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In the Hartree-Fock approximation peculiarities of the effect of electron-electron interactions in a 

quantum-dimensional object are analyzed. It is established that a self-energy nΣ  has the sawtooth de-

pendence on the Fermi level position or on the size of an object as a result of the size quantization effect. 

The smaller the size of nano-objects, the more pronounced oscillations of nΣ . And secondly, the smaller 

the size of nano-objects, the less the electron-electron interaction. 
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1. INTRODUCTION 
 

An electronic structure that is a solution of the sta-

tionary Schrödinger equation is the fundamental charac-

teristic of problems of electronics. Sometimes it is 

enough to know such structure in the framework of the 

mean field approximation, ignoring an electron-electron 

interaction. But often the electron-electron interaction 

must be taken into account because it can essentially 

determine the behavior of physical properties of the ma-

terials. Recently, the effect of the electron-electron inter-

action became a subject of intense researches in so-called 

quantum-dimensional objects (see. e.g., [1]), in which the 

size at least in one of the crystallographic directions is of 

the same order as the wavelength of an electron. Such a 

spatial limitation causes a dimensional quantization of 

the electron spectrum. The easiest realization of a 

quantum-dimensional object is the spatial redistribution 

of charge on contact between two different media. If one 

of them is a solid and another is a liquid, charging of the 

metal surface is compensated by the charge of the oppo-

site sign, which is concentrated in the nanosized region 

of the liquid medium. This redistribution of the charge is 

called a double electron layer. 

A similar formation - the so-called inversion layer - 

occurs at the contact of two condensed matter. The in-

version layer is a charged nanosized near-surface do-

main. As an example, in a MOS-structure (metal-oxide-

semiconductor) (e.g. [2]), the carriers are localized in a 

potential well formed by the surface of the semiconduc-

tor barrier and the electrostatic potential of the bulk 

charge. 

Such layers, as well as their created potentials, play 

an important role in the various physical phenomena. 

In particular, materials with them allow us to create 

entirely new, different from traditional, high-capacity 

energy storage system – supercapacitors [3]. There is a 

need to establish the role of electron-electron interac-

tion in the nanoscale structures. This problem is par-

ticularly intensively studied in the transport phenome-

na, e.g. in transport through a nano-wire [4], through a 

nano-MOSFET [5], through a quasi-one-dimensional 

quantum dot [6] through a shuttling nanoisland [7] and 

others. 

The theoretical description of the electron-electron 

interaction in nanoobjects uses different methods and 

approaches: different versions Greens functions tech-

niques [5, 8], different versions of Hartree-Fock-method 

[9, 10] with various models of nano-objects: particles in 

the box [11], elliptical and bowl-like potentials [12] and 

others. 

The above-mentioned double electron layers or in-

version layers are spatially confined structures with 

dimensions commensurable with a de Broglie wave-

length of the carriers, and as a result, an electron spec-

trum has sharply pronounced discrete character in con-

trast to the quasi-continuous spectrum in allowed zones 

of an ideal crystal. Taking into account the practical 

use such objects, the search for a deeper understanding 

of their physical properties are relevant.  

Here we propose a model of such objects to study of 

the electron-electron interaction in them taking into 

account peculiarities of their one-electron spectrum. 

How, how much, and under what conditions such pecu-

liarities are important is the goal of this paper. 
 

2. MODEL 
 

A model of infinitely deep potential is often used to 

describe different phenomena in real-space-confined 

structures. Thus, such a model was used to describe the 

ground and first excited levels in heterostructure InAs / 

AlSb [13]. Such a step was justified by the fact that in 

the 15 nm InAs layer the ground and first excited lev-

els, measured from the bottom of its conduction band 

are ~ 60 and 200 meV respectively, while the distance 

between the conduction bands of the heterointerface is 

~ 1.35 eV, that is considerably greater than in the dis-

crete levels. This model is applicable to describe double 

layers [14] or inversion layers in semiconductors [15]. 

We use infinitely deep potential in this paper. 

