JOURNAL OF NANO- AND ELECTRONIC PHYSICS
Vol. 10 No 2, 04003(8pp) (2018)

New Nonrelativistic Three-Dimensional Spectroscopic Studies of NMGECSC
Potential in Presence of External Electric

Abdelmadjid Maireche”

Laboratory of Physics and Material Chemistry, Physics Department, Sciences Faculty,
University of M'sila-M’sila Algeria

(Received 30 January 2018; revised manuscript received 14 August 2018; published online 25 August 2018)

In this work, we have investigated some aspects of the new more general exponential cosine screened
Coulomb potential (NMGECSCP) in noncommutative three-dimensional real space-phase (NC: 3D-RSP)
for one electron atoms through the generalized Bopp’s shift method in the framework of four infinitesimal
parameters G)(;() and 5(5) due to (space-phase) noncommutativity, by means of the solution of the de-

formed Schrodinger equation (DSE). The perturbation property of the spin-orbital Hamiltonian operator
H (r,@,?) and new Zeeman Effect operator H

s0—ges z—gec

(r,z,&) are investigated and the corresponding

energy eigenvalues E,. ., , (p,j:li1/2,l,s) and E

Z?ga,(p,m) are easily calculated. The new eigenval-
ues reduce to known results in quantum mechanics if (@,5 ) = (0,0) . We have shown also that, the global

quantum group (GQG) of (NC: 3D-RSP) reduce to new subgroup symmetry of NC three-dimensional real
space (NC: 3D-RS) under three-dimensional NMGECSCP interactions.
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1. INTRODUCTION

The more general exponential cosine screened Cou-
lomb potential (MGECSCP) are used to investigate
important interactions in various fields of physics such
as plasma physics, nuclear physics, condensed matter
physics, and atomic physics [1-5]. In view of what has
been mentioned, we would like to study the results of
the interactions of this potentials in a large space of
quantum mechanics, currently known by the noncom-
mutative quantum mechanics or extended quantum
mechanics, which known firstly by Heisenberg and was
formalized by Snyder at 1947, suggest by the physical
recent results in string theory [6]. Over the past few
years, theoretical physicists have shown a great deal of
interest in solving Schrédinger equation for various
potentials in NC space-phase to obtaining profound
interpretations at microscopic scale [7-11] and in par-
ticularly, our previously works in in (NC: 3D-RSP) [12-
14]. It is well known that, the notions of noncommuta-
tivity of space and phase based essentially on.

Seiberg-Witten map, the Bopp's shift method and
the star product, which modified the ordinary product
(fg)(x,p) to the new form (f *g)(x,p) at first order

of two infinitesimal antisymmetric constants tensors

2(9ﬂv,9ﬂvjzsk”‘/ (gk,ék) as (Throughout this pa-

per using atomic units A=e =m=1and z =1) [6-12]:

(f*g)(x,p):[fg—é&”vazfaffg+é§ﬂvazf6€g)(x,p). (1)
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PACS numbers: 11.10.Nx, 32.30 —r,
03.65 —w

The above equation presents the noncommutativity
effects of space and phase, allow us to obtaining the
following new non nulls commutators for NC coordi-
nate and momentum in GQG of (NC: 3D-RSP) symme-
tries as follows [11-14]:

A

[xyaf)/,]* = ia
0%l =10, @

(D, D, )i = 0.

[x

On the other hand, the studies of new more general
exponential cosine screened Coulomb potential
(NMGECSCP) for one electron atoms has attracted
wide attention. Motivated by the studies of M. K. Ba-
har in ref. [5] and others in this paper, we find the new
bound state solution of the time independent
Schrodinger equation for NMGECSCP in (NC: 3D-RSP)
model. However, the solutions of modified radial
Schrodinger equation for any angular momentum
quantum number ! , with NMGECSCP, for one electron
atoms, using generalized Bopp’s shift method in (NC:
3D-RSP) which is the aim of this paper, has not yet
been reported. The present paper consists of five sec-
tions. To make this present work self-contained, it is
organized as follows: In the second section, we have
briefly review the SE with 3D-MGECSCP. In the third
section, we shall briefly give the fundamental concepts
of the generalized Bopp's shift method, and then we
derive the deformed potential and NC spin-orbital
Hamiltonian operator for one-electron atoms with 3D-
MGECSCP. In the next step, we apply the perturbation
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theory to find the
Eqq (p,j =l—1/2,l,s) and E

gec—u

modified spectrum
(p,j =1+1/2,1,s)
corresponding of one-electron atoms at first order of

two parameters ® and g for n' excited stats and then
we end this section by deduce the spectrum

