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The results of the mathematical studies on the modeling of high-frequency electromagnetic field con-

version in the field of elastic oscillations process in microthick surface layers or electrically conductive fer-

romagnetic material thin films placed in a magnetic field are given, taking into account the coherence of 

elastic, electric and magnetic properties of the metal. It is shown that in practical calculations, especially 

in the case of high-frequency oscillations, it is necessary to take into account thickness of skin layer in 

which electromagnetic field transforms into acoustic field. 
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INTRODUCTION 
 

Ultrasonic waves are effectively used to solve vari-

ous problems of solid state physics. Excitation and re-

ception of ultrasonic waves in metals is carried out by 

contact [1] and non-contact [2-4] methods. With the 

contact method, excitation and reception of ultrasonic 

waves are traditionally carried out by means of piezoe-

lectric transducers (PET). However, in a number of 

cases, the use of PET becomes fundamentally unac-

ceptable [5]. The non-contact method of excitation of 

ultrasonic vibrations is realized by the influence of 

fields of various types on the study sample. To imple-

ment a non-contact method, electromagnetic fields are 

most often used [2-5]. Excitation of ultrasonic waves 

under the influence of electromagnetic radiation occurs 

in the surface layer corresponding to thickness of skin 

layer. For high-frequency range, the thickness of fer-

romagnetic metals skin layer can be reduced to 1 μm or 

less. The area of ultrasonic waves reception has similar 

thickness of the layer taking part in the transfor-

mation. In the mathematical description of the elec-

tromagnetic method of excitation of elastic vibrations 

in metals, the main attention was paid, as a rule, to the 

ponderomotive action of the electromagnetic field. In 

the case of ferromagnetic metals, the situation is dif-

ferent. In general, the physical theory of magneto-

striction phenomena was created to solve problems of 

technical magnetization [6]. This theory explains the 

nature of the magnetostrictive effects at the level of the 

crystal lattice and is practically not applicable for the 

quantitative description of the magnetostrictive mech-

anism of the formation of deformations in ferromagnet-

ic metals and ferrodielectrics (ferrites) when they in-

teract with electromagnetic field. This issue becomes 

especially important when examining the interaction 

between an electromagnetic field and a thin surface 

layer of metal or a film. 

Shulga N.A. [7] through their works have begun the 

application of the component of phenomenological theo-

ry of magnetostrictive phenomena. They recorded and 

used the generalized Hooke’s law for elastic media with 

magnetostrictive effects, but there is no second equa-

tion of the physical state, which has the meaning of the 

law of magnetic polarization of a ferromagnet consider-

ing its magnetostrictive properties. At the same time, 

the connection between the elastic, magnetic and elec-

tromagnetic fields, which exist in the volume of the 

deformable ferromagnet layer, is not established. 

At the same time, the paper [8] is well known, in 

which an adiabatic version of the phenomenological the-

ory of magnetostrictive phenomena is derived, in which 

nonlinearity of the elastic and magnetic properties of a 

ferromagnet is taken into account. Therefore, it is advis-

able to use this theory for mathematical modeling of the 

electromagnetic method of excitation of elastic vibrations 

in metals of a ferromagnetic group, the improvement of 

which will allow constructing highly effective electro-

magnetic-acoustic transducers of various purposes. At 

the same time it is important to take into account the 

influence of micron thicknesses of metal or electromag-

netic into elastic oscillations field transformation area, 

which makes the research to be of current interest in the 

field of microelectronic engineering. 

 

1. PROBLEM STATEMENT 
 

Let us consider a conductive polycrystalline ferro-

magnet inside which using external devices a perma-

nent magnetic field with intensity  kxH 0


 and a time-

varying magnetic field     ti
kk exHtxH  


, are creat-

ed, where kx  - coordinates of a point in the right-

handed Cartesian (physical) coordinate system; 

1i ;   - circular frequency; t - time. In the vol-

ume V of ferromagnet and on its surface S a system of 

force factors appears, which is the source of elastic vi-

brations of the material particles of the metal. If there 

is a strong inequality    kk xHxH 


0
, then the 

desired displacement vector of material particles 

is     ti
kk exutxu 

, . Amplitude value  kn xu  of the 

n-th component of the displacement vector satisfies the 

equation of steady harmonic vibrations (the second 
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Newton's law in differential form), which is written in 

the form: 
 

 VxLu knnmmn  00

2

,  , (1.1) 

