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A mathematical model is developed to determine the force impacts that are formed when the electro-

magnetic field is transformed into a field of ultrasonic oscillations in the skin layer of an electrically con-

ductive ferromagnetic material of an anisotropic magnetic permeability. The main factors determining the 

excited acoustic field with allowance for permissible limitations are established. It is shown that the main 

contribution to the acoustic vibrations energetics is made by the magnetostrictive component of the skin 

layer material, in which the high-frequency electromagnetic field is transformed into an acoustic field. 
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1. INTRODUCTION 
 

Magnetic materials are the basic materials of mag-

netoacoustics, microwave engineering, magneto-optics 

and spintronics. Nanostructuring of volumetric materi-

als allows controlling their characteristics in a wide 

range. Nanocrystalline ferromagnetic soft magnetic 

materials with low coercive force and ultra-high per-

meability are most frequently used. The effect of mag-

netoresistance in film multilayer materials makes it 

possible to create on their basis high-sensitive heads 

for magnetic disks, which read information in comput-

ers. When developing technology for the formation of 

both bulk nanostructured materials and film multi-

layer instrumental structures, it is necessary to control 

their physical properties by non-destructive testing 

methods. When developing such methods, an urgent 

task is to create ultrasonic frequency sensors for the 

study of nanocrystalline ferromagnetic materials. 

In [1], in a general form, the problem of electro-

magnetic excitation of elastic oscillations in the micro-

thick layers (films) of ferromagnetic metals with the 

corresponding boundary conditions was formulated and 

solved, where a linear approximation of the phenome-

nological theory of magnetostrictive phenomena was 

used. It is shown that the mathematical model of the 

transformation process of electromagnetic energy into 

acoustic one in the skin layer of metal must take into 

account the coherence of the elastic and magnetic fields 

in the volume of the dynamically deformed micro-thick 

layer of an electrically conductive ferromagnet. At the 

same time wave-length of an excited elastic wave will 

be significantly larger than skin-layer thickness, there-

fore providing almost constant within cross-section 

stress-deformed state of metal layer. Boundaries are 

determined at which the increase in the mechanical 

rigidity of the preliminarily magnetized ferromagnet 

due to the coupling effect of the elastic forces and the 

forces of the magnetic interaction be-tween the poles of 

the domains in the deformed thin layer of the ferro-

magnet can be ignored. 

At the same time in order to create the physical ba-

sis for thin material surface layer investigation sensor 

design, by-layer method included, using, for example, 

frequency change of active electromagnetic field, it is 

re-quired to define the force parameters affecting skin-

layer area of given size, in turn defining most of im-

portant attributes of excited acoustic field. 

 

2. PROBLEM STATEMENT 
 

Let us consider a model of an electromagnetic 

transducer (Fig. 1), in which the source of alternating 

magnetic field (position 1) is formed from N turns of 

wire, which is laid in concentric circles in a flat coil. 

The height of the coil is b, inner and outer radii of lay-

ing turns are R1 and R2 correspondingly. The coil 1 is 

placed in vacuum at the distance of δ over the ferro-

magnetic metal layer (of 2h thickness) surface 2. Inside 

the layer 2 a constant magnetic field is created. Mag-

netic induction vector is completely defined by its axial 

component  0
zB , which is a constant in circular area 

0Rρ , where 20 RR  . 

 

 
 

Fig. 1 – Model design scheme (1 - alternating magnetic field;  

2 - layer of ferromagnetic metal) 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
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When alternating electric current   tieIti 
0  

flows through the coil turns, axisymmetric alternating 

magnetic field appears in the skin layer of the metallic 

ferromagnetic plate with vector  tzH ,,ρ


 which 

intensity varies in time according to the law tie   with 

the amplitude value  zH ,ρ


, where ρ , z  are the 

coordinates of the point in the cylindrical coordinate 

system (  ,  , z ), the plane 0z  which is aligned 

with the middle plane of the layer. The cumulative 

effect of alternating and constant magnetic fields gen-

erates in a volume and on the surface of the ferromag-

netic layer the Lorentz forces and magnetostriction 

forces, which we will henceforth call the Joule forces. 