E, .. (n,re,De,m) produced automatically by the

external magnetic field. In section four, we resume the
global spectrum for NMGECSCP and we conclude the
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H ne—gee 11 GQG of (NC: 3D-RSP) symmetries. Finally,
section five is devoted to a brief summary and conclu-
sion.

2. REVIEW THE SPECTRUM OF 3D-MGECSCP
IN ORDINARY QUANTUM MECHANICS

The MGECSC potential in the presence of external
electric field F is considered for hydrogen like atoms [5]:

corresponding global NC Hamiltonian operator
1) 1 (1-c*-2bA
9 b - ; + ; + T r
Ve (1) = —Z—e(1+br)ef%1 cos(%}+eFr = —Ze? +eFr, 3)
© r

where b, cand A are the screening parameters of
MGECSC potential. The first part in eq. (3) is
MGECSC potential while the second part is contribu-
tion of external electric field on system. The radial

part R )(r) of the normalized wave functions

R (F)om -
Yo (7,6,0) = le (6,¢) for 3D-SE satisfied the

following equation for MGECSC potential in the pres-
ence of external electric field F' [5]:

2
d Rl(r)+(g_l(l+1)+2+a1r+a2r2JRl(r)=0, (4)
r

dr2 r2

\Pplm (r.0.9) =
. 2 1 .
with y* = —a,, B = 7.1 and S=1+1 while

(ao,al,...ap) can be calculated by using normalization

condition.

3. THEORETICAL FRAMEWORK

3.1 Theoretical Overview of Generalized Bopp’s
Shift Method in 3-dimensional Spaces-phases for
NMGECSCP

In order to obtain DSE in (NC: 3D-RSP) symme-
tries, we replace ordinary Hamiltonian opera-
torﬁ(pi,xi), ordinary complex function¥ (r,6’,¢),
ordinary energy E, and ordinary product by NC Ham-

iltonian operator H . (p;»%;), new complex function

¥ (?) , new energyE . and new  star

3c2 +3bA-3bc*A-1) ,
+ 3 r
61

where ansatzs are in the following form:

1-c¢2-2b2

5:2El+2b—g,a1: 2 +2F and
A A

) ) ®)
 3¢2+3bA-3bc?i-1

%= 342

With E, are the energy values. According to the
references [5], the complete orthonormalized wave
function v, (r.6.¢) for MGECSC potential in the

presence of external electric field F' in 3-dimensional
spaces, is given by:

aOexp[ﬂr-rgrzjr‘s’lYlm(H,(ﬁ) for p=0,

(ay+ayr) exp[[)’r + % r2jr‘5’11/l'” (0,¢) for p=1, (6)

product(*) , respectively. Allow us to writing the new
3D-DSE for NMGECSCP as follows [12-14]:

an—gec (ﬁi"’ei) *\P(?) = Enc—geclp<?)' (7)
The new Hamiltonian operator ﬁm,fgec (p; %) acts
on a suitable by (*) on the wave new complex function
\P(;) of the new system to give us the energy eigen-
values E

nc—gec

RSP) symmetries. It is important to notice that, the

of the new system energy in (NC: 3D-

new Hamiltonian operator ﬁncfgec (p;»%;) can be ex-
pressed in three general varieties: both NC space and
NC phase (NC: 3D-RSP), only NC space (NC: 3D-RS)
and only NC phase (NC: 3D-RP) as, respectively:
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.. ..
- PO ol 0, .
an—gec(Pivxi)EH p;=p;+ y xj;xi:xi_;]pj} for (NC: 3D-RSP),

)
; N . % (®
Hie-ge (Byo%;) = H | By = Pyt =3, for (NC: 3D-RS),
HnC—gep (piJCi) = H[Pi =p; +%xj;xi :xi} for (NC: 3D-RP).

