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1. INTRODUCTION 
 

The modified Kratzer-type potentials have the gen-

eral features of the true interaction energy, inter atom-

ic and dynamical properties in solid-state physics and 

play an important role in the history of molecular 

structures, molecular physics and interactions, fur-

thermore, this potential offered one of the most im-

portant exactly models of atomic and molecular physics 

and quantum chemistry, on another hand, the MKP 

can be describe the interaction between two atoms and 

have attracted a great of interest for some decades in 

the history of quantum chemistry, the interactions of 

atoms and molecules like ( N2 , CO , NO , CH ) can be de-

scribed in terms of a MKP using the time-independent 

Schrödinger wave equation [1 – 5]. And in view of what 

has been mentioned, we would like to study the results 

of the interactions of this potentials in a large space of 

quantum mechanics, currently known by the noncom-

mutative quantum mechanics or extended quantum 

mechanics, which known firstly by Heisenberg and was 

formalized by Snyder at 1947, suggest by the physical 

recent results in string theory [6]. Motivated by these, 

over the past few years, theoretical physicists have 

shown a great deal of interest in solving Schrödinger 

equation for various potentials in NC space-phase to 

obtaining profound interpretations at microscopic scale 

[7 – 12] and in particularly, our previously works [13 –

 15]. The notions of noncommutativity of space and 

phase based essentially on Seiberg-Witten map, the 

Bopp's shift method and the star product, which modi-

fied the ordinary product    ,fg x p  to the new form 

  * ,f g x p on the first order of two infinitesimal an-

tisymmetric parameters    
     2 , ,k

kk as 

(Throughout this paper the atomic units i.e. 

 1c are employed) [7 – 11]:  
 

        


  

 
       

 
* , ,

2

x x p pi
f g x p f g f g x p , (1)  

 

where        * , * ,f g x p f g fg x p  and 

 ( ), denotes the two antisymmetric constants ten-

sors. The above equation presents the noncommutativi-

ty effects of space and phase, then, on based to eq.(1) 

we can be obtaining the following new non nulls com-

mutators for noncommutative coordinate x̂  and the 

momenta p̂  in GQG of (NC: 3D-RSP) symmetries as 

follows [12 – 15]: 
 

       * *
ˆ ˆˆ ˆ[ , ] and [ , ]x x i p p i . (2) 

 

On the other hand, although the three-dimensional 

NMKP has attracted wide attention, this is not the 

case for the two dimensional NMKP, the two dimen-

sional NMKP has been studied for example in [13], 

thus, the purpose of the present work is extend our 

work in ref. [13] from (NC: 2D-RSP) model to (NC: 3D-

RSP) model on base to the main references [4, 5] to find 

out what will happen for three-dimensional nonrelativ-

istic spectrum if effects of noncommutativity of both 

space and phase are considered for NMKP  and to dis-

cover the new spectrum of energy and a possibility to 

obtain new applications in different fields of matters 

sciences. However, the solutions of modified radial 
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Schrodinger equation for any angular momentum 

quantum number l , with NMKP, using Bopp’s shift 

method in symmetries (NC: 3D-RSP) which is the aim 

of this paper, has not yet been reported. The present 

paper consists of five sections. The rest content of this 

study is regulated as follows: In the second and the 

third sections, we have briefly review the SE with 3D-

MKP and we shall briefly give the fundamental con-

cepts of the Bopp's shift method and then we derive the 

deformed potential  ˆkpV r and NC spin-orbital Hamil-

tonian operator   so-kp , ,H r for NMKP, in the next 

step, we apply the perturbation theory to find the modi-

fied spectrum  kp , , ,E n j l s for thn excited stats and 

then we end this section by deduce the spectrum 

 mag-kp , , ,eE n r m produced automatically by the ex-

ternal magnetic field. In section 4, we resume the glob-

al spectrum for NMKP and we conclude the corre-

sponding global NC Hamiltonian operator 
ˆ
nc kpH in 

GQG of (NC: 3D-RSP) symmetries. Finally, section five 

is devoted to a brief summary and conclusion. 