 

where mn  - time-varying amplitude value under the 

law 
tie 
 of tensor of the resulting elastic stresses in a 

ferromagnetic metal; a comma between indices means 

the operation of expression differentiation, which is 

written before a comma, by the coordinate which index 

is put after the comma; 0  - ferromagnet density. The 

symbol nL  denotes n-th component of the amplitude 

value of the vector of the volume density of Lorentz 

forces. Neglecting the currents that are caused by the 

motion of the material particles of the deformed 

ferromagnet, the component 
0
mknkmn BJL  , where 

nkm  - component of the Levi-Civita tensor that is 

equal to plus one, when the indices n, k, m form 

permutations of numbers 1, 2, 3 with an even number 

of derangements, equal to minus one, when the indices 

n, k, m form permutations of the numbers 1, 2, 3 with 

an odd number of derangements and equal to zero, 

when any two of the three indices are equal to each 

other; kJ  - k-th component of the amplitude value of 

the vector of the eddy current density, which varies in 

time according to the law 
tie 
, and which is 

determined by the rotation of an alternating magnetic 

field in the volume of metallic ferromagnet; 
00
nmnm HB   - m-th component of the magnetic 

induction vector of the constant bias field; 
mn  - 

component of the magnetic permeability tensor of a 

magnetized ferromagnet, which is experimentally 

determined in the regime of constancy (equal to zero) of 

elastic deformations (symbol ). 

The amplitude value of the n-th component of the 

eddy current density vector  kn xJ  is determined by the 

Ohm's law in differential form, that 

is    knkn xErxJ 0 , where r0 - electric conductivity of a 

ferromagnet;  kn xE  - amplitude value of the n-th com-

ponent of the intensity vector of an alternating electric 

field in the volume of the deformable ferromagnet. 

The electric and magnetic states of a dynamically-

deformed ferromagnet are determined by the Maxwell 

equations, which, neglecting the motion of material 

particles and displacement currents, are written in the 

following form: 
 

 nspnsp ErH 0,  , (1.2) 

 

 jqnjqn BiE  , , (1.3) 

 

where ppp hHH  
; ph  - amplitude value of the p-th 

component of the intensity vector of the internal mag-

netic field, which arises in the deformable ferromagnet 

due to the motion of the domain walls; Bj - amplitude 

value of the j - th component of the vector of magnetic 

induction of an alternating magnetic field in the vol-

ume of the deformable ferromagnet. 

The connecting link between the fundamental equa-

tions (1.1) of mechanics and the equations of electrody-

namics (1.2) and (1.3) are the equations of the physical 

state. If at any point of the deformable ferromagnet 

there is a strong inequality    kk xHxH


0
, 

where      kkk xhxHxH


 
, then from the general 

nonlinear relations follows the linear approximation, 

which can be written in the form: 
 

 
 kkppkmnk

H
mnkmn hHHmuc  0

,
, (1.4) 

 

 
 mmjmqsppjqsj hHuHmB  ,

0

. (1.5) 
 

where 
H
mnkc   - modulus of elasticity of a ferromagnet, 

which is experimentally determined in the regime of 

constancy (equal to zero) of the magnetic field (symbol 

H) or, in other words, the elastic modulus of the de-

magnetized ferromagnet; pkmnm  - magnetostrictive 

constant, whose numerical value depends on the mag-

nitude and direction of the constant bias field. Obvious-

ly, in the case of a polycrystalline, non-textured metal, 

the material constants 
H
mnkc   и pkmnm  are components 

of isotropic tensors of the fourth rank and are defined 

by the following relations 
 

  nkmnmkkmn
H
mnk Gc    , 

 kmpnknpmmnpkpkmn

mm
mm  




2

21
2 , 

 

where   and G  - Lame's constants (moduli of elastici-

ty); mn , …, km  - Kronecker symbols; 1m  and 2m  - 

linearly independent, experimentally determined con-

stants. From the above definition of magnetostrictive 

constants it follows that the tensor matrix m  (   and 

  - Voigt indexes) has the form: 

 

 
 

 
  200000

020000

002000

000

000

000

21

21

21

122

212

221

mm

mm

mm

mmm

mmm

mmm

m






 . 