 

3. ANALYSIS OF THE FORCE FACTORS THAT 

ARE FORMED BY THE ELECTROMAGNETIC 

TRANSDUCER IN THE SKIN LAYER AND IN 

THE VOLUME OF THE FERROMAGNET 
 

In order to perform a comparative evaluation of the 

above-mentioned force factors, we determine the ampli-

tude values of the radial  zH ,
  and axial  zH z ,  

components of the intensity vector of alternating mag-

netic field in the ferromagnetic plate. Let us consider 

alternating magnetic field in the region No.1, where

 zh . The amplitude value of the intensity vector 

of alternating magnetic field in this region is denoted 

by the symbol    zH ,1 


. In the region No.1 there are 

external currents with a surface density  
0

1 JeJ 


 , 

where e


 – a unit vector of the circular axis of the po-

lar angles, and 0J
 
– a surface density of the external 

current, herewith 
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where the regulatory functions  1f  and  zf 3  

have the following properties: 
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Let us introduce the vector potential  zA ,


, where 

       zHzBzArot ,,, 1
0

1 


 . In this case, 

from the first Maxwell equation JHrot


  the equa-

tion for the vector potential follows, which in extended 

shape can be written as 

 

            zffJzAzAzAzA zz 3100,,2, ,,
1

,
1

, 





   ,  (2) 

 

For the vector potential  z,A   boundary condi-

tions are to be met: 
 

        0,;,;,lim ,, 


zAzAzA z
r

  ,  (3) 

 

where 22 zr     is the distance to the source. 

To solve the equation (2) let us use the direct 

Hankel transform. 
 

      



0

1,,   dJzAzA ,  (4) 

 

where  1J  is Bessel function of the first order – the 

core of the integral transformation;  is a parameter of 

the integral transformation (real number, determined 

on a half-open interval  ,0 ). The original image 

 z,A 
 of the unknown function corresponds to the 

integral image  z,A 
, which is determined from the 

known value  z,A 
 as a result of the implementation 

of the inverse integral Hankel transform of the follow-

ing form 
 

      



0

1,,   dJzAzA . (5) 

 

Let us influence the (2) equation by the direct trans-

formation (4) receiving 
 

      zRzAzA zz ,,, 0
2

,    ,  (6) 

 

where      zfRzR 3,   ;    RW
b

NI
R ,0 


  ;  
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 ;  

          jjjjj RRJRRJR  1001 HH  ,   

2,1j ;  jRH   1;0  – Struve function of 

power series. 

The solution for the equation (6), which meets the 

boundary conditions (3), is as follows 
 

         zz ezBBezAAzA 
   0, , (7) 

 

where 
 

     2000 2,  heWNIA  ;   
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The way the function  ,W  changes defines in 

fact the lower integration limit when performing the 

reverse Hankel transform in accordance to (5). Analyz-

ing the  ,W  function behavior can show thet in case 

of 102 R  it has extremely low values for real induc-
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tive coil sizes. Therefore integration by (5) on the inter-

val  ,2R  has no significant impact on reverse 

Hankel transform. Thus, instead of infinity as upper 

integration limit in (5) values 2max 10 R  can be used. 

When 3

2 105,2 R  m we have 4000max  . 

Varied constants  zA  and  zB  are defined tradi-

tionally 
 

     



z

h

xdxeW
NI

zA






,

2 2

00 ,  

     



z

h

xdxeW
NI

zB






,

2 2

00 .  

 

where    zRxR ,,   .  Symbol B  in (7) marks the 

constant to be defined. Obviously, when  hz  the 

varied constants     0 zBzA . 