Figure 1 shown the real potential and the potential 

simulated by infinitely deep potential well for inversion 

layer. Analytical solutions of the problem of "particle in 

the infinitely deep well" are known [16], namely, the 

wave functions are 
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Fig. 1 – Diagrams of one-dimensional inversion potential: real 

(above) and simulated (below) 
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and the eigenvalues are 
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where n is a number of the discrete levels 1, 2, 3,...n= . 

Solutions of the problem "particle in the infinitely 

deep well" can be also used in the case of the finite 0U  

provided that U0  En. This condition to a greater ex-

tent is performed on the ground and the lowest excited 

quantum states. On the other hand, at low surface (in-

terfacial) concentration of carriers, electrons fill these 

states. From the viewpoint of applied problems, in par-

ticular, of the tunneling current calculation and optical 

properties of nanostructured systems, the distance be-

tween the ground and first excited states in the quan-

tum well is important. 

 

3. CALCULATIONS, RESULTS, AND DISCUS-

SIONS 
 

Let’s begin with the second-quantized form of the 

electron Hamiltonian with two-body interaction. The 

treatments will be similar to the widely used scheme in 

an ideal crystal. But in our task we choose, as basis 

wave functions, solutions of the problem of "particle in 

the infinitely deep well" (1). Then the Hamiltonian is 
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where nE  are the electron eigenvalues (2) in the well, 

na , 
na  are annihilation and creation operators of par-

ticles in the quantum state n, respectively, and 
1 2 3 4n n n n  

is two-particle matrix element of interaction built on 

the potential 
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Using the method of the Green's function 


nn aa , we obtain the expression for this function 

[17] 
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The pole of this function describes the renormalized 

spectrum of the particle, namely, the shift of the energy 

state 
n

E  of an isolated particle by the value of its self-

energy nΣ , which is a result of interactions between 

the particle and the system.  

Possible and nowadays well-defined methods for the 

solution of the Schrodinger equation, which covers a 

many-particle problem, are Hartree-Fock and derived 

methods. They represent ab initio methods, which no 

empirical parameters. The only used parameters are 

the type and the number of the atoms, and the electron 

number. In the simplest Hartree-Fock approximation 
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is the Fermi-Dirac distribution ( FE  is the Fermi level; 

then under FE  we will understand eUEF 0 , that is a 

fixed position of the Fermi level 0FE  with the potential 

bias U ). 

The first term in the sum (3), 
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describes the renormalization of the electron spectrum 

in the system due to some effective scattering potential. 

It is the essence of Hartree approximation. Taking into 

account the wave functions (1), 
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The second term in (3) describes the so-called ex-

change interaction: 
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To establish a quality picture of renormalization of 

electron spectrum, it is sufficient to take advantage of 

the Hartree approximation (4). Below we show that 

result of the Hartree-Fock approximation differs only 

quantitatively. 

We restrict our consideration to T  0 K. To elimi-

nate divergence of the integral at 1 2 0x x  , we cut off 

this point by the change 1 2 0x x   for 

1 2 0x x + const  , where 410const   nm, which is 

510  of the width of the well at 10a   nm. 

In the sum (3), n runs through the integer values 

which are defined by the equality 1
FEn a
α

 , where 

1n  is the largest integer less than or equal to n; 

2 2

2
α

m


 ( if in the expression of 1n FE  is presented in 

eV and а in nm, then 20.37eV /mα  ). 

Figure 2 presents self-energy dependence on the 

size of the well a  at three fixed Fermi level FE  (0.2, 

0.5, 0.8, eV) for the ground state. 
 

 
 

Fig. 2 – Dependence of the ground quantum state self-energy 

on the width a  of the well at fixed Fermi level position 

FE (0.2, 0.5, 0.8 eV) 

 

Analysis of the curves indicates that they have saw-

tooth dependence. Such dependence is a result of size 

quantization of electron spectrum. In the narrow wells, 

all curves 1Σ are zero. It is those areas а, where the 

Fermi level FE is below ground level. The growth of 

the width of the well a  entails compression of the dis-

crete levels. The first jump nΣ  occurs at coincidence 

the level of the ground state with fixed value FE . The 

fastest overlap occurs for the highest value FE , i.e. 

