
H p x H p p x x pnc i i i i i i j

ij
H p x H p p x x xnc i i i i j i i







 
     
 
 

 
    
 
 

                        for (NC: 3D-RP).
 
 
 
 

  (8) 

 

To find the analytical solutions of the eq. (7) we must 

apply the generalized Bopp’s shift method instead of solv-

ing the 3D-DSE for NMGECSCP directly with   ; we 

treated by using directly the two commutators, in addition 

to usual commutators on quantum mechanics [11-14]: 
 

 ˆ ˆ,x x i      and ˆ ˆ , .p p i        (9) 

 

It is well known, that the two new operators 

( x̂  and p̂ ) are given by the following Darboux trans-

formations [12-14]: 
  

 ˆ
2

x x p


  


  and ˆ .

2
p p x



  


   (10) 

 

The two variables  ,x p   satisfy the usual canon-

ical commutation relations in ordinary quantum 

mechanics. In recently work, we are interest with the 

first variety in eq. (8). We may go a step further and 

consider the Bopp’s method (modified by a shift), which 

allows us to reducing the above DSE to new ordinary 

form, in addition two fundamental translations of space 

and phase which are presenting in eq. (9): 
 

      ˆ ˆ, .nc gec i i nc gecH p x r E r    (11) 

  

The new modified Hamiltonian  ˆ ˆ,nc gec i iH p x that 

appears above is given by: 
 

    
2ˆ

ˆ ˆ ˆ, .
2

nc gec gec

p
H p x V r     (12) 

 

The new potential  ˆgecV r in the GQG of (NC: 3D-

RSP) can be written as: 

 

   
2 2 2

2 22
12 2

1 1 1 2 3 3 3 1 1 1
ˆ ˆ ˆ ˆ ˆ2 2

ˆ ˆ 22 6
gec

c b c b bc
V r b F F r r b F r r

r r

  


  

              
                          

         

(13) 

 

According to our references [12-14], we can write 

the two operators ( 2r̂ and 2p̂  ) in GQG of (NC: 3D-RSP) 

symmetries as follows:  

 
   2 2

12 23 1312 23 13

2 2ˆ ˆ     and          with

  and    x y z x y z

r r O p p O

L L L L L L

 

  

     

         

L L

L L

 



 (14) 

 

After straightforward calculations one can obtains 

the important terms (
1

r̂
,  1

ˆ2F r   and 22 ˆ
2
r


), which 

will be used to determine the NMGECSCP  ˆgecV r in 

GQG of (NC: 3D-RSP) symmetries as follows: 
 

 

 

     

 

3

1
1 1

2 22 2 2

1 1
,

ˆ 2

2
ˆ2 2 ,

2

ˆ .
2 2 2

O
r r r

F
F r F r O

r

r r O




  

  


  


    

  

L

L

L







 (15) 

 

Substituting, eq. (14) and eq. (15) (into eq. (13), one 

gets the NMGECSCP  ˆgecV r in GQG of (NC: 3D-RSP) 

symmetries as follows: 
 

    
21 1 2ˆ .

3 2 22
gec gec

F
V r V r

rr

   
    

  

L  (16) 

 

It is clear that, the first term  gecV r  in above 

equation represent the ordinary 3D-MGECSCP while 

the rest terms, are produced by the deformations of 

noncommutativity of space-phase. Now simultaneously 

transforming  ˆgecV r  and 
2
ˆ / 2p gives the global per-

turbative potential operators  pert-gec , ,H r   for 3D-

MGECSCP in GQG of (NC: 3D-RSP) symmetries: 
 

 

 

 

1 2
p 3

.

, ,

,
2

21

2 22
ert gecH r

O

F

rr
 

 

 
   

 

 
  

 
L

L





 (17)  

 

The above operator can be considering of the sum of 

 , ,pert gecV r   and the couplings
2

L
. Since we are 

only interested in the corrections of order   and , we 

can disregard the second term in the perturbative op-

erator  pert- , ,gecH r   . 
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3.2 3D-spin-orbital Hamiltonian Operators for 

NMGECSCP in GQG of (NC: 3D-RSP) 
 

In this subsection, we apply the same strategy, which 

we have seen in our previously works [12-14], under 

such particular choice, one can easily reproduce both L  

and L  to the new physical forms SL and SL , 

respectively, to obtain the new forms of  pert-gec , ,H r   

for 3D-NMGECSCP as follows: 
 

   1 2
so- 3

21
, , ,

2 2 22
gec

F
H r S

rr

  
 

   
       

   

L  (18) 