As       0
1 ,,  zArotzH


 , then the amplitudes 

of the components of the intensity vector of alternating 

magnetic field in the half-space hz   are determined as 

follows: 

     zAzH z ,
1

, ,

0

1 


   ,   

 

       








 zAzAzH z ,,

11
, ,

0

1 


  .  (9) 

 

Let us determine the integral images of the compo-

nents of the intensity vector of alternating magnetic 

field according to Hankel with the following expres-

sions 

        



0

1
11 ,,   dJzHzH , (10) 

        



0

0
11 ,,  dJzHzH zz . (11) 

Influencing on (9) by the integral transformations 

(10) and (11), we obtain 
 

          zz ezBBezAAzH 





  0

0

1 , , (12) 

          zz
z ezBBezAAzH 




  0

0

1 , .  (13) 

 

It follows from the computational formulas (12) and 

(13) and from the definitions of the variable constants

 zA  and  zB  that at  hz  the expressions for 

calculating integral images  z,H 
 and  z,H z   take 

the following form 
 

     zz BeeAzH 





  0

0

1 , ,   

     zz
z BeeAzH 




  0

0

1 , . (14) 

 

Let us determine the expressions for calculating the 

amplitude values  zH ,
  of the components of the 

intensity vector of alternating magnetic field in the 

volume of a magnetized ferromagnet. 

The Maxwell equations in the volume of a conduct-

ing ferromagnet are written in the following form 
 

    zJzHrot ,,   


,   
 

    zBizErot ,,   


, (15) 
 

where    zJezJ ,,  
 


 is an amplitude value of 

the vector density of the eddy current conductivity; 

 zE ,


 is an amplitude of the intensity vector of the 

eddy electric field;    zHezB ,,  



 


  

( z,,   ; 1 ; 3z ) is an amplitude value of 

the vector of magnetic induction; e


 is a unit vector of 

the cylindrical coordinate system. 

Since    zErzJ ,, 0  
  , where 

0r  is a specific 

electric conductivity, then the system of equations (15) 

becomes a vector equation of the following form 
 

       0,, 2   zHriezHrotrot  




, (16) 

 

where  zHrot ,



 is a circumferential component of 

the rotor of the intensity vector of an alternating mag-

netic field in the volume of a ferromagnet. 

Assuming that the matrix of the magnetic permea-

bility tensor of a magnetized ferromagnet has a diago-

nal form, that is   kjkjk  , and taking into account 

the equivalence relations between the symbols of the 

axes of Cartesian and cylindrical coordinate systems  

( 1 ; 2 ; 3z ), we obtain from the vector 

equation (16) two scalar equations of the following form 

 

       0,,, 10,,   zHrizHzH zzzz   ,  (17) 

 

            0,,,,,
1

30,,,,   zHrizHzHzHzH zzzzz 



 .  (18) 

 

Let us define the integral images  z,H 
  and 

 z,H z   by the identical expressions (10) and (11) of 

the relations, that is, 

 

      


 
0

1,,   dJzHzH , (19) 
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0

0,,  dJzHzH zz .  (20) 

 

Applying the integral transformation (19) to the 

equation (17), and the equation (18) to the transfor-

mation (20) we obtain a system of ordinary differential 

equations of the following form 

 

       0,,, 10,,   zHrizHzH zzzz   ,  (21) 

 

       0,,, 30
2

,   zHrizHzH zzz  
 .  (22) 

 

From the equation (22) it follows that 
 

    zH
ri

zH zz ,, ,

30
2





 




 .  (23) 

 

Substituting expression (23) into equation (21), we 

obtain 
 

     0,, 2
,   zHzH zz   , (24) 

 

where     330
2

1
2 ri  is a square of the 

complex wave number. 

The solution for the equation (24) would be 
 

   zz DeCezH 
 

 , ,  (25) 

 

where C and D are the constants to be determined. 

Substituting expression (25) into the definition (23), 

we obtain a formula for calculating the integral image 

of the axial component of the intensity vector of alter-

nating magnetic field in the volume of a ferromagnetic 

plate 

    zz
z DeCezH 








  

3

1, ,  (26) 

 

The alternating magnetic field in region No.2, 

where hz  , satisfies Maxwell's equations in 

vacuum, from which the vector equation follows 
 

       0,, 22
0

2  zHkzHrotrot 


,  (27) 

 

where   zH ,2 


 is an amplitude value of time-varying 

according to law 
tie 

 intensity vector of the magnetic 

field; 00
22

0 k ; mH /104 7
0

   и 

mF /1085,8 12
0

  are magnetic and dielectric con-

stants. From the vector equation (27) there follow two 

scalar equations 
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0

2
,

2
,  zHkzHzH zzzz   , (28) 
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As before, let us define the integral images of the 

vector components   z,H 2


 by the following Hankel 

transforms 
 

        