 

2. REVIEW THE SPECTRUM OF  3D-MKP IN 

ORDINARY QUANTUM MECHANICS  
 

Let us present a brief review the ordinary energy 

eigenvalues for MKP in order to understand the paral-

lels between this and noncommutative theories and to 

gives a guides us to our new energy eigenvalues, the 

radial part  nlR r  of    , ,nlm r  for three-

dimensional SE satisfied the following equation [4, 5]: 
 

 

   

 
 

 

2
2

2

1
2 0,

22

nl nl

nl nl

d R r dR r

r drdr

l l
E V r R r

r




 

 
    
 
 

 (3) 

 

where n and l are denotes the principal quantum and 

orbital angular momentum quantum number , respec-

tively, while the MKP is given by: 
 

  
 

     
 

2

2

e
e e

r r A B
V r D D

r r r
 (4) 

 

with  2 e eA D r , 
2

B D re e  and   represents the re-

duced mass of the two interacting particles. Neverthe-

less, the above potential can be consider as a particular 

case from the general form of the following Mie-type 

potential  V rmt [1 – 3]: 

     
 

    
    
     

b a
r ra be e

V r Dmt e
b a r b a r

 (5) 

 

when  2a  and 1b  are substituted into eq. (5), we 

obtain eq. (5). According to the references [4, 5], the 

complete orthonormalized wave function 

   , ,rnlm and energy eigenvalues Enl for MKP are 

given by: 
 

 

   

 
     


 



 
 

 





 
 

 


  

 
 
 

 
 
 

3/2
8

, ,
2 1

1/2 1
1! 2 exp / 2 ,

2 1 !

D re e
rnlm

n

n
r r L r Yn lm

n n

(6) 

 

and 
 

 

     


 





 



   
 
 
 

1

2

2
2 2

4 1 2 1 4 2 1

E Denl

D r n D r l le e e e

 (7) 

 

where  k
nL r  stands for the associated Laguerre 

functions, while the factor 

      21 8 ( 1) / 2e eD r l l . 

 

3. THEORETICAL FRAMEWORK  
 

3.1 Theoretical Overview of Bopp’s Shift 

Method in Three-dimensional Space-phase 
 

In order to obtain modified Schrödinger equation 

(MSE) which play a major role in (NC: 3D-RSP) sym-

metries, we replace ordinary Hamiltonian opera-

tor  ˆ ,i iH p x , ordinary spinor   r  and ordinary en-

ergy nlE  and ordinary product by NC Hamiltonian 

operator  ˆ ˆ ˆ,i iH p x , new spinor   r  and new ener-

gy nc kpE  and new star product   , respectively. Allow 

us to writing the new 3-D MSE for NMKP as follows 

[11 - 14]:  
 

        


ˆ ˆ ˆ,H p x r E r
nc kpi i

 (8) 

 

 The new Hamiltonian operator  ˆ ˆ ˆ,i iH p x   acts on 

a suitable by star product on the wave function of the 

system   r   to give us the energy eigenvalues of the 

system nc kpE  energy in (NC: 3D-RSP) symmetries. It 

is important to notice that, the new Hamiltonian oper-

ator  ˆ ˆ ˆ,i iH p x  can be expressed in three general vari-

eties: both NC space and NC phase (NC: 3D-RSP), only 

NC space (NC: 3D-RS) and only NC phase (NC: 3D-RP) 

as, respectively: 
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 

 

  RP)-3D :(NCfor                    ˆ;
2

ˆˆˆ,ˆˆ

RS)-3D :(NCfor                          
2

ˆ;ˆˆˆ,ˆˆ

RSP)-3D :(NCfor          
2

ˆ;
2

ˆˆˆ,ˆˆ

















































ixix
j

x
ij

ipipHixipkpncH

jp
ij

ixixipipHixipkpncH

jp
ij

ixix
j

x
ij

ipipHixipkpncH







 (9) 

 

To find the analytical solutions of the eq. (8) we 

must apply the Bopp’s shift method instead of solving 

the MSE directly with star product; we treated by us-

ing directly the two commutators, in addition to usual 

commutators on quantum mechanics [12 – 15]: 
 

      ˆ ˆ,x x i and      ˆ ˆ ,p p i  (10) 

 

It is well known, that the two new operators 

( x̂ and p̂ ) are given by the following Darboux trans-

formations [8 – 13]: 
 

 

     

 
   ˆˆ and

2 2
x x p p p x  (11) 

 

The two variables   ,x p  satisfy the usual canon-

ical commutation relations in quantum mechanics. In 

recently work, we are interest with the first variety in 

eq. (9). We may go a step further and consider the 

Bopp’s method (modified by a shift), which allows us to 

reducing the above MSE to new ordinary form, in addi-

tion two fundamental translations of space and phase 

which are presenting in eq. (8): 
 

        ˆ ˆ,nc kp i i nc kpH p x r E r (12)  

 

The new modified Hamiltonian  
ˆ ˆ,nc kp i iH p x that 

appears above is given by: 
 