 

here S  denote the spin of one electron atoms and   is 

real constant, which can be play the role of fine struc-

ture constant in the electromagnetic interactions, thus, 

the spin-orbital interactions  pert- , ,gecH r   appear 

automatically because of the new properties of space-

phase. Now, it is possible to rewrite the above equation 

as follows: 
 

 

 

1 2
pert- 3

2 2 2

21
, ,

2 2 2 22

.

gec

F
H r

rr

J L S

  
 



   
        

   

  

(19) 

We have replaced the coupling SL  by new physical 

values  2 2 21

2
J L S  . As it well known, the eigenval-

ues j of the total operator J L S   can be obtains 

from the interval: 1 / 2 1 / 2l j l    , which allow us 

to obtaining the two eigenvalues of the opera-

tor  2 2 2
J L S  as follows: 

 

 

 

   

 

, , ( 1) ( 1) ( 1)

1 / 2, , 1 for spin_down,

  1
1 / 2, , for spin_down.

2

k j l s j j l l s s

k j l l s l

l
k j l l s





      

    


  
   



 (20) 

 

Then, one can form a diagonal ma-

trix  , ,so gecH r    of order  3 3 , with diagonal ele-

ments  
11so gecH  ,  

22so gecH  and  
33so gecH   as: 

 

 

 

 

1 2 1

3 211

1 2 1

3 222

33

21
if , 

2 2 22

21
 if ,

2 2 22

0.

so gec

so gec

so gec

F
H k j l

rr

F
H k j l

rr

H

  


  


 

 



   
         

   

   
         

   



 (21) 

 

After straightforward calculation, one can show 

that, the radial function    p

lR r  satisfying the follow-

ing differential equation, in GQG of (NC: 3D-RSP) 

symmetries for NMGECSCP: 

 

 

   
 

 
   

22
1

1 2

3

1 1
2

2 2
2 0 .

2 121

22 2 22 2

nc gecp
pl
l

E b F r r
rd R r

R r
l ldr F

rr r






 



   
         

   
  

  
     

  

L
L




 (22)  

 

In the next parts of this article we consider the 

term  pert-gec , ,H r  , as an infinitesimal part com-

pared of the principal part of Hamiltonian operator 

 ,gecH p x  for 3D- MGECSCP in ordinary quantum 

mechanics, this allows to apply standard perturbation 

theory to obtaining the nonrelativistic energy correc-

tions  , 1 / 2, ,gec dE p j l l s    and 

 , 1 / 2, ,gec uE p j l l s    corresponding  1 / 2j l   

and  1 / 2j l  of one electron atoms at first order of 

two parameters   and  . 

 

3.3 The Exact Spin-orbital Spectrum for 

NMGECSCP in GQG of (NC: 3D-RSP) Symmetries 
 

In order to find the nonrelativistic energy corrections  

 

 

, 1 / 2, ,

, 1 / 2, ,

gec d gec d

gec u gec u

E E p j l l s and

E E p j l corresponl ds ing

 

 

  

  
 

 1 / 2j l  and  1 / 2j l  of one electron atoms 

at first order of two parameters   and   we apply 

standard perturbation theory and through the struc-

ture constants which specified the dimensionality of 

NMGECSCP for one electron atoms, thus, we have the 

following results, in two typical varieties 0p   (ground 

states) and 1p  (first excited states). For the ground 

states case of 0p  we have: 
 

 

 
 

 
 

2 2 1 2

3

2 2 1 2

3

0
,

2 0
0

0
.

2 0
0

21
exp 2

2 2 22

21
exp 2

2 2 22

E pgec d
dr

a k

E pgec u
dr

a k

F
r r r

rr

F
r r r
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 (23) 
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Now, it is important to introduce the following four factors  0 1,4iT i   as follows: 

 

 

   

 

   

2 2 10 2
1

0 2 1 21
2

2 1 10 0 22
3 2 4
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exp 2
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 (24) 

 

On arranging eq. (23), we get our nonrelativistic en-

ergy levels  0E p
gec d




 and  0E p
gec u




at first or-

der of two parameters   and  for one-electron atoms 

as:  
 

 

 

 

32 0 0
0 4

32 0 0
0 4

0

0

,
1

.
1

i

i

E p
gec d

E p
gec u

a k T T
i

a k T T
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 (25) 

 

It is very important to calculate the four 

terms  0 1,4iT i  , to achieve this goal; we apply the 

following special integral [15]: 
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'
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 denote to the Parabolic cylinder 

functions function,    Gamma function  Re ' 0l    

and  Re 0l   . After straightforward calculations, we 

can obtain the results: 
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Further, the substitution of eq. (27) into eq. (25) en-

ables us to obtain the first quantum correction 

 0E p
gec d




 and  0E p
gec u




at first order of two 

parameters   and  for one-electron atoms as: 
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with  
3