0

1
22 ,,   dJzHzH ,  (30) 

 

        



0

0
22 ,,  dJzHzH zz .   (31) 

 

Applying the integral transformation (30) to the 

equation (28), and the transformation (31) to the equa-

tion (29), we obtain the following system of ordinary 

differential equations 
 

            0,,, 22
0

2
,

2
,  zHkzHzH zzzz   , (32) 

 

          0,, 2
,

22
0

2  zHzHk zz   .  (33) 

 

From the equation (33) it follows that 
 

       zH
k

zH zz ,, 2
,2

0
2

2 



 


 .   (34) 

 

Substituting expression (34) into the equation (32), 

we obtain an equation for determining the integral 

image   z,H 
2 : 

 

          0,, 22
0

22
,  zHkzH zz   ,  (35) 

 

The main contribution to the numerical values of 

the inverse Hankel transform is made by fragments of 

the integrand at the values  1500500 , . The latter 

allows us to state that at frequencies of hundreds of 

kilohertz – units of megahertz a strong inequality is 

always realized 2
0

2 k . Then the solution for the 

equation (35) in the area hz   is as follows: 

 

    zeMz,H 
  2 , (36) 

 

where M is a  constant. Applying (36) to the defini-

tion (34) considering that 2
0

2 k  we receive 

 

    z
z eMz,H  2 . (37) 

 

The constants B, C, D and M from boundary condi-

tions on surfaces hz   

 

      01   h,Hh,H  
,  
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1
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      0,, 2  hHhH   ,   
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      0,, 2
03  hHhH zz  .   (38) 

 

The system of equations (38) is solved for constants 

to be defined in the only way. 
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where   
011 1  ;   

012 1  . 

Let us consider the case in which 2Rh  . In this 

case, the ferromagnetic layer can be considered as a 

half-space (Fig. 2). Between the axial coordinates z 

(Fig. 2) and z (Fig. 1) there is an obvious relationship:

hzz  . When h : 

 

    
 01

0 ,,



















ze

W
NI

zH ,  

 

    
 013

10 ,,


















z

z

e
W

NI
zH .  (40) 

 

 
 

Fig. 2 – The model representation in the case of 
2Rh   

Unknown functions  zH  ,  and  zH z
 ,  are 

determined by the inverse Hankel transformations, 

that is, 
 

      


 

0

1   dJz,Hz,H   
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.  (41) 

 

Substituting the expressions (40) into the transfor-

mations (41), we obtain the following calculation for-

mulas for physical components of the complex-valued 

components of the intensity vector of alternating mag-

netic field: 
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,  (42) 

 

where 2Rx   is a dimensionless integral transfor-

mation parameter;     3
2
230

2
1 Rrix   is a 

dimensionless complex wave number; 
2Rzz   is a 

dimensionless axial coordinate; is a set of dimension-

less geometric parameters of the source of alternating 

magnetic field, that is, the set of values 12 
R , 

211 RRR  , 2R  , 2Rbb  ; 
2R   is a 

dimensionless radial coordinate. The symbol 

2Rx maxmax   defines the value, which is determined 

from   ,W . 

By the formulas (42) calculations were made with 

the value of 20maxx . In this case, the integral was 

replaced by the algebraic sum of the mean values of the 

integrands within each section. When performing the 

calculations, the following parameters were recorded:: 
3

2 105,3 R m; 21 5,0 RR  ; 25,0 Rb  ; 21,0 R ; 

AI 600  ; 10N ; 031 30   ; 

mH7
0 104   ; mmSr 150  . 

On the surface of a ferromagnet, with small nega-

tive values of the axial coordinate z , the nature of the 

variation of the real values of the components 

 zH  ,  and  zH z
 ,  in the region 02 R  can 

also be explained by the Fig. 3. The dashed curve in 

Fig. 3 shows the power line of alternating magnetic 

field. At each moment of time and at any point in the 

space, the vector  zH  ,


 is oriented along the tan-

gent to this line. 