     


  
2ˆ

ˆ ˆˆ,
2

nc kp kp

p
H p x V r  (13) 

 

The new potential  ˆkpV r in the GQG of (NC: 3D-

RSP) can be written as: 
 

      
2

2
ˆ

ˆ ˆ

e e e e
kp e

D r D r
V r D

r r
 (14) 

 

According to our references [13 – 15], we can write 

the two operators 2r̂  and 2p̂  in GQG of (NC: 3D-RSP) 

as follows:  
 

         L L
2 2 2 2ˆ ˆ  and  r r O p p O  , (15) 

 

where 12 23 13x y zL L L     L  and 

12 23 13x y zL L L    L . After straightforward calcu-

lations one can obtains the important two terms (
1

r̂
 

and 
2

1

r̂
), which will be used to determine the NMKP 

 ˆkpV r  in GQG of (NC: 3D-RSP) symmetries as follows: 

 

         
L L2 2

3 2 2 4

1 1 1 1
 and 

ˆ ˆ2
O O

r r r r r r

 
.(16) 

 

Substituting, eq. (16) into eq. (14), one gets the 

NMKP  ˆkpV r in GQG of (NC: 3D-RSP) symmetries as 

follows: 
 

 
   

           
   

L
2 2

2 3 4
ˆ

2

e e e e e e e e
e

D r D r D r D r
V r D
kp r r r r

 .(17) 

 

It is clear that, the first three terms in above equa-

tion represent the ordinary MKP while the rest terms 

are produced by the deformations of space-phase non-

commutativity. Now simultaneously transforming 

 ˆkpV r  and 


2
ˆ

2

p
gives the global perturbative potential 

operators   pert-kp , ,H r for NMKP in GQG of (NC: 3D-

RSP) symmetries: 
 

 

 

 .

2

, ,pert-kp 3 4
2

,
2

 

 


  

  

 
 
 
 

D r D re e e eH r
r r

O
L

L




 (18) 

 

The above operator can be considering of the sum of 

   , ,pert kpV r  and


L

2


 .Since we are only interested in 

the corrections of order   and , we can disregard the 

second term in   pert-kp , ,H r . 

 

3.2 Three-dimensional Spin-orbital Hamiltonian 

Operators for NMKP in GQG of (NC: 3D-RSP) 
 

In this sub-section we apply the same strategy, 

which we have seen in our previously works [13 – 15], 

under such particular choice, one can easily reproduce 

both L  and L  to the new physical forms 

SL and SL , respectively, to obtain the new 
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forms of   pert-kp , ,H r  for NMKP as follows: 

 

 

   so-kp pert-kp

3 4

, , , ,

.
22

H r H r

A B
S

r r

   

  




 

  
    

  
L

 (19) 

 

Here S  denote the spin of molecular and   is real 

constant, thus, the spin-orbital interactions 

  pert-kp , ,H r  appear automatically because of the 

new properties of space-phase. Now, it is possible to 

rewrite the above equation as follows: 
 

      
 



  
      

  

2 2 2

pert-kp 3 4
, ,

2 22

A B
H r J L S

r r
.(20) 

 

We have replaced the coupling LS  by new physical 

values   
2 2 21

2
J L S . As it well known, the eigenval-

ues j of the total operator  J L S  can be obtains 

from the interval    l s j l s , which allow us to 

obtaining the eigenvalues 

       , , ( 1) ( 1) ( 1)k j l s j j l l s s  of the opera-

tor   
2 2 2

J L S . After straightforward calculation, 

one can show that, the radial function  nlR r  satisfy-

ing the following differential equation, in GQG of (NC: 

3D-RSP) symmetries for NMKP: 

 
   

 
 

 

 
    
 
   
  
    
  
  

L
L

2

2 2ˆ ˆ2
2 0 

2 2 1

3 4 222 2

D r D re e e eE Denl rd R r dR r rnl nl R r
nlr dr l ldr D r D re e e e

r r r




. (21) 

 

In the next parts of this article we consider the 

term   pert-kp , ,H r , as an infinitesimal part compared 

of the principal part of Hamiltonian operator 

 ,kpH p x  for 3D-MKP in ordinary quantum mechan-

ics, this allows to apply standard perturbation theory 

to obtaining the nonrelativistic energy corrections 

 , , ,kpE n j l s of molecular at first order of two parame-

ters   and  . 