0
0 ,

1
iT l T

i
  


. Allow us, the following im-

portant physical results: 

  
   

 
 

   
 

 
   

 

0

0

so-gec 0

0

0

, for 1 / 2

, , , ,

, for 1 / 2.

l m
l

l m
l

l m
l

E p
gec d

E p
gec u

R r
Y j l

R r r
H r Y

r R r
Y j l

r

 

  

 








  


  


 


 (29) 

For the first excited states case of 1p  :  

We have: 
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Now, it is important to introduce the following 12-

factors  2 1,12iT i   as follows: 
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On arranging eq. (30), we get our nonrelativistic en-

ergy levels  1E p
gec d




 and  1E p
gec u




at first order 

of two parameters   and  for one-electron atoms as:  
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To calculate the terms  1 1,12iT i  , we apply the 

special integral, which presented in eq. (26) to obtain: 
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Further, the substitution of equations (35), (36) and 

(37) into eq. (34), enables us to obtain the first quantum 

correction  1E p
gec d




 and  1E p
gec u




at first order 

of two parameters   and  for one-electron atoms as: 
 

 
      

      

1 1

1 1

1

1

, , ,

, ,

s p

s p

E p
gec d

E p
gec u

k T l T l

k T l T l

  

  

  

  

 


 


 

 
 (38) 

 

with  
9

1
1 , ,

1
s iT T

i
    


 and  

12
1

1 , ,
10

p iT T
i

    


. 

Allow us, the following important physical results: 

  
 

 
 

 
 

 
 

 

1

1

so-gec 1

1

1

, 1 / 2,

, , ,

, 1 / 2.

l m
l

l m
l

l m
l

E p
gec d

E p
gec u

R r
Y for j l

R r r
H r Y

r R r
Y for j l

r

 

  

 








 


  


 

 (39) 

 

3.4 The Exact Magnetic Spectrum for NMGECSCP in 

GQG of (NC: 3D-RSP) Symmetries 
 

On other hand, it’s possible to found another automatically 

symmetry for NMGECSCP related to the influence of an exter-

nal uniform magnetic field   , if we make the following trans-

formations to ensure that previous calculations are not reputed: 
 

    , ,           (40) 

 

Here   and   are two infinitesimal real proportional 

constants and further insight can be gained when we choose 

the magnetic field  k , then we can make the following 

translation: 

 1 2 1 2

3 3

2 21 1
.

2 2 2 2 2 2 22 2

F F
L L
z zr rr r

     
 
        

                    

  (41)  

 

Allow us to introduce the modified magnetic Hamiltonian 

operator   z-gec , ,  H r    for NMGECSCP P in global (NC: 

3D-RSP) as:  

 

    1 2
z-gec 3

21
, ,  .

2 2 22

F
H r J S

rr

  
  

  
           

 (42) 

 

Here  S   denote to the ordinary Hamiltonian of Zee-

man effect for 3D-NMGECSCP. To obtain the exact NC mag-

netic modifications of energy  z-gec 0,E p m  and 

 z-gec 1,E p m  corresponding ground states and first excited 

states for 3D-NMGECSCP, we replace 

both  1 / 2, ,k j l l s    and  into equations (28) and (38) 

by the discreet quantum number  m l m l     and new 

infinitesimal parameter  , respectively: 
 

 
      
      

2 0
z-gec 0 0 4

z-gec 1 1

0, , , ,

1, , , .s p

E p m a m T l T l

E p m m T l T l

   

    

   

   
(43) 
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However, very little has been achieved in the solution of 

3D-DSE for NMGECSCP. Thus, we can con conclude imme-

diately: 

 
          

          

2 0
z-gec 0 0 0 4

z-gec 1 1 1 1

, ,  , , , , , , ,

, ,  , , , , , , .

lm olm

lm s p lm

H r r a m T l T l r

H r r m T l T l r

         

          

   

   
 (44) 

 

4. RESULTS AND DISCUSSION OF GLOBAL SPEC-

TRUM FOR NMGECSCP IN GLOBAL (NC: 3D-RSP) 

SYMMETRIES  
 

We have solved the deformed radial Schrödinger equation 

and obtained the differences in the energy eigenvalues 

(  , 1 / 2, ,gec dE p j l l s   ,  , 1 / 2, ,gec uE p j l l s   )  and 

 z-gec ,E p m  for the 3D-NMGECSCP in equations (29), (39) 

and (44) which are produced automatically by the effects of 

spin-orbital interaction  pert-gec , ,H r   and new Zeeman 

effect  z-gec , ,  H r   , respectively. In the following, we sum-

marize obtained results of the modified energy levels 

 , , , ,
nc-d

E p j l s m and  , , , ,nc -uE p j l s m  of one electron 

atoms moving in 3D-NMGECSCP as provided in subsections 

(3.3) and (3.4), according to three equations (29), (39) and (44) 

the explicit bound state energies  takes the form for ground 

states and first excited states for one electron atoms: 