With further immersion into the depth of the 

ferromagnetic half-space, the real values of the 

components  zH  ,  and  zH z
 ,  rapidly decrease 

to zero, after which the sign of the real part of alternat-

ing magnetic field is inversed. As the cyclic frequency 

increases, the plane
0zz   of zero values (the sign in-

version plane) of the real value of the intensity vector 

components of alternating magnetic field begins ap-

proaching to the plane 0z  . In addition, in the region 

0zz0   with frequency increase, there is an in-

crease in the real values of the radial component 

 zH  ,  and a decrease in the actual values of the 
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axial component  zH z
 , . This can be interpreted as 

"flattening" or squeezing out the alternating magnetic 

field of the inductor from the volume of a current-

conducting ferromagnet. Obviously, all these effects are 

due to eddy currents conductivity  zJ  , , which 

generates alternating magnetic field  zH  ,


 in the 

volume of a layer of a current-conducting ferromagnet. 
 

 
 

Fig. 3 – To the explanation of the features of the change in 

the values of the intensity vector components of the magnetic 

field of the inductor 
 

From the first equation of the system of Maxwell's 

equations (15) it follows that 
 

    zHrotzJ   ,,  


,  (43) 

 

where  zHrot  ,


 is a circumferential component of 

the vector  zHrot  ,


. Substituting the expression 

(42) into the definition (43), after performing the differ-

entiation operation under the integral sign, we obtain 

the following expression for calculating the real part of 

the complex value  zJ  , : 
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The analysis of the calculations results using 

formula (44) allows to conclude that the plane coordi-

nate
Jz0
  of zero values of the real part of the complex 

density of the eddy current of conductivity does not 

coincide with the plane coordinate 0z  of the inversion of 

the sign of the real values of the components of the 

intensity vector of alternating magnetic field. 

Ponderomotive effect of electromagnetic field over a 

metallic sample is defined by surface densities of Max-

well forces     ti
z

M
z eHBt 

  0,, 0   and 

    ti
zz

M
zz eHBt  0,5,0, 0  , where  0,

H  

 z,   are amplitude values of the components of 

the intensity vector of alternating magnetic field in the 

volume of the metal, determined on the surface 0z  

of a metallic half-space. 

The amplitude values of the components of the vec-

tor of the volume density of Lorentz forces are deter-

mined by the following expressions

   zJBzf z
L   ,, 0   ,   0, zf Lz  , where 

 zJ  ,  is an amplitude value of the surface density 

of the eddy current conductivity. 

In a ferromagnetic metal, in addition to the defor-

mations that are created by the ponderomotive action 

of the electromagnetic field, deformations appear due 

to the direct magnetostrictive effect or Joule effect. 

These deformations can be associated with Joule forces 

or magnetostrictive forces that are on the surface and 

in the volume of a ferromagnet. The surface density of 

Joule forces is determined by the following expressions: 
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21 
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If 0
3

0
zz HB  , where 0

zH  approximately corre-

sponds to the magnetic field at the middle of the region 

of irreversible displacements of the domain walls on 

the initial magnetization curve [2], then the following 

estimate of the magnetostrictive constants is made: 

mHm 1,01  , 212 mm  . 

In the volume of a ferromagnet, the Joule forces are 

characterized by a volume density vector   tiD ezf  ,


, 

for which the amplitude values of components are de-

termined by the following expressions: 
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Amplitude values of the surface densities  zD
z ,   

and  z,D
zz   are given by the relations (45), in which 

instead of the values  0,
H   z,   it is neces-

sary to use the components  zH  , . The surface den-

sities of the Joule forces  zD ,   and  zD ,  are 

defined as follows:    zz DD  ,,    

   zHBm zz
  ,0

32  . 

After determining the Hankel integral images of the 

amplitude values of the intensity vector components of 

alternating magnetic field and the eddy current con-

ductivity in the volume of a ferromagnet, we can write 

the relations for calculating the integral images of the 
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force factors that are in the skin layer and in the vol-

ume of magnetized, anisotropic based on magnetic 

properties metal, and which are sources of ultrasonic 

waves 

а) ponderomotive forces of the electromagnetic field 
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b) surface and volume Joule forces: 
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Expressions (51) and (52) are written under the as-

sumption that   . Indeed, with moderate specific 

electrical conductivity mmSr 100   and magnetic 

permeability m5031 1077,330     the 

product is MHzfr 9
30 1037,2  , where MHzf  is the 

value of the cyclic frequency in megahertz, in this case 
72

max
2 106,1   .  