3.3 The Exact Spin-orbital Spectrum for NMKP 

in GQG of (NC: 3D-RSP) Symmetries 
 

In order to find the differences in the energy spectrum 

 kp , , ,E n j l s
, we use perturbation theory up to first 

order in   and  and through the structure constants 

which specified the dimensionality of NMKP of molecu-

lar, which is sufficient to obtain differences in the en-

ergy, thus, we have the following results: 
 

 

 
   

 

   

3
8 !

, , , , ,
kp 2 1 2 1 !

221
exp .

3 4 20 2

μD r ne eE n j l s k j l sr
n η n η n η

D r D r θη η e e e er r L r θ drn
μr r


    




   

  
  

    

   
       

   

 (22) 

 

If we introduce the following factors  1 , ,eT n r , 

 2 , ,eT n r  and  3 , ,eT n r  as: 

 

        

        

        

1 1

1

2 12
2

2 1

3

2
, , exp ,  

2
0

2
, , exp ,

0

2
, , exp .

0

e e
e n

e e e n

e e e n

D r
T n r r r L r dr

T n r D r r r L r dr

T n r D r r r L r dr

 

 

 







 

 

 


  


 


  

 (23) 

 

Then, the nonrelativistic energy levels 

 kp , , ,E n j l s  at first order of two parameters   and 

 for molecular will expressed as a function of the pre-

viously factors as: 
 

 
  

     

3
8 !

, , ,
kp 2 1 2 1 !

2
, , , , , , .321

D r ne eE n j l s
n n n

k j l s T n r T n re ei
i



  


  



  
   

        

 
 

 

 (24) 

 

It is very important to calculate the three 

terms     , , 1,3i eT n r i , to achieve this goal; we apply 

the following special integral of hypergeometric func-

tion [16]: 

 

      
   

   
 

           
  

               
    

1 11. exp , , ; , 1;1. 3 2! ! 1 10

n m
t t L t L t dt F m nm n

m n
, (25) 
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where          3 2 , , ; , 1;1F m n  denote to the 

hypergeometric function, it’s a particular case from the 

generalized hypergeometric se-

ries          , , ; , 1;1q pF m n for p  3 and q  2, 

which gives the three factors  1 , ,eT n r , 

 2 , ,eT n r and  3 , ,eT n r after straightforward calcula-

tions, as follows: 

 

 
   

   
 

 
   

   
 

 
   

   
 

1 3 2

2
2 3 2

3 3 2

2 1
, , , 1, 1; 1, 1;1 ,

22 ! 2 1

3 1
, , , 2, 2; 2, 1;1 ,

2! 3 1

1 1
, , , 2,2; 2, 1;1 .

2! 1 1

e e
e

e e e

e e e

n nD r
T n r F n n

n

n n
T n r D r F n n

n

n n
T n r D r F n n

n


   




   




   



    
         

  

    
        

  

    
        

   

 (26) 

 

We have         1 2 ! , then, the term 

 3 , ,eT n r v  will be zero. Further, the substitution of eq. 

(28) into eq. (26), enables us to obtain the first quan-

tum correction  , , ,kpE n j l s  of energy levels of all 

bound states in three dimension as: 
 

 
 

   

   

3
8 !

, , ,
kp 2 1 2 1 !

, , , ,

D r ne eE n j l s
n n n

k j l s T n r vr enc skp



  




    




  
  

      (27) 

 

with          1 2, , , , , ,nc skp e e eT n r T n r T n r .Thus, the 

GQG of (NC: 3D-RSP) reduce to new sub-group sym-

metry (NC: 3D-RS) for NMKP. 

 

3.4 The Exact Magnetic Spectrum for NMKP in 

GQG of (NC: 3D-RSP) Symmetries 
 

On the other hand, it’s possible to found another 

automatically symmetry for NMKP related to the in-

fluence of an external uniform magnetic field  , if we 

make the following transformations to ensure that pre-

vious calculations are not reputed: 
 

    , ,   .      (28) 

 

Here   and   are two infinitesimal real propor-

tional’s constants and further insight can be gained 

when we choose the magnetic field  k , then we 

can make the following translation: 
 

 

2

2

.

3 42 22

3 4 22

e

e

D r De e e Lz
r r

D r De e e Lz
r r

r

r

 









   

   

   
  
   

  
   

  

 (29) 

 

Allow us to introduce the modified magnetic Hamil-

tonian operator  
ˆ
m kpH  in global (NC: 3D-RSP) as:  

  





  
          

  

2

3 4
ˆ

22

e e e e
m kp

D r D r
H J S

r r
 (30) 

 

Here   S  denote to the ordinary Hamiltonian of 

Zeeman Effect. To obtain the exact NC magnetic modi-

fications of energy  m-kp , , ,eE n r m  for NMKP, we re-

place both  , ,k j l s  and  in the eq. (27) by the dis-

creet quantum number     m l m l  and new infin-

itesimal parameter  , respectively: 
 

 

 

   
 

3
8

, , ,
m-kp 2 1

!
, ,

2 1 !