8.0FE  eV. The next jumps of emerge at every pass of 

the discrete levels through the Fermi level FE . In the 

case when FE  is between the neighboring discrete lev-

els,  anΣ  decreases due to the normalizing factor 
a

2
 

of the wave function. This fact is in compliance with the 

dependence of  a1Σ on the Fermi level FE  at a fixed 

width of the well (in our case a  10.0 nm), i.e. at fixed 

level positions (see Fig. 3). 
 

 
 

Fig. 3 – Dependence of the self-energy on the Fermi level posi-

tion FE  at fixed width of the well ( a   10 nm) 

 

 
 

Fig. 4 – Dependence of the Coulomb self-energy on the width 

a  of the well at fixed Fermi level position ( FE  0.8 eV) for 

the ground and the first excited quantum states 
 

Analysis of the curves in these figures indicates that 

 the curves are parallel shifted relative to each oth-

er, and 21 Σ ; 

 the value between two neighboring peaks nΔΣ  de-

creases with increasing the size а of the well. Using 

the Lagrange interpolation polynomial of the 3rd 

order [18] for the state n  1, namely  
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at FE  0.8 eV (  ia1 ) in the points ia  are present-

ed in Table 1, we can obtain the dependence  a1ΔΣ , 

namely: 
 

Table 1 – Parameters in the Lagrange interpolation polynomial 
 

 0 1 2 3 

ia  10.95 11.60 12.80 14.00 

 ia1ΔΣ  0.55563 0.52687 0.48086 0.44246 

 

  3 2
1ΔΣ 0.0002 0.0096 0.1911 1.7383a = a + a a+  . 

 

It is seen that the dependence  a1ΔΣ , taking into 

account small coefficients in nonlinear terms on а, has 

the pronounced linearly falling character. 

From equation 1ΔΣ (а)  0, we can estimate the 

width of the well in which the jumps disappear. In this 

case, this width is 27.0 nm. 

The analysis showed that 21 ΔΣΔΣ > . So, we can 

say that the range of the width of the wells, in which 

jumps are manifested, for the ground state is more 

than for the 1st excited state. 

Let us analyze experimental manifestations the 

jumps of nΣ . The cause of the jumps is a size quantiza-

tion, therefore the value of smearing of the levels is 

important. It is known that such smearing may be a 

result of scattering by impurities, phonons and so on. 

The intensity of the scattering is characterized by half-

width Γ of the level and is proportional to the relaxa-

tion time τ . In turn, τ  is connected with mobility 

e
= τ
m

 . 

According to the Heisenberg uncertainty principle 

the finite τ  generates energy uncertainty, namely: 
 

 Δ
2 2

e
E =

m 
 .  

 

Therefore discreteness of the levels can manifest on 

condition  
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This condition is easily performed in crystals with 

high mobility that occurs in ideal crystals at low tem-

peratures. Moreover, the temperature has another spe-

cific effect on the manifestation of size quantization it 

should satisfy the condition 
 

 kT>
a

+n

m
=En 2

22 12

2
Δ


. (6) 

 

In the case 10a   nm nEΔ  between the ground 

and first excited state is equal to ~ 1· 210  eV that 

meets ~ 100 K, i.e. experimental observation of mani-

festations of the size quantization is possible at lower 

temperatures. If the condition (6) will not be executed, 

the occupancy of the levels will be almost the same and 

the observation of the quantization is impossible.  

The extraordinary behavior of nΣ also depends on 

the width a  of the well. In the case of nanoplate, the 

only way to reduce its size is an axial compression 

along its normal. But this way is problematic. Indeed, 

let us use the formula for linear compressibility of an 

isotropic body [19] 
 

 
1 Δ 1

Δ 3

L
β

L p
 ,  

 

where LΔ  is the change in the width of the plate under 

the pressure pΔ ;  is the coefficient of linear compress-

ibility. According to Figure 4 in order to fix at least one 

jump nΣ , the relative compression L  must be 

~ L210 . Then taking into account the fact that for 

most of the solids  is near 6 110 atm   [19], huge pres-

sure of 4Δ ~10 atmp  is needed. However, the effects of 

jumps of the self-energy nΣ  can be achieved by chang-

ing of the Fermi level position or by the applied voltage 

bias U.  