To find the analytical solutions of the eq. (7) we must mechanics. In recently work, we are interest with the
apply the generalized Bopp’s shift method instead of solv- first variety in eq. (8). We may go a step further and
ing the 3D-DSE for NMGECSCP directly with (*) . we consider the Bopp’s method (modified by a shift), which
allows us to reducing the above DSE to new ordinary
form, in addition two fundamental translations of space
and phase which are presenting in eq. (9):

[35”,36‘,}=i¢9ﬂv and [ﬁ#,ﬁ&:iﬁw. ©) Hc?gec(f)i,ﬁi)y/(F)=Emfgecl//(?). (11)

treated by using directly the two commutators, in addition
to usual commutators on quantum mechanics [11-14]:

T

It isAwell knpwn, that the two new operators The new modified Hamiltonian angec ( B, ) that
(£,and p,) are given by the following Darboux trans-

formations [12-14]:

appears above is given by:

132

an—gec (i)/z"?ey):?—’_vgec (f‘) (12)

£ =x —Q”Vp andp =p, +-2
AN = Put g

X, (10)

The new potential V,, (#)in the GQG of (NC: 3D-

gec

The two variables (x , satisfy the usual canon- .
( " p") Y RSP) can be written as:

ical commutation relations in ordinary quantum

2 2 2
Vi (f)——{[b ‘/11)+1A+{H_22M+F—2F}+[3C +3b4-3bc 4_1}2}:_{() —}1}+1A+(0!1—2F)f+0;2f2}(13)

7 21 642 F

According to our references [12-14], we can write symmetries as follows:
the two operators (72 and p* ) in GQG of (NC: 3D-RSP)

f2zr2—I:6+O(9) and ﬁ2=p2+E6+O(§) with
o B B (14)
L®=L,0,+L,0,+L,0O;; and LO=L O12+L, 0x+L, 01

After straightforward calculations one can obtains equation represent the ordinary 3D-MGECSCP while
the rest terms, are produced by the deformations of

. 1 N 0!2 A9 .
the important terms (? ’ (0{1 —2F )r and?r ), which noncommutativity of space-phase. Now simultaneously

will be used to determine the NMGECSCP V,,, (#)in  transforming V,, () and 1—32/ 2gives the global per-

GQG of (NC: 3D-RSP) symmetries as follows: turbative potential operators H ., . (r,&,é) for 3D,
Lo MGECSCP in GQG of (NC: 3D-RSP) symmetries:
1 1 L6
c=—* .y +0 (9) y
o = 1 o-2F a,)-=
o -2F -2 HpertfgeC(r’g’e):7 3T o o |Le+
! Le+0(0), (15) 2r 2r 2

—_

a1—2F)f=(a1—2F)r— o ~ (17)
Lo —
Gage %2 gL 0(p), + +0(0.0).
2 2 2
Substituting, eq. (14) and eq. (15) (into eq. (13), one The above operator can be con51de:rlng of the sum of
gets the NMGECSCP V,,, (f) in GQG of (NC: 3D-RSP) v

et —gec (r,@,é) and the couplings%e. Since we are

symmetries as follows:

only interested in the corrections of order @ and @ , we

. 1 o —-2F o, .= : : : )

v, (r) -V, (r)— ! _2le. (16) can disregard the sgcond term in the perturbative op
erator H ¢ . (r ,9,9) .

It is clear that, the first term V.

e (r) in above
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3.2 3D-spin-orbital Hamiltonian Operators for
NMGECSCP in GQG of (NC: 3D-RSP)

In this subsection, we apply the same strategy, which
we have seen in our previously works [12-14], under
such particular choice, one can easily reproduce both L6
and L0 to the new physical forms e®SL andadSL,
respectively, to obtain the new forms of H r,0,0 )

for 3D-NMGECSCP as follows:

pert-gec (

=\ 1 o-2F a, 9| -~
Hso-gec (r9®56)=_a{(2r3_1—2J®—2} LS, (18)

here S denote the spin of one electron atoms and « is
real constant, which can be play the role of fine struc-
ture constant in the electromagnetic interactions, thus,

the spin-orbital interactions H (r,@,é) appear

pert-gec
automatically because of the new properties of space-

phase. Now, it is possible to rewrite the above equation
as follows:

Hip o (10,8 = _g{(;rs_%;flw_zzj@_ﬁ}x
«|7-L°-F)

We have replaced the coupling LS by new physical
values %(jz —Z2 - §2) As it well known, the eigenval-

1 a
E +b-=|+=+(a, -2F r+2r2}+
dZRl(p)(r)+2 ne—gec {[ ﬂj (al ) 9

dr2 [ 1 o

In the next parts of this article we consider the

termeert_geC(r,Qé’), as an infinitesimal part com-

pared of the principal part of Hamiltonian operator
H,. (p,x) for 3D- MGECSCP in ordinary quantum

mechanics, this allows to apply standard perturbation
theory to obtaining the nonrelativistic energy correc-
tions E,. a4 (p.j=1-1/21,s) and
E... (p,j =1 +1/2,l,s) corresponding (j :l—1/2)
and (j =1 +1/2) of one electron atoms at first order of

two parameters ® and 0.

Egee—q(p=0) +»
lagl*
Egec—u(pzo) s

‘a0‘2k+

“2F @ ig.

= (J) r2 exp(2ﬁr + yrz)

=[r® exp(2ﬂr + 7r2)
0

J. NANO- ELECTRON. PHYS. 10, 04003 (2018)

ues j of the total operator J =L +S can be obtains
from the interval:‘l —1/2‘ <j S‘l +1/2

, which allow us
to obtaining the two eigenvalues of the opera-
tor (:72 . §2) as follows:

k(j,1,s)=j(+D)+U1+1)—s(s+1) =
k_(j=1-1/21,s)=(I+1) for spin_down, (20)

k,(j=1+1/2,,s)=——= for spin_down.

Then, one can

tristofgec(

form a diagonal ma-
r,®,§) of order(3x3), with diagonal ele-

ments (H )22 and (H as:

so—gec )33

1 o-2F « 0|...
(Hso—gec)n :_ak+ {[_1_2j®—2}lfj :l+%,

(Hsn—gec) ak{(lM%JGB} ifj=1-1 (21)
22 2 2

(H )33 =0.

so—gec

so—gec )11 ’ (Hso—gec

After straightforward calculation, one can show
that, the radial function R\")(r) satisfying the follow-

ing differential equation, in GQG of (NC: 3D-RSP)
symmetries for NMGECSCP:

_ RP(r)=0. (22)
[o 1(i+1) Y
2 2r2

3.3 The Exact Spin-orbital Spectrum for

NMGECSCP in GQG of (NC: 3D-RSP) Symmetries

In order to find the nonrelativistic energy corrections
Epe'a=E, 4(p.j=1-1/21,)and

E =k

gecu gecu (p,j =1 +1/2,l,s)corresponding

(j =1-1/2)and (j =1+1/2)of one electron atoms

at first order of two parameters ® and 6 we apply
standard perturbation theory and through the struc-
ture constants which specified the dimensionality of
NMGECSCP for one electron atoms, thus, we have the
following results, in two typical varieties p =0 (ground

states) and p =1 (first excited states). For the ground
states case of p =0 we have:

(23)
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Now, it is important to introduce the following four factors Ti0 (i = 171) as follows:

o 1 +oo (26-2)-1 2
T = 5 | r exp(2ﬂr+;/r )dr,
Ty _—[ 22Fj | r¥ exp(Zﬂr+7/r2)dr (24)
Tg0 = a2T4° = j (25+1)- exp(2,6’r + 7r2)dr.
On arranging eq. (23), we get our nonrelativistic en- can obtain the results:
ergy levels E co—q (P=0) and E_, . (p=0)at first or-
& o_1 N B -2p
T, —*(—27) l“(2|)exp - — Py 77—
der of two parameters ® and 6 for one-electron atoms 2 2y -2y 27)
as: -2F ik -2
T, :_[LJ( 2y)r(21 +2)exp( )D,(M, —=
2 3 TO 7T0 2 2 ~%
Egec—d (p:O) = ‘ao‘ k. ®.§1 i T 0 4 (> . a, 2043 ﬂ2 -28
i= (25) T2 =T =—7(— 2y) 2 T(21 +3)exp| - 2 D_a123) N

