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In the Hartree-Fock approximation peculiarities of the effect of electron-electron interactions in a

quantum-dimensional object are analyzed. It is established that a self-energy X, has the sawtooth de-

pendence on the Fermi level position or on the size of an object as a result of the size quantization effect.

The smaller the size of nano-objects, the more pronounced oscillations of

Y, . And secondly, the smaller

the size of nano-objects, the less the electron-electron interaction.
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1. INTRODUCTION

An electronic structure that is a solution of the sta-
tionary Schrodinger equation is the fundamental charac-
teristic of problems of electronics. Sometimes it 1is
enough to know such structure in the framework of the
mean field approximation, ignoring an electron-electron
interaction. But often the electron-electron interaction
must be taken into account because it can essentially
determine the behavior of physical properties of the ma-
terials. Recently, the effect of the electron-electron inter-
action became a subject of intense researches in so-called
quantum-dimensional objects (see. e.g., [1]), in which the
size at least in one of the crystallographic directions is of
the same order as the wavelength of an electron. Such a
spatial limitation causes a dimensional quantization of
the electron spectrum. The easiest realization of a
quantum-dimensional object is the spatial redistribution
of charge on contact between two different media. If one
of them is a solid and another is a liquid, charging of the
metal surface is compensated by the charge of the oppo-
site sign, which is concentrated in the nanosized region
of the liquid medium. This redistribution of the charge is
called a double electron layer.

A similar formation - the so-called inversion layer -
occurs at the contact of two condensed matter. The in-
version layer is a charged nanosized near-surface do-
main. As an example, in a MOS-structure (metal-oxide-
semiconductor) (e.g. [2]), the carriers are localized in a
potential well formed by the surface of the semiconduc-
tor barrier and the electrostatic potential of the bulk
charge.

Such layers, as well as their created potentials, play
an important role in the various physical phenomena.
In particular, materials with them allow us to create
entirely new, different from traditional, high-capacity
energy storage system — supercapacitors [3]. There is a
need to establish the role of electron-electron interac-
tion in the nanoscale structures. This problem is par-
ticularly intensively studied in the transport phenome-
na, e.g. in transport through a nano-wire [4], through a
nano-MOSFET [5], through a quasi-one-dimensional
quantum dot [6] through a shuttling nanoisland [7] and
others.
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The theoretical description of the electron-electron
interaction in nanoobjects uses different methods and
approaches: different versions Greens functions tech-
niques [5, 8], different versions of Hartree-Fock-method
[9, 10] with various models of nano-objects: particles in
the box [11], elliptical and bowl-like potentials [12] and
others.

The above-mentioned double electron layers or in-
version layers are spatially confined structures with
dimensions commensurable with a de Broglie wave-
length of the carriers, and as a result, an electron spec-
trum has sharply pronounced discrete character in con-
trast to the quasi-continuous spectrum in allowed zones
of an ideal crystal. Taking into account the practical
use such objects, the search for a deeper understanding
of their physical properties are relevant.

Here we propose a model of such objects to study of
the electron-electron interaction in them taking into
account peculiarities of their one-electron spectrum.
How, how much, and under what conditions such pecu-
liarities are important is the goal of this paper.

2. MODEL

A model of infinitely deep potential is often used to
describe different phenomena in real-space-confined
structures. Thus, such a model was used to describe the
ground and first excited levels in heterostructure InAs /
AlSb [13]. Such a step was justified by the fact that in
the 15 nm InAs layer the ground and first excited lev-
els, measured from the bottom of its conduction band
are ~ 60 and 200 meV respectively, while the distance
between the conduction bands of the heterointerface is
~ 1.35 eV, that is considerably greater than in the dis-
crete levels. This model is applicable to describe double
layers [14] or inversion layers in semiconductors [15].
We use infinitely deep potential in this paper.

Figure 1 shown the real potential and the potential
simulated by infinitely deep potential well for inversion
layer. Analytical solutions of the problem of "particle in
the infinitely deep well" are known [16], namely, the
wave functions are
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Fig. 1 — Diagrams of one-dimensional inversion potential: real
(above) and simulated (below)
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where n is a number of the discrete levelsn=1,2,3,....
Solutions of the problem "particle in the infinitely
deep well" can be also used in the case of the finite U,

provided that U >> En. This condition to a greater ex-
tent is performed on the ground and the lowest excited
quantum states. On the other hand, at low surface (in-
terfacial) concentration of carriers, electrons fill these
states. From the viewpoint of applied problems, in par-
ticular, of the tunneling current calculation and optical
properties of nanostructured systems, the distance be-
tween the ground and first excited states in the quan-
tum well is important.