 

 

Substituing relations (1.4) and (1.5) into equations 

(1.1) and Maxwell's equations (1.2) и (1.3), allows us to 

write the following system of differential equations: 
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  VxfhHmuuc knmkppkmnnmk

H
mnk   0

,

0
0

2
, 

, (1.6) 
 

 
VxuHmrihrih ksqppjqsmjmsqpnspjqn  0,

0
00,  

, (1.7) 
 

where  
mkppkmnnn HHmLf

,

0    - the resulting value of 

the amplitude of the n-th component of the volume 

density vector’s forces generated by external sources; 

when writing the equations (1.7) it was taken into ac-

count that 00,  
mjmsqpnspjqn HriH   by the defini-

tion of the vector  kxH 


 as an intensity vector of al-

ternating magnetic field in the volume of conducting 

ferromagnet. 

The uniqueness of the solution of equations (1.6) 

and (1.7) is determined by the boundary conditions. 

Assuming that the ferromagnetic sample is in vacuum, 

we write condition: 
 

   Sxn kjkjkj   0 , (1.8) 

 

which, in its essence, is the third Newton's law in a 

differential form. The symbol nj denotes the j-th com-

ponent of the vector of the outer unit normal to the 

surface S at the point with the coordinates xk. The am-

plitude value of the component of the elastic stress ten-

sor is   nnjkjkkjjk uuuG ,,,   . The amplitude 

value of the surface density of forces, which are created 

by external sources     jknnppnjkjk MhHHm 0 , 

where      200 BhHBhHM jkkjjjk


    - am-

plitude value of the Maxwell tensor of tension. 

Many ferromagnets have relatively small values of 

magnetic permeabilities and therefore, in contrast to 

piezoceramic materials, it is necessary to take into ac-

count the emission of the energy of the electromagnetic 

field in the surrounding space of ferromagnet. In this 

case, the boundary conditions for the amplitude values 

of the components of the intensity vector  kh x  of the 

internal magnetic field are written as follows: 
 

   SxHhn kqqpkpq  0
~

 , (1.9) 

   SxHBn kppp  0
~

0 , (1.10) 

 

where pn  - p -th component of the unit normal vector; 

qH
~

 - amplitude value of the q-th component of the in-

tensity vector  kxH


~

 of the stray magnetic field, which 

varies with time according to the law
tie 
; 

npnnmqqpmnp huHmB  ,
0

 - amplitude value of the 

p-th component of the magnetic induction vector in the 

volume of the deformed ferromagnet; mH7

0 104    

- vacuum permeability. 

The vector  kxH


~

 is defined by the Maxwell equa-

tions in vacuum, that is, it is the general solution of 

equation: 
 

 VxHHrotrot k 0
~~

00
2


 , (1.11) 

 

And satisfies the conditions of physical realizability 

of the source of the field, that is, the limiting conditions 

 

   0
~

,
~

lim , 


mkk
R

HH , (1.12) 

 

where R - distance from the surface S of the ferromag-

netic sample. The symbol 0  in equation (1.11) denotes 

the dielectric constant mF12

0 1085,8  . 

Thus, a precise determination of the parameters of 

the stress-strain state of a magnetized ferromagnet 

assumes a joint solution of a system of six differential 

equations (1.6) and (1.7). The uniqueness of the solu-

tion of this system of equations is provided by the 

boundary conditions (1.8) - (1.10), in which the compo-

nents of the intensity vector of the stray magnetic field 

are determined as a result of the solution of the com-

plementary boundary value problem (1.11), (1.12). 

 

2. MODEL EXAMPLE AND QUANTITATIVE ES-

TIMATION OF THE CONNECTION OF ELAS-

TIC AND MAGNETIC FIELDS IN THE VOL-

UME OF DEFORMED FERROMAGNET LAY-

ER 
 

Suppose that at the end of a semi-infinite prismatic 

layer of a rectangular cross-section (Figure 1) 

harmoniously varying forces produced by external 

devices are operated. The external forces are 

distributed uniformly on the surface 02 x  with 

surface density 
tie  02 
. The layer is magnetized 

by a constant longitudinal magnetic field, the intensity 

of which
0
2H  is constant throughout the entire volume 

of the layer. 
 

 
 

Fig. 1 – To the definition of the dynamic stress-strain state of 

a longitudinally magnetized layer 
 

0
2H  

tie  02 


 

2x  

1x  

3x  

O 
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It is obvious that external forces excite harmonic 

elastic waves that spread in the positive direction of 

the coordinate axis 2Ox . The displacement vector of the 

material particles of the layer can be described as fol-

lows     ti
kk exutxu 

, , where  kxu


 - spatially-

developed amplitude. The components of the displace-

ment vector satisfy the equations of steady-state har-

monic vibrations (1.1). 