2 3 0 =m0
Egec—u (p:O):‘ao‘ k, ®i§1Ti +0T, ¢

It is calculate the four

terms Ti0 (i

very important to

:171), to achieve this goal; we apply the
following special integral [15]:

+0

fx o

0

(% —'x)x = (Zﬁ')’%r(v)em( 8% JD[ % J (26)

where D_, [

7/|
28’

functions function, F(V) Gamma function Rel (,8'))0

j denote to the Parabolic cylinder

and Rel(v)O). After straightforward calculations, we

Further, the substitution of eq. (27) into eq. (25) en-
ables us to obtain the first quantum correction
Egec—d (p=0) and Egec_u (p=0)at first order of two

parameters ® and @ for one-electron atoms as:

Egec—d (p=0) = ‘a0‘2 k. {®TO (%l) + §T40 (7/,1)} s

2 _ (28)
Egec—u (p=0) = ‘ao‘ k, {®To (7, l) + 9T40 (7,1)} ,

with T} (y,1) = i T". Allow us, the following im-
1=1

portant physical results:

RZ(O) (r) n .
B Rz(o) (r) i Egec—d (p=0) " Y, (9,¢) for j=1-1/2
H,, . (r,@,e) - Y (6,4)= R(°>( ) , (29)
gec u (P=0)——— Y"(6,¢) for j=1+1/2.
For the first excited states case of p =1:
We have:
Egee_q(p=1) + 1 oa-2F « 0
d 2
g%T: (J) (a0+a1r) TZJQXp(Zﬂr“‘?’rZ){[zrﬁ—l o —;j@—z}dr, -

Egec—u (p=1) +»

ky

Now, it is important to introduce the following 12-

factors Ti2 (i = m) as follows:

2 +o0
T = % [ 2o exp(2ﬁr + yrz)dr
0

400 .
7 =204 I M exp(2pr + ) dr, (31)

7’;—"'1—1

} “exp (2ﬂr +yr? ) dr,

; 1 o-2F o 0
- (j) (ap+ar) r? exp(Zﬂrerrz){(z'ﬁ—l—2](5)—2}dr.

T, =

_a; [ 22Fj [ 2t exp(2,b’r+yr2)dr,

Ta‘l — ZGZMEOCI 22F] [ r(25+1)—1 exp(2ﬂr+7r2)dr, (32)
0

2 +00
1_ 4 [y -2F (26+2)-1 2
Ty = [2 ] (j) r exp(2ﬂr+7r )dr.
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2 400 1 ao2 o, —2F ~(1+1) ﬂz -2
a,a ) B _ -
T =, ) =~ 220 (j) r(251) 1exp(2ﬂr+;/r2)dr, = ( 2 j( 2T+ 2)e JD[ zijf(znz)[ /ij
[gj(—Z}/) 2 T(21+3) exp[ jD s 3[ 25 ](36)

Telz_aj(“l‘ZF](—zy)’“ “ (2I+4)exp( £ ]D @ 4>[J%J

ot
I
|
N
~ ‘oﬂ»
|

40
Ty =a, ) =—a,aa, | pl20+2)1 exp(2ﬂr + ;/rZ)dr, (33)
0

2 +00
Ty = a, T = —% I P29 exp(2[)’r + ;/r2)dr.
0

a,a,’ 2143 2 -2
T71=a2T110=,%(,27) 2 (21 +3)exp 7% D3 fzi

On arranging eq. (30), we get our nonrelativistic en-

ergy levels E =1) and E =1) at first order 2
gy lev ec—d (p=1) gec—u (p=1) Tl = a,Th = —aga, (- 27) *Ir(2s + Z)GXP[*%]QQM,[%J 37)
_ ¥ -
of two parameters ® and @ for one-electron atoms as: , | 5 2 .
a,’a 215 2 -
-|—91: 2T112=— 172 (-2 2 T(21+5)exp| — = |D_y1.5
9 1 “ 2 (%) (+)Xp( 27]( {ﬁ]
E oo g (p=1) =k @.z T'+0 ¥ T't,

i=1 1=10 (34) Further, the substitution of equations (35), (36) and
k. Tl 12 i (37) into eq. (34), enables us to obtain the first quantum
Egpey (p=1) =k 10 21 +0 _210 if correction E,,. ,(p=1) and E,, ., (p=1)at first order