The ratio   MHzfr 3
30

2 1075,6   decreases 

with increasing frequency and becomes significantly 

less than unity, starting at a frequency of 100 kilo-

hertz. For this reason   3030
22 riri   and 

 10
2 ri , provided that   . 

It follows from the calculated formulas (48) - (52) 

that 
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If the magnetostrictive constants m1 and m2 are not 

less than mH /1,0 , then

mH /1077,330 5
03

  , the ratio of the surface 

densities of the ponderomotive forces of the electro-

magnetic field and the Joule forces, determined by 

expressions (53), take the following values 

    41003,5  
D
z

M
z  and 

    41077,3  D
zz

M
zz . Since the ratio of bulk 

densities is       4
213 1003,52  mmff DL 

 

, it can be concluded that with a correctly selected 

magnetization field of the ferromagnet, the Joule forc-

es, namely the direct magnetostrictive effect, is the 

dominant mechanism for the formation of deformations 

in the electromagnetic method of excitation of ultrason-

ic waves in ferromagnetic metals. Naturally, there are 

no magnetostrictive effects in the non-ferromagnetic 

metals and the only mechanism for excitation of ultra-

sonic waves is the ponderomotive force of the electro-

magnetic field. 

Obviously, the surface densities of Joule forces

  
D
z  and   D

zz  in the given model situation depend 

on the radial variable   in the same way as the com-

ponents  0,
H  and  0,

zH . In other words, they 

change on the surface 0z  in the same way as the 

dependences under the numbers 1 in Fig. 4 and Fig. 5. 

From this obvious fact it follows that at frequencies 

when the sign of alternating magnetic field is reversed

kHzf 100  and 0  a strong inequality is satis-

fied     
D
zz

D
z  . 

The real parts of the volume density vector compo-

nents of Joule forces are determined by the following 

expressions 
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The formula (54) allowed to calculate and investi-

gate the changes in radial and axial volumetric Joule 

force density vector components for the case of altering 

magnetic field, which changes with frequencies of 

100 kHz and 1 MHz. The value of the magnetic induc-
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tion of the bias field is T10 zB . Magnetostrictive con-

stants are mHm 1,01  , 212 mm  . As in the 

calculations of the magnetic field distributions and the 

eddy current of conductivity, a pronounced skin effect 

is clearly observed. The eddy currents in the volume of 

the ferromagnet push the magnetic field of the inductor 

to the surface of the current-conducting half-space. The 

layer thickness, in which noticeable values of the com-

ponents of the bulk density of Joule's forces are ob-

served, decreases sharply with increasing frequency. 

Since the axial component of the intensity vector of the 

alternating magnetic field decreases faster than the 

radial component, the radial component of the Joule 

force volume density vector in an axially magnetized 

ferromagnet increases somewhat, and the values of the 

axial component practically do not change with increas-

ing frequency. It is quite clearly seen that the levels of 

the axial component of the bulk density vector are al-

most 30 times smaller than the values of the radial 

component. Thus, the following inequality 

   zfzf D
z

D  ,,  is satisfied at frequencies 

kHzf 100  and with 0 . Within the framework of 

the studied model it can be stated that the elastic de-

formations of a ferromagnet are mainly created by the 

radial components of the surface and bulk Joule forces, 

that is, components   
D
z

 and  z,f D 
. 

From the analysis of the presented model studies it 

also follows that the force impact that appears when 

the electromagnetic field is transformed in the field of 

ultrasonic vibrations in the skin layer of ferromagnetic 

metals, are formed in a small region with a radial di-

mension that does not exceed   243 R . The latter 

makes it possible to apply integral transformations 

along a radial coordinate, for example, when solving 

problems of electromagnetic excitation of harmonic 

Rayleigh waves. 