Since torsion and bending in the ferromagnetic 

state are absent in the sense of the problem statement, 

the tangential stresses are zero, and the amplitude 

values of the normal resultant stresses are determined 

as follows: 
 

     2
0
2233221111 2 hHmG   , (2.1) 

 

 

  2
0
2133221122 2 hHmG   , (2.2) 

 

     2
0
2233221133 2 hHmG   ,(2.3) 

 

where 11 , 22  и 33  - compression-extension defor-

mations along the coordinate axes 1Ox , 2Ox  and 3Ox  

respectively; 2h  - longitudinal component of the inten-

sity vector of the internal magnetic field in the volume 

of the deformable ferromagnet. 

The magnetic state of the deformable ferromagnetic 

layer is described by the law of magnetic polarization of 

a ferromagnet layer with allowance for its 

magnetostrictive properties (1.5), from which the 

calculated relationships for the amplitude values of the 

components of the magnetic induction vector are: 
 

 111 hB  ;   2222
0
213311

0
222 hHmHmB   ; 333 hB  .  (2.4) 

 

Consider the frequency range in which the length of 

the elastic wave is many times greater than the largest 

cross-sectional dimension of the layer. For the variable 

magnetic field frequencies traditionally used in physi-

cal studies, as well as the ranges of magnetic permea-

bilities and electrical conductivities of materials, the 

physical transformation of energies occurs for the layer 

thicknesses of 0.1 ... 100 μm. Therefore the length of an 

elastic wave is a measure and scale of the spatial in-

homogeneity of the stress-strain state of the rod. Tak-

ing this circumstance into account, it can be stated that 

in the region of established frequencies the stress-

strain state practically does not change within the 

cross-sectional area of the layer. 

Since on the lateral surfaces perpendicular to the 

axes 1Ox  and 3Ox , normal stresses 11  and 33  of the 

layer being in the vacuum shall be zero (Newton's third 

law in differential form), and the change in the stress-

strain state in the cross-sectional plane is absent, then 

it can be asserted that Vxk 03311  , where 

V  - layer volume. 

According to the assumptions about the nature of 

the strained-deformed state in the plane of the cross-

section, we assume that the magnetic induction also 

remains practically unchanged in the limits of the 

cross-sectional area of the layer. From this assumption 

it follows that VxBB k 031 . 

If we turn to the Maxwell equation BiErot


  

and calculate the divergence of its left and right sides, 

we obtain the condition for the absence of magnetic 

charges, that is 0Bdiv


. For the one-dimensional 

problem under consideration, this condition is equiva-

lent to the assertion that 
 

 02,2 B . (2.5) 

 

Substituting the zeros into the left-hand sides of 

equations (2.1) and (2.3), we define deformations 11  

and 33  through deformation 22 : 

 

 
  22

2
0
22

3311
2




 



HH G

hHm
, (2.6) 

where   G  2  - Poisson's ratio of the demag-

netized ferromagnet. 

Substituting the deformations 11  and 33  from 

(2.6) into the equations of the physical state (2.2) and 

(2.4), we obtain the calculated relations of the following 

form:  
 

 2
0
212,22

0
212222 hHmEuhHmE    , (2.7) 

 

 222,2
0
212222

0
212 huHmhHmB    , (2.8) 

 

where      GGGE 32  - Young's modulus of 

the demagnetized ferromagnet; 
 G

m
mm






2
11  

and    GHm    20
2222  - magnetostrictive 

constant and magnetic permeability for uniaxial ten-

sion-and-compression mode of a prismatic layer. 

It is quite clear that the system of equations (1.6) is 

reduced to one equation for the longitudinal compo-

nent 2u  of the displacement vector of the material par-

ticles of the layer, which can be written in the following 

form: 
 

 02
2

02,2
0
2122,2   uhHmEu  . (2.9) 

 

Substituting (2.7) and (2.8) into condition (2.5), we 

find that 
 

 2,2

2

0
21

2,2 u
Hm

h







. (2.10) 

 

Eliminating the derivative 2,2h  from the equation 

(2.9) with the help of the relation (2.10), we obtain an 

ordinary differential equation of the following form: 
 

   01 2
2

022,2  uuEE  , (2.11)  

 

where    EHmE  2

20
21   - increase in the mechani-

cal rigidity of the pre-magnetized ferromagnet due to 

the corresponding (coherent) action of elastic forces and 
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the forces of magnetic interaction between the poles of 

domains in the deformable ferromagnet. 