3. CALCULATIONS, RESULTS, AND DISCUS-
SIONS

Let’s begin with the second-quantized form of the
electron Hamiltonian with two-body interaction. The
treatments will be similar to the widely used scheme in
an ideal crystal. But in our task we choose, as basis
wave functions, solutions of the problem of "particle in
the infinitely deep well" (1). Then the Hamiltonian is
Z rmnzn‘xnﬁarz arzan‘xam ’

NNy,

H=YE.aa,+
n

where E, are the electron eigenvalues (2) in the well,

a,, a, are annihilation and creation operators of par-

no

ticles in the quantum state n, respectively, and T’

1yl
is two-particle matrix element of interaction built on
the potential
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Using the method of the Green's function

({a

(17]

a;>>, we obtain the expression for this function
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The pole of this function describes the renormalized
spectrum of the particle, namely, the shift of the energy

state En of an isolated particle by the value of its self-

energy X , which is a result of interactions between

no
the particle and the system.

Possible and nowadays well-defined methods for the
solution of the Schrodinger equation, which covers a
many-particle problem, are Hartree-Fock and derived
methods. They represent ab initio methods, which no
empirical parameters. The only used parameters are
the type and the number of the atoms, and the electron
number. In the simplest Hartree-Fock approximation

En: Z(an,nn, _an,n]n)f(nl) ’ ®)
m
where
1
fm)=—5 %
exp[“]+1
kT

is the Fermi-Dirac distribution (Ey is the Fermi level;
then under E, we will understand Ey,+eU, thatis a
fixed position of the Fermi level Ep, with the potential
bias U).

The first term in the sum (3),

a

o, = [, (5w, (52)V (1 - (1), (32)

describes the renormalization of the electron spectrum
in the system due to some effective scattering potential.
It is the essence of Hartree approximation. Taking into
account the wave functions (1),

2
¢ . nrw
Lppn = (j;dxlueff (xl)(smjxl] , 4)
where
2
.7
o (x ):i eZ de [Sln7x2]
AT g 4me; ? ‘xl —xz‘

The second term in (3) describes the so-called ex-
change interaction:
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To establish a quality picture of renormalization of
electron spectrum, it is sufficient to take advantage of
the Hartree approximation (4). Below we show that
result of the Hartree-Fock approximation differs only
quantitatively.

We restrict our consideration to 77=0 K. To elimi-
nate divergence of the integral at |x, —x,|=0, we cut off

this by the

|x, —x,|+const =0, where const=10" nm, which is

point change  |x,-x,|]=0  for

107° of the width of the well at @ =10 nm.
In the sum (3), n runs through the integer values

which are defined by the equalityn, =a fﬁ, where
a

is the largest integer less than or equal to n;
hn®
© 2m

eV and ¢ in nm, then @ =0.37eV/m?).
Figure 2 presents self-energy dependence on the
size of the well @ at three fixed Fermi level E, (0.2,

0.5, 0.8, eV) for the ground state.
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(if in the expression of n, E, is presented in
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Fig. 2 — Dependence of the ground quantum state self-energy
on the width a of the well at fixed Fermi level position

E. (0.2,0.5,0.8eV)

Analysis of the curves indicates that they have saw-
tooth dependence. Such dependence is a result of size
quantization of electron spectrum. In the narrow wells,

all curves X, are zero. It is those areas a, where the
Fermi level Ejis below ground level. The growth of

the width of the well a entails compression of the dis-
crete levels. The first jump X, occurs at coincidence

the level of the ground state with fixed value Ej . The
fastest overlap occurs for the highest value Ejy, i.e.
E;=0.8 eV. The next jumps of emerge at every pass of
the discrete levels through the Fermi level Ej . In the

case when Ej is between the neighboring discrete lev-
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els, En(a) decreases due to the normalizing factor ,[—
a

of the wave function. This fact is in compliance with the
dependence of X,(a)on the Fermi level Ej at a fixed

width of the well (in our case ¢ = 10.0 nm), i.e. at fixed
level positions (see Fig. 3).
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Fig. 3 - Dependence of the self-energy on the Fermi level posi-
tion Ej at fixed width of the well (¢ =10 nm)
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Fig. 4 — Dependence of the Coulomb self-energy on the width
a of the well at fixed Fermi level position (Ey = 0.8 eV) for
the ground and the first excited quantum states

Analysis of the curves in these figures indicates that
the curves are parallel shifted relative to each oth-
er,and X; > X, ;

the value between two neighboring peaks AY, de-

creases with increasing the size a of the well. Using
the Lagrange interpolation polynomial of the 3rd
order [18] for the state n = 1, namely
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3 3 a—a.
AT, (@)= Y L (a)Ag, (¢) = 211 LAS, (a;)
i=0 i=0 j#i Q; —aj
at By =0.8eV (AY; (ai)) in the points a; are present-

ed in Table 1, we can obtain the dependence AZh(a),
namely:

Table 1 — Parameters in the Lagrange interpolation polynomial

\ 0 \ 1 \ 2 3
ai 1095 = 11.60  12.80 14.00
A%i(a;)  0.55563  0.52687 | 0.48086  0.44246

A%, (@) =-0.0002 @” +0.0096 a® —0.1911 a +1.7383.