D re eE n r me
n

n
mT n renc skpn n


 




 

 
  

  

 
       

 (31) 

 

However, very little has been achieved in the solu-

tion of MSE for studied potential NMKP. 

 

4. RESULTS AND DISCUSSION OF GLOBAL 

SPECTRUM FOR NMKP IN GLOBAL (NC: 3D-

RSP) SYMMETRIES 
 

We have solved the modified radial Schrödinger 

equation and obtained the differences in the energy 

eigenvalues  kp , , ,E n j l s and  mag-kp , , ,eE n r m for the 

NMKP in Eqs. (27) and (31) which are produced auto-

matically by the effects of spin-orbital interaction 

  pert-kp , ,H r and new Zeeman effect 
ˆ
m kpH , respec-

tively, in the following, we summarize obtained results 

of the modified energy levels  nc-kp , , , ,E n j l s m of mo-

lecular moving in NMKP as provided in subsections 3.3 

and 3.4, according to three equations (7), (27) and (31) 

the explicit form for  nc- kp , , , ,E n j l s m  is then:

 

 

      

   
    

 



  

  

 
        

  
 

  
             

2
1 2 2, , , , 4 1 2 1 4 2 1

nc -kp 2

3
8 !

, , , ,
2 1 2 1 !

E n j l s m D D r n D r l le e e e e

D r ne e k j l s m T n renc skpn n n

 (32) 
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On the other hand, the total energy 

 nc-kp , , , ,E n j l s m  is the sum of the principal part of 

energy ,rn lE   and the two corrections energy 

 kp , , ,E n j l s and  mag-kp , , ,eE n r m , this is one of the 

main motivations for the topic of this work. It’s clear, 

that the obtained eigenvalues of energies are reals, 

which allow us to consider the NC diagonal Hamiltoni-

an 
ˆ
nc kpH as a Hermitian opera-

tor,  
 

  
 

ˆ ˆH H
nc kp nc kp

 and regarding the previ-

ous obtained results (eq. (21) and eq. (33)), we can re-

write, up to first order in  and , as: 

  
2 2 2

ˆ
2 2 3 4 2 3 4 22 2

,
D r D r D r D r D r D re e e e e e e e e e e eH D S J S

nc kp r er r r r r

    
  

      
      
      

      
      


               


L

 (33) 

 

which is the equation of a molecular under the influ-

ence of MKP. It should be pointed out that this treat-

ment considers only first order terms in either  or , 

it’s worth to note that the first part presents the Ham-

iltonian operator in the ordinary quantum mechanics 

for MKP while the second and the third parts are re-

spectively present the spin-orbital and new Zeeman 

Hamiltonians operators which are induced automati-

cally by the NC properties of space and phase.  

 

5. CONCLUSION 
 

In this paper, we have studied the new bound state 

solutions of the MSE under NMKP new interactions in 

the case of GQG of (NC: 3D-RSP) via the Bopp’s meth-

od and standard perturbation theory, we briefly sum-

marize what has been achieved in this reach work and 

comment on the outlook on future work that can follow 

from this paper: 

We have reviewed the 3-D nonrelativistic MKP for 

molecular and the Bopp’s method.  

-We have solved the MSE in 3D space-phase for its 

new bound states with NMKP plus the new 

part   pert-kp , ,H r  . 

 Our approach allows us to re-derive new Hamilto-

nian operators 
ˆ
nc kpH  (which contains two new per-

turbative terms: the first one is spin-orbital interaction 


ˆ
so kpH while the other is new Zeeman effect 

ˆ
m kpH ) 

and corresponding new energies eigenvalues 

 nc -kp , , , , .E n j l s m  

We hope to get some interesting applications to this 

new potential in the study of different fields of matter 

sciences, because our results are not only interesting 

for the pure theoretical physicists but also for experi-

mental physicists (solid-state physics, the history of 

molecular structures molecular physics 

( 2N ,CO ,NO ,CH ,) and interactions).  

Our results obtained are in exact agreement with 

those obtained in previously working [13].  

t should be noted that the results obtained in this 

research will be identical with corresponding results in 
ordinary quantum mechanics when the two parame-

ters   ,  are reduced to  0,0 . 
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