 

CONCLUSIONS 
 

1. The physical principles of the creation of non-

contact ultrasonic frequency sensors are developed, 

which convert a high-frequency controlled electromag-

netic field into the field of elastic oscillations in the 

volume of a dynamically deformed micro-thick layer of 

an electrically conductive ferromagnet, taking into 

account the coupling of elastic and magnetic fields that 

allow the non-contact control and determination of the 

physical properties of nanostructured and film materi-

als with the help of ultrasonic waves. Expressions for 

the force factors calculation that appear during the 

electromagnetic excitation of ultrasonic waves in the 

current-conducting axially magnetized skin layer of a 

ferromagnet are determined explicitly. 

2. It is shown that the main contribution to the 

physical transformation is made by the ponderomotive 

forces of the electromagnetic field and the Joule forces, 

which correspond to elastic deformations appearing as 

a result of the demonstration of a direct magnetostric-

tive effect in the micro-thick layer of a ferromagnetic 

metal. With an optimal choice of the magnitude of the 

constant bias field, the Joule forces are almost four 

orders of magnitude greater than the ponderomotive 

forces produced by the electromagnetic field. It was 

established that the surface and bulk Joule forces par-

ticipate in the same degree in the formation of dynamic 

deformations of an axially magnetized ferromag-net. 

3. The inverse proportional relationship between the 

frequency of the electromagnetic field and the thickness of 

the skin layer of the ferromagnetic material in which the 

transformation takes place, allows maintaining layer-by-

layer control and determining the physical and elastic 

properties of the material by changing the frequency of 

the current feeding the sensor. 

4. It is established that the radially oriented Joule 

forces in an axially magnetized thin surface layer of a 

ferro-magnet at frequencies of the order of one megahertz 

are almost thirty times greater than axially oriented forc-

es and that means that they dominate during the for-

mation of ultrasonic high-frequency oscillations. 

 

 

Физические основы создания бесконтактных ультразвуковых частотных сенсоров для  

исследования нанокристаллических ферромагнитных материалов 
 

С.Ю. Плеснецов1, Р.П. Мигущенко1, О.Н. Петрищев2, Г.М. Сучков1, А.Л. Хрипунова1 

 
1 Национальный технический университет «Харьковский политехнический институт», ул. Кирпичева, 2, 

61002 Харьков, Украина 
2 Национальный технический университет Украины "Киевский политехнический институт  

им. И. Сикорского", пр. Победы, 37, 03056 Киев, Украина 

 
Разработана математическая модель по определению силовых воздействий, формируемых при 

преобразовании электромагнитного поля в поле ультразвуковых колебаний в скин-слое электропро-

водного ферромагнитного материала анизотропного по магнитной проницаемости. Установлены ос-

новные факторы, определяющие возбуждаемое акустическое поле с учетом допустимых ограничений. 

Показано, что основной вклад в энергетику акустических колебаний вносит магнитострикционная со-

ставляющая материала скин-слоя, в котором происходит преобразование высокочастотного электро-

магнитного поля в акустическое. 
 

Ключевые слова: Математическая модель, Преобразование полей, Граничная задача, Скин-слой 

металла, Ферромагнетик, Электропроводный материал, Упругие колебания, Электромагнитное поле, 

Силовое воздействие. 
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Фізичні основи створення безконтактних ультразвукових частотних сенсорів для  

дослідження нанокристалічних феромагнітних матеріалів 
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Розроблено математичну модель по визначенню силових впливів, які формуються при перетво-

ренні електромагнітного поля в поле ультразвукових коливань в скін-шарі електропровідного феро-

магнітного матеріалу анізотропного по магнітній проникності. Встановлено основні фактори, що ви-

значають збуджене акустичне поле з урахуванням допустимих обмежень. Показано, що основний вне-

сок в енергетику акустичних коливань вносить магнітострикційна складова матеріалу скін-шару, в 

якому відбувається перетворення високочастотного електромагнітного поля в акустичне. 
 

Ключові слова: Математична модель, Перетворення полів, Гранична задача, Скін-шар металу, Фе-

ромагнетик, Електропровідний матеріал, Пружні коливання, Електромагнітне поле, Силовий вплив. 
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