 

 

             

             

2 20 0
0 0 4 0 0 4

2 20 0
0 0 4 0 0 4

0

0

0, , , , , , , , ,
nc -d

0, , , , , , , ,nc -u

E p

E p

E p j l s m a k T l T l a m T l T l

E p j l s m a k T l T l a m T l T l

      

      





  

  

     

     

 (45) 

 

and 
 

 

             

             

2 20 0
0 0 4 0 0 4

2 20 0
0 0 4 0 0 4

1

1

1, , , , , , , , ,
nc -d

1, , , , , , , , ,nc -u

E p

E p

E p j l s m a k T l T l a m T l T l

E p j l s m a k T l T l a m T l T l

      

      





  

  

     

     

 (45) 

where  0E p and  1E p are ordinary energy for 

ground state and first excited states in ordinary quan-

tum mechanics which are determining numerically in 

the main reference [5]. On other hand, the total energy 

 nc-gec , , , ,E p j l s m  is the sum of the principal part of 

energy  E p   and the two corrections of energy 

(  , 1 / 2, ,gec dE p j l l s   ,  , 1 / 2, ,gec uE p j l l s   ), 

 z-gec ,E p m  and  ,z-gecE p m , this is one of the main 

motivations for the topic of this work. It is clear, that 

the obtained eigenvalues of energies are reals, which 

allow us to consider the NC diagonal Hamiltonian 

ˆ
nc gecH  as a Hermitian opera-

tor,  ˆ ˆH Hnc gec nc gec
 

  
 

 and regarding the pre-

vious obtained results (eq. (21) and eq. (42)), the new 

Hamiltonian operator with NMGECSCP for studied 

diatomic molecules takes the form at first order in 

 and , as:  

 

 

 

2
1 2

3

1 2

3

21
1 cos

2 22

21

2 22

ˆ
2 2

2
.

r

nc gec

FZe cr
br e eFr

r rr

F

rr

H S

J S


 



 









    
              

  
      


    

    

L

 (46) 

 

This is the equation of one-electron atoms under the in-

fluence of NMGECSCP interactions. It should be pointed out 

that this treatment considers only first order terms in either 

 or . It’s worth to note that the first part presents the 

Hamiltonian operator in the ordinary quantum mechanics for 

MGECSCP while the second and the third parts are respec-

tively present the spin-orbital and new Zeeman Hamiltoni-

ans operators for NMGECSCP which are induced automati-

cally by the NC properties of space and phase. Thus, the im-

portant result from this work is: 

 

        

        

        

gec so-gec z-gec

l

l

, , , , , ,

, , , , , , : 1 / 2z-gecso-d

, , , , , , : 1 / 2so-u z-gec

plm

plm

plm

H r H r H r r

E p E p j l s E p m r for j l

E p E p j l s E p m r for j l

     

 

 

  

     


 
    



 (47) 
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5. CONCLUSION 
 

In this paper, the energy levels  , , , ,
nc -d

E p j l s m  

and  , , , ,nc -uE p j l s m  of one electron atoms have 

been examined analytically  under 3D-NMGECSCP in 

the case of GQG of (NC: 3D-RSP) via the generalized 

Bopp’s method and standard perturbation theory, we 

briefly summarize what has been achieved in this 

reach work and comment on the outlook on future work 

that can follow from this paper: 

 We have reviewed the 3D nonrelativistic 

MGECSCP for one-electron atoms and the general-

ized Bopp’s method.  

 We have solved the 3D-DSE for its new bound 

states with 3D-NMGECSCP. 

 We hope to get some interesting applications to this 

new potential in the study of different fields of mat-

ter sciences, because our results are not only inter-

esting for the pure theoretical physicists but also for 

experimental physicists (various fields of physics 

such as plasma physics, nuclear physics, condensed 

matter physics, and atomic physics).  

 Regarding, our obtained results for new Hamilto-

nian operator ˆ
nc gecH  , which contain three im-

portant physical terms, and corresponding eigen-
values (  , , , ,

nc-d
E p j l s m and  , , , ,nc -uE p j l s m ), 

we can decelerate:  the high precision measurements 

of eigenvalues in ordinary quantum mechanical sys-

tems may be able to reveal the noncommutativity of 

space and phase simultaneously. 
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