It is seen that the dependence AE1(a), taking into
account small coefficients in nonlinear terms on a, has
the pronounced linearly falling character.

From equation AY (@) =0, we can estimate the
width of the well in which the jumps disappear. In this
case, this width is 27.0 nm.

The analysis showed that AY, >AY,. So, we can
say that the range of the width of the wells, in which
jumps are manifested, for the ground state is more
than for the 1st excited state.

Let us analyze experimental manifestations the
jumps of X, . The cause of the jumps is a size quantiza-
tion, therefore the value of smearing of the levels is
important. It is known that such smearing may be a
result of scattering by impurities, phonons and so on.
The intensity of the scattering is characterized by half-
width I" of the level and is proportional to the relaxa-
tion time 7. In turn, 7 is connected with mobility

e
H=—T.
m
According to the Heisenberg uncertainty principle
the finite 7 generates energy uncertainty, namely:
h eh
> —= .
2t 2um

Therefore discreteness of the levels can manifest on
condition

W72 2n+1_  eh
3 >

AE =E, -E = .
2m  a 2um

This condition is easily performed in crystals with
high mobility that occurs in ideal crystals at low tem-
peratures. Moreover, the temperature has another spe-
cific effect on the manifestation of size quantization it
should satisfy the condition

W 2n+1
>

AE, = 3 RT . (6)

2m  a

In the case a=10 nm AE, between the ground

and first excited state is equal to ~ 1:102 €V that
meets ~ 100 K, i.e. experimental observation of mani-

JJ. NANO- ELECTRON. PHYS. 10, 02003 (2018)

festations of the size quantization is possible at lower
temperatures. If the condition (6) will not be executed,
the occupancy of the levels will be almost the same and
the observation of the quantization is impossible.

The extraordinary behavior of X, also depends on

the width a of the well. In the case of nanoplate, the
only way to reduce its size is an axial compression
along its normal. But this way is problematic. Indeed,
let us use the formula for linear compressibility of an
isotropic body [19]

1

1AL 1
L

AL
A7p~3ﬁ’

where AL is the change in the width of the plate under
the pressure Ap ; S is the coefficient of linear compress-
ibility. According to Figure 4 in order to fix at least one
jump X, , the relative compression AL must be

~102L. Then taking into account the fact that for
most of the solids £is near 107° atm™ [19], huge pres-
sure of Ap~10* atm 1is needed. However, the effects of
jumps of the self-energy X, can be achieved by chang-

ing of the Fermi level position or by the applied voltage
bias U.

Finally, let us compare the obtained results with
the results of the Hartree-Fock approximation, ie tak-
ing into account the exchange interaction (5). Figure 5
shows the Coulomb and exchange parts of the Hartree-
Fock interaction and the resulting interactions. Both
exchange and resulting interactions as the Coulomb
interaction, have sawtooth nature with the same fre-
quency and with the decreasing jumps with increasing
of width a of the nanoplane. In other words, the Har-
tree-Fock results do not violate the qualitative conclu-
sions of the Hartree ones. A similar dependence holds
also for the 1st excited state, and, as in the Hartree
case, Xiyp > Lopp .

Thus, the ratio between the renormalized by elec-
tron-electron interaction ground state

E =E +Z,,and first excited state E, =E,+X,,,
levels may become 1771 > E2 , although in the absence of

electron-electron interaction E, > E, . A similar result

passing of the normal ground state through the higher
levels as a result of their different dependence on spa-
tial confinement and electron concentration was ob-
tained 1D quantum wires [20].

4. CONCLUSIONS

Renormalization of electron spectrum has been ob-
tained in nanoobjects at 7'=0 K in the Hartree-Fock ap-
proximation. The used "particle in the infinitely deep well"
model is suitable for the qualitative description of the
spectrum renormalization in the nanoplates and inversion
layers. Analysis of the self-energy of the ground and the
first excited states due to electron-electron interactions,
depending on the width a of the nanoobject at the fixed
Fermi level position, detects its sawtooth nature with
jumps up to 6 %. It has been established that the
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Fig. 5 — Dependence of the Coulomb, exchange and Hartree-Fock self-energy of the ground state on the width a of

the well at the fixed Fermi level position (Eyp = 1.0 eV)

amplitude of jumps decreases with growth of the width
a, and the range of the width in which the jumps are
observable for the ground state is greater than those
for the excited ones. The only reason for such behavior,
as well as analyzed correction depending on the Fermi

level position at the fixed width a of the nanoobject, is
the size quantization. The obtained renormalized non-
trivial behavior of the electron spectrum can exhibit
itself, in particular, in the optical properties of the na-
noobjects.

OCo0/IMBOCTI €JIEKTPOH-€JIEKTPOHHOI B3a€MOii B KBAHTOBO-PO3MipHUX 00’€KTax
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