The solution of the equation (2.11) is obvious 
 

  2
022

xi
eUxu


 , 

 

where 0U  - constant to be determined; v  - wave 

number of longitudinal nondispersive waves; 

  01 EEv   - propagation velocity of longitudi-

nal nondispersive waves (bar velocity) in a pre-

magnetized ferromagnet. In cross section 02 x  The 

third Newton's law must be satisfied, from which the 

constant 0U is defined 

 

 
 EE

i
U




1

0
0




.  

 

The relative change E  of the Young's modulus, or, 

as they say, E -effect, is the result of the interaction 

(connection) of elastic and magnetic fields in the vol-

ume of the deformed, pre-magnetized ferromagnet. The 

consequence of coherence or correspondent action of 

elastic forces and magnetic forces is the emergence of 

new material constants 

1m  и 


2 . For a ferromagnet 

with elastic moduli PaE 11102   

and 3,0 ( PaG 101069,7  , Pa101054,11  ) and 

constants mHm 2,01  , mHm 1,02   (the order 

of the magnetostrictive constants corresponds to the 

experimental data) with magnetic permeability 

mH5

02 1077,330   . The connection between 

elastic and magnetic fields at magnetic bias field 

mкАH 10

2   appears as follows: 
31095,8 E , 

mHm 26,01 
 , mH5

2 10775,3   . In this case, the 

bar speed increases by 
3105,4 v . If the magneto-

strictive constants are of great value, such as 

mHm 0,11   and mHm 5,02  , then for the same 

values of the remaining parameters we get the follow-

ing values of material constants: 217,0E , 

mHm 30,11 
 , mH5

2 1090,3    and 103,0v .  

In all probability, the value  3,0E  is the maxi-

mum value of E -effect, which can be observed in de-

formable, pre-magnetized ferromagnets. 

It is obvious that in the case of ferromagnets with 

low values of the magnetostrictive consonant, one can 

neglect the effects that appear due to the connection 

between the elastic and magnetic fields. 
 

3. METHOD OF SEQUENTIAL APPROXIMA-

TIONS IN MATHEMATICAL MODELING OF 

ELECTROMAGNETIC FIELD TRANSFOR-

MATION IN THE FIELD OF ELASTIC OSCIL-

LATIONS IN A CONDUCTING PRE-

MAGNETIZED FERROMAGNET LAYER. 
 

At moderate values ( 5,01 m ) of magnetostriction 

constants, the corrections to the elastic moduli do not 

exceed 5%, which entails a variation of the propagation 

velocities of elastic waves not exceeding 3%. These 

errors are commensurable, or less, with systematic 

errors in the experimental determination of the 

numerical values of the material constants of 

ferromagnetic metals. This circumstance makes it 

possible to neglect the coupling effect of elastic and 

magnetic fields in dynamically deformed, pre-

magnetized ferromagnets and write equations (1.6) in 

the following for 

 

   VxfuurotrotGudivgradG k  02 0
2


 , (3.1) 

 

where the amplitude value of the time-varying under 

the law 
tie 
 vector of the volume density of external 

forces  
mkppkmnn HHmeLf

,

0  


 ( ne


 - unit vector 

(vector with unit length) of the coordinate axis nOx ) is 

a value that is known by the meaning of the problem 

statement. 

The boundary conditions (1.8), which ensure the 

uniqueness of the solution of equation (3.1), retain 

their form, that is: 

   Sxn kjkjkj   0 , (3.2) 

but the meaning of the component 

jk  changes sig-

nificantly. The surface density 

2000 BHBHHHm jkkjnppnjkjk


    becomes the 

known value as of the problem statement. 

The boundary value problem (3.1), (3.2) has the 

meaning of the problem of excitation of harmonic vibra-

tions in an isotropic solid by a system of volume and 

surface loads.  

The results of the solution of the boundary value 

problem (3.1), (3.2) determine in the zeroth approxima-

tion the stress-strain state of a conductive, pre-

magnetized ferromagnet layer. We denote the ampli-

tude values of the components of the displacement vec-

tor of the material particles of the ferromagnet, ob-

tained as a result of solving the boundary value prob-

lem (3.1), (3.2) by the symbol 
  kn xu 0

. From the known 

values  
  kq xu 0

 the deformations in equations 

   ksq xu 0
,  are determined, after which the zero approx-

imations 
  kp xh 0

 to the exact amplitude values of the 

components of the intensity vector of the internal mag-

netic field are determined.  