. — of two parameters ® and 6 for one-electron atoms as:
To calculate the termsTil(z :1,12), we apply the P

special integral, which presented in eq. (26) to obtain: E gec—d (p=1) =k {®TH (7 y) ) +6 T, (7/ , l)}, 39)
T! =£(_2 )(")F(Zl)exp _ﬁ D Zﬂ gec u(p 1) k { (7’l)+9Tlfp (7’1)}
1 2 4 2 - T 2
2 7 25 ith 7, ,(7,6,8)= ST and T, ,(r.6.5)= 5 T}
1 3y - w1 s ,0, = i an _ ,0, = P
Ti= Zai( )( ] (2I+1)e><p( J (zm)[mj (35) 1-s \V & 1-p\7 i 40
) p 2 Allow us, the following important physical results:
1_ 8 ~(1+1) v -
T3 - 2 ( 27) r(2|+2)exp[ zij(ZHZ)[\/Ty}
Rzl (r) m .
_\ R} (r) m Egecfd (p=1)le (0.¢) for j=1-1/2,
H,, o (1.0,0) . Y (0,4) = B (39)
1 r m .
By :1)le (6.4) for j=1+1/2.
3.4The Exact Magnetic Spectrum for NMGECSCP in (9,5)—>()(» g) N (40)
GQG of (NC: 3D-RSP) Symmetries
On other hand, it’s possible to found another automatically Here y and o are two infinitesimal real proportional

symme.try for NMGECSCP Lela?ced to the influence Of. an exter- constants and further insight can be gained when we choose
nal uniform magnetic field N, if we make the following trans- the magnetic field N =Nk , then we can make the following

formations to ensure that previous calculations are not reputed: translation:

2], %_ﬂ_ﬁ AN I B 2 A MR N (41)
2| \or or 2) 2| 2 2r® or 2) 2] =
Allow us to introduce the modified magnetic Hamiltonian 3D-RSP) as:
operator Hz,gec(r, 7, 5) for NMGECSCP P in global (NC:

-\ 1 o-2F o, P G —
Hz-gec(r’Z, U)—(X[M_W—Z\J‘FZJ(NJ—SN) (42)
Here (—§§) denote to the ordinary Hamiltonian of Zee- by the discreet quantum number m(—l sm<+l ) and new

man effect for 3D-NMGECSCP. To obtain the exact NC mag- infinitesimal parameter y , respectively:
netic modifications of energy E, (p=0,m) and

E =0,m) =la,|* m{ 4T, (7,0)+ oT2 (7,0)} N,
E, s (p = l,m) corresponding ground states and first excited ” gec( m) ‘ao‘ m{)( 0 (7/ ) ‘ (}/ )}

states for 3D-NMGECSCP, we replace E, ge(p=1m)= m{;(Tl_s (r.0)+ ng—p (7’1)} N
both &, (j =1 +1/2,l,s) and® into equations (28) and (38)
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However, very little has been achieved in the solution of
3D-DSE for NMGECSCP. Thus, we can con conclude imme-

Hz-gec (7‘,/}{, g) \IlOlm (7‘,9,¢) = ‘ao‘zm{ZTO (7’Z)+ET4O (771)}N\Polm (7‘,9,¢)’

J. NANO- ELECTRON. PHYS. 10, 04003 (2018)

diately:

(49)

H, .. (r,;(, E) Wi, (1.0,0) = m{;(Tl_s (7,[) +ng_p (7,[)} NY,,, (7.0,9).