Finally, let us compare the obtained results with 

the results of the Hartree-Fock approximation, ie tak-

ing into account the exchange interaction (5). Figure 5 

shows the Coulomb and exchange parts of the Hartree-

Fock interaction and the resulting interactions. Both 

exchange and resulting interactions as the Coulomb 

interaction, have sawtooth nature with the same fre-

quency and with the decreasing jumps with increasing 

of width a of the nanoplane. In other words, the Har-

tree-Fock results do not violate the qualitative conclu-

sions of the Hartree ones. A similar dependence holds 

also for the 1st excited state, and, as in the Hartree 

case, 1 2HF HFΣ Σ . 

Thus, the ratio between the renormalized by elec-

tron-electron interaction ground state 

1 1 1HFE E + Σ and first excited state 2 2 2HFE E + Σ  

levels may become 21

~~
E>E , although in the absence of 

electron-electron interaction 12 E>E . A similar result 

passing of the normal ground state through the higher 

levels as a result of their different dependence on spa-

tial confinement and electron concentration was ob-

tained 1D quantum wires [20]. 

 

4. CONCLUSIONS 
 

Renormalization of electron spectrum has been ob-

tained in nanoobjects at T  0 K in the Hartree-Fock ap-

proximation. The used "particle in the infinitely deep well" 

model is suitable for the qualitative description of the 

spectrum renormalization in the nanoplates and inversion 

layers. Analysis of the self-energy of the ground and the 

first excited states due to electron-electron interactions, 

depending on the width a  of the nanoobject at the fixed 

Fermi level position, detects its sawtooth nature with 

jumps up to 6 %. It has been established that the  



 

PECULIARITIES OF ELECTRON-ELECTRON INTERACTION… J. NANO- ELECTRON. PHYS. 10, 02003 (2018) 

 

 

02003-5 

 
 

Fig. 5 – Dependence of the Coulomb, exchange and Hartree-Fock self-energy of the ground state on the width a of 

the well at the fixed Fermi level position ( FE   1.0 eV) 

 

amplitude of jumps decreases with growth of the width 

a, and the range of the width in which the jumps are 

observable for the ground state is greater than those 

for the excited ones. The only reason for such behavior, 

as well as analyzed correction depending on the Fermi 

level position at the fixed width a  of the nanoobject, is 

the size quantization. The obtained renormalized non-

trivial behavior of the electron spectrum can exhibit 

itself, in particular, in the optical properties of the na-

noobjects. 

 

 

Особливості електрон-електронної взаємодії в квантово-розмірних об’єктах 
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В роботі проаналізовано особливості електрон-електронної взаємодії в квантово-розмірних об’єктах 

в наближенні Хартрі-Фока. Встановлено, що власна енергія nΣ має пилоподібну залежність від по-

ложення рівня Фермі  чи від розміру об’єкту, як прояв розмірного квантування. По-перше, чим мен-

ший розмір нанооб’єктів тим більш виразні осциляції nΣ . І, по-друге, чим менший розмір нано-

об’єктів, тим менша електрон-електронна взаємодія. 
 

Ключові слова: Нанооб’єкт, Електрон-електронна взаємодія, Наближення Хартрі-Фока, Власна ене-

ргія. 

 

 

Особенности электрон-электронного взаимодействия в квантово-размерных объектах 
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Национальный университет «Львовская политехника», ул. С. Бандеры, 12, 79000 Львов, Украина 
 

В работе проанализировано особенности электрон-электронного взаимодействия в квантово-

размерных объектах в приближении Хартри-Фока. Установлено, что собственная энергия nΣ имеет 

пилообразную зависимость от положения уровня Ферми или от размера объекта как проявление раз-

мерного квантования. Во-первых, чем меньший размер нанообьектов тем более виражные осцилля-

ции nΣ . И во-вторых, чем меньший размер нанообьектов, тем меньше электрон-электронное взаимо-

действие. 
 

Ключевые слова: Нанообьект, Электрон-электронное взаимодействие, Приближение Хартри-Фока, 

Собственная энергия. 
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