 

The values 
  kp xh 0

 are determined as a result of 

solving the next boundary value problem 
 

 
      VxuHmrihrih ksqppjqsmjmsqpnspjqn  00

,
0

0
0

0
0
,  

, (3.3) 

 

 
   SxHhn kqqpkpq  0

~0 , (3.4) 
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   SxHBn kppp  0

~
0

0  , (3.5) 

 

where 
     00

,
00

npnnmqqpmnp huHmB  ; Amplitude values 

of the components of the vector  kxH


~

 of the stray 

magnetic field are determined exactly as a result of the 

solution of the complementary boundary value problem 

(1.11), (1.12). The first approximation 
  kn xu 1

 to the 

exact value of the components  kn xu  is defined  

as follows:  
 

 
        knknkn xuxuxu 101  , (3.6) 

 

where 
  kn xu 1  - first order correction. 

Substituting the definition (3.6) and the found zero 

approximation 
  kxh 0


 to the exact amplitude value of 

the intensity vector of the internal magnetic field into 

equations (1.6) and the boundary conditions (1.8), we 

obtain:

           VxfuurotrotGudivgradG k 02 01
0

211


 , (3.7) 

 
     Sxn kjkjkj  001  , (3.8) 

 

where 
    

mkppkmnn hHmf
,

000  ; 

        1
,

1
,

1
,

1
nnjkjkkjjk uuuG   ; 

        20000000 BhBhhHm jkkjnppnjkjk


  . 

The solution of the boundary value problem (3.7), 

(3.8) allows us to determine the correction of the first 

approximation
  kn xu 1  to the exact amplitude value 

n-th of the displacement vector’s component of the ma-

terial particles of the ferromagnetic metal layer. It 

should be emphasized that the solution of the boundary 

value problem (3.7), (3.8) has exactly the same con-

struction as the general solution of the boundary value 

problem (3.1), (3.2). The solution of the problem (3.7), 

(3.8) is written by replacing the values  km xH
 while 

solving the problem (3.1), (3.2) to the values 
  km xh 0

. 

The first approximation
  kp xh 1

 to the exact value 

 kp xh  is determined by the expression 

 

 
        kpkpkp xhxhxh 101  , (3.9) 

 

where 
  kp xh 1  - first-order correction. 

After substituting the expressions (3.6) and (3.9) in-

to (3.3) and the boundary conditions (3.4), (3.5), we ob-

tain: 
 

 

 
      VxuHmrihrih ksqppjqsmjmsqpnspjqn  01

,
0

0
1

0
1
,  

, (3.10) 

 
  Sxhn kqpkpq  01 , 

  SxBn kpp  01
, (3.11) 

 

where 
     11

,
01

npnnmqqpmnp huHmB   . 

The boundary value problem (3.10), (3.11) allows us 

to determine the corrections 
  kp xh 1  as functions of 

the corrections 
  kn xu 1 . 

After determining the corrections 
  kp xh 1 , assum-

ing that the second approximation to the exact value of 

the displacement vector  kxu


 is 

        kkk xuxuxu 212 
 , the boundary value 

problem (3.7), (3.8) is solved, and corrections
  kn xu 2  

are determined. By them, as a result of solving the 

boundary value problem (3.10), (3.11), corrections 
  kp xh 2  are determined. Computational procedures 

can be repeated as many times as you like.  

A small parameter of the described above procedure 

of successive approximations is the square of the coeffi-

cient of the magnetomechanical coupling, the numeri-

cal value of which does not exceed the value of the 

E -effect. Where in 
    Euu  01 

, 

     202 Euu 


, … , 
     mm Euu  0

. Simi-

lar estimates are valid for corrections to the zero ap-

proximation to the exact value of the vector  kxh


. 

If the magnetostrictive properties of the 

ferromagnet ensure the E -effect at the level of less 

than 10%, then it can be assumed that the zero 

approximations 
  kxu 0

 and 
  kxh 0


 to the exact 

values of the displacement vector of material particles 

and the intensity vector of the internal magnetic field 

provide estimates of the physical state of the deformed, 

pre-magnetized ferromagnet, which, in terms of 

technical applications, are quite satisfactory both in a 

quantitative sense and in terms of qualitative 

(physical) content. 