4. RESULTS AND DISCUSSION OF GLOBAL SPEC-
TRUM FOR NMGECSCP IN GLOBAL (NC: 3D-RSP)
SYMMETRIES

We have solved the deformed radial Schrédinger equation
and obtained the differences in the energy eigenvalues

(Ege (p,j :Z—1/2,l,s),Egec7u (p,j =1+1/2,,s)) and

E, ..(p,m) for the 3D-NMGECSCP in equations (29), (39)
and (44) which are produced automatically by the effects of

spin-orbital interaction H r,@,é) and new Zeeman

pert-gec (

effect H,

L_gec(r, X ;), respectively. In the following, we sum-
marize obtained results of the modified energy levels
E .q(p.j.l,s,m)and Epc y(p.j,l,s,m) of one electron
atoms moving in 3D-NMGECSCP as provided in subsections
(3.8) and (3.4), according to three equations (29), (39) and (44)
the explicit bound state energies takes the form for ground
states and first excited states for one electron atoms:

EnC d (p = O,j,l,s,m) = E(p=0)+ ‘%‘2 k. {@TO (y,l)+ §T40 (}/,l)} +‘a0‘2 m{;(TO (;/,l)+ET4O (}/,l)} N,
(45)
EHC -u (p = Ovjalyszm) = E(p=0)+‘a0‘2 k+ {®T0 (7,[)+§T40 (y’l)}+‘a0‘2m{ZT0 (}/,l)+(;T4O (}/’l)}z~¢
and
Epo q(p=14Lsm)=E(p=1)+|a k{OT, (1,)+0T{ (r.0)} +|ao| m{ 2T, (7.0)+ oT7 (. )},
(45)

Ene u(p=1j,0,8,m)=E(p=1)+|a,|" k, {@T0 (7,0)+0T? (7,1)} +a m{;{TO (7.0)+0Ty (m)}x,

where E (p=0)and E (p=l)are ordinary energy for

ground state and first excited states in ordinary quan-
tum mechanics which are determining numerically in
the main reference [5]. On other hand, the total energy

E ¢ gec (p,j,l,s,m) is the sum of the principal part of
and the two corrections of energy

p,j=1 +1/2,l,s)),

energy E (p)

(Egecﬂ (pa.] =l—1/2,l,8), Egec—u(

E, e (p,m) and E;_gqc (p,m), this is one of the main

motivations for the topic of this work. It is clear, that

nc—gec

2 r

This i1s the equation of one-electron atoms under the in-
fluence of NMGECSCP interactions. It should be pointed out
that this treatment considers only first order terms in either
®ord. It’s worth to note that the first part presents the
Hamiltonian operator in the ordinary quantum mechanics for

H Z[—A—Zez(1+br)e%cos(jj+eFrJ+0{21—M—%+9] LS+

the obtained eigenvalues of energies are reals, which
allow us to consider the NC diagonal Hamiltonian

S

H as a

ne—gec Hermitian

opera-

. . +
tor, (an—gec :(an—gec) j and regarding the pre-

vious obtained results (eq. (21) and eq. (42)), the new
Hamiltonian operator with NMGECSCP for studied
diatomic molecules takes the form at first order in

® and @ , as:

(46)

MGECSCP while the second and the third parts are respec-
tively present the spin-orbital and new Zeeman Hamiltoni-
ans operators for NMGECSCP which are induced automati-
cally by the NC properties of space and phase. Thus, the im-
portant result from this work is:

{Hoe ()4 H oy (r.0.0)+ H, o (7.2.0)} ¥, (7. 0.9)

{El (P)+Eg 4 (p.j,1,s)+Eq.gec (p,m)}‘PpZm (r.0.¢) for:j=1-1/2

(47

{El (P)+Es0-u(Pajal’s)"'Ez-gec (p,m)}‘l’plm (r,0,¢) for:j=1+1/2
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5. CONCLUSION

In this paper, the energy levels E .4 (p.j.l,s,m)

and Ep. . (p.j,l,s,m) of one electron atoms have

been examined analytically under 3D-NMGECSCP in
the case of GQG of (NC: 3D-RSP) via the generalized
Bopp’s method and standard perturbation theory, we
briefly summarize what has been achieved in this
reach work and comment on the outlook on future work
that can follow from this paper:
= We have reviewed the 3D nonrelativistic
MGECSCP for one-electron atoms and the general-
ized Bopp’s method.
= We have solved the 3D-DSE for its new bound
states with 3D-NMGECSCP.
= We hope to get some interesting applications to this
new potential in the study of different fields of mat-
ter sciences, because our results are not only inter-
esting for the pure theoretical physicists but also for
experimental physicists (various fields of physics
such as plasma physics, nuclear physics, condensed
matter physics, and atomic physics).
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