 

4. CONCLUSIONS 
 

1. A boundary problem is formulated for the elec-

tromagnetic excitation of elastic oscillations in the mi-

cro-thick layers (films) of ferromagnetic group metals, 

in which the linear approximation of the phenomeno-

logical theory of magnetostriction phenomena is used. 

2. A mathematical model of electromagnetic energy 

into acoustic one transformation process in a thin met-

al layer is developed, taking into account the coherence 

of the elastic and magnetic fields in the volume of the 

dynamically deformable micro-thick layer of an electri-

cally conductive ferromagnet. 
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An increase in the mechanical rigidity of a pre-

magnetized ferromagnet due to the coupling action of 

elastic forces and magnetic interaction forces between 

the poles of domains in a deformable thin layer of fer-

romagnet (ΔE effect) is estimated. The boundaries are 

determined for which the ΔE effect can be ignored in 

practical calculations. 

3. On the basis of numerical values of the ΔE effect 

estimates, a method of successive approximations is 

proposed for solving the boundary problem of the con-

version of a high-frequency electromagnetic field into 

the field of elastic waves in the micro-thick layers of 

ferromagnetic group metals. 

4. It is shown that the developed mathematical 

model is adequate in wide range of frequencies of the 

applied high-frequency electromagnetic field. For the 

conventionally used in physical studies variable mag-

netic field frequencies, as well as ranges of magnetic 

permeabilities and electrical conductivities of materi-

als, the physical transformation of energies occurs in 

the layer thicknesses of 0.1 ... 100 μm. The length of 

the excited elastic wave will be much larger than the 

thickness of the layer’s section, therefore providing a 

metal layer stress-strain state, which practically does 

not change within the area of its cross section.

 

Математическое моделирование физических процессов преобразования электромагнит-

ного поля в поле упругих колебаний в микротолщинных слоях металлов 
 

С.Ю. Плеснецов1, Р.П. Мигущенко1, О.Н. Петрищев2, Г.М. Сучков1, Г.С. Хрипунов1 

 
1 Национальный технический университет «Харьковский политехнический институт», ул. Кирпичева, 2, 

61002 Харьков, Украина 
2 Национальный технический университет Украины «Киевский политехнический институт имени Игоря 

Сикорского», пр-т. Победы, 37, 03056 Киев, Украина 

 
Приведены результаты математических исследований по моделированию процесса преобразова-

ния высокочастотного электромагнитного поля в поле упругих колебаний в микротолщинных поверх-

ностных слоях или тонких пленках из электропроводного ферромагнитного материала, помещенного 

в магнитное поле, с учетом связности упругих, электрических и магнитных свойств металла. Показа-

но, что при практических расчѐтах, особенно в случае высокочастотных колебаний, необходимо учи-

тывать толщину скин-слоя, в котором происходит преобразование электромагнитного поля в акусти-

ческое. 
 

Ключевые слова: Математическая модель, Граничная задача, Ферромагнетик, Микротолщинный 

слой металла, Электропроводный материал, Упругие колебания, Электромагнитное поле, Электро-

магнитно-акустическое преобразование. 

 

Математичне моделювання фізичних процесів перетворення електромагнітного поля в 

поле пружних коливань в мікротовщинних шарах металів 
 

С.Ю. Плєснецов1, Р.П. Мигущенко1, О.Н. Петрищев2, Г.М. Сучков1, Г.С. Хрипунов1 

 
1 Національний технічний університет «Харківський політехнічний інститут», вул. Кирпичова, 2, 61002 

Харків, Україна 

2 Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорсь-

кого», пр-т. Перемоги, 37, 03056 Київ, Україна 

 
Наведено результати математичних досліджень з моделювання процесу перетворення високочас-

тотного електромагнітного поля в поле пружних коливань в мікротовщинних поверхневих шарах або 

тонких плівках з електропровідного феромагнітного матеріалу, розміщеного в магнітному полі, з ура-

хуванням зв'язності пружних, електричних і магнітних властивостей металу. Показано, що при прак-

тичних розрахунках, особливо в разі високочастотних коливань, необхідно враховувати товщину скін-

шару, в якому відбувається перетворення електромагнітного поля в акустичне. 
 

Ключові слова: Математична модель, Гранична задача, Феромагнетик, Мікротовщинний шар мета-

лу, Електропровідний матеріал, Пружні коливання, Електромагнітне поле, Електромагнітно-

акустичне перетворення. 
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