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The results of the mathematical studies on the modeling of high-frequency electromagnetic field con-
version in the field of elastic oscillations process in microthick surface layers or electrically conductive fer-
romagnetic material thin films placed in a magnetic field are given, taking into account the coherence of
elastic, electric and magnetic properties of the metal. It is shown that in practical calculations, especially
in the case of high-frequency oscillations, it is necessary to take into account thickness of skin layer in
which electromagnetic field transforms into acoustic field.
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INTRODUCTION

Ultrasonic waves are effectively used to solve vari-
ous problems of solid state physics. Excitation and re-
ception of ultrasonic waves in metals is carried out by
contact [1] and non-contact [2-4] methods. With the
contact method, excitation and reception of ultrasonic
waves are traditionally carried out by means of piezoe-
lectric transducers (PET). However, in a number of
cases, the use of PET becomes fundamentally unac-
ceptable [5]. The non-contact method of excitation of
ultrasonic vibrations is realized by the influence of
fields of various types on the study sample. To imple-
ment a non-contact method, electromagnetic fields are
most often used [2-5]. Excitation of ultrasonic waves
under the influence of electromagnetic radiation occurs
in the surface layer corresponding to thickness of skin
layer. For high-frequency range, the thickness of fer-
romagnetic metals skin layer can be reduced to 1 pm or
less. The area of ultrasonic waves reception has similar
thickness of the layer taking part in the transfor-
mation. In the mathematical description of the elec-
tromagnetic method of excitation of elastic vibrations
in metals, the main attention was paid, as a rule, to the
ponderomotive action of the electromagnetic field. In
the case of ferromagnetic metals, the situation is dif-
ferent. In general, the physical theory of magneto-
striction phenomena was created to solve problems of
technical magnetization [6]. This theory explains the
nature of the magnetostrictive effects at the level of the
crystal lattice and is practically not applicable for the
quantitative description of the magnetostrictive mech-
anism of the formation of deformations in ferromagnet-
ic metals and ferrodielectrics (ferrites) when they in-
teract with electromagnetic field. This issue becomes
especially important when examining the interaction
between an electromagnetic field and a thin surface
layer of metal or a film.

Shulga N.A. [7] through their works have begun the
application of the component of phenomenological theo-
ry of magnetostrictive phenomena. They recorded and
used the generalized Hooke’s law for elastic media with
magnetostrictive effects, but there is no second equa-
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tion of the physical state, which has the meaning of the
law of magnetic polarization of a ferromagnet consider-
ing its magnetostrictive properties. At the same time,
the connection between the elastic, magnetic and elec-
tromagnetic fields, which exist in the volume of the
deformable ferromagnet layer, is not established.

At the same time, the paper [8] is well known, in
which an adiabatic version of the phenomenological the-
ory of magnetostrictive phenomena is derived, in which
nonlinearity of the elastic and magnetic properties of a
ferromagnet is taken into account. Therefore, it is advis-
able to use this theory for mathematical modeling of the
electromagnetic method of excitation of elastic vibrations
in metals of a ferromagnetic group, the improvement of
which will allow constructing highly effective electro-
magnetic-acoustic transducers of various purposes. At
the same time it is important to take into account the
influence of micron thicknesses of metal or electromag-
netic into elastic oscillations field transformation area,
which makes the research to be of current interest in the
field of microelectronic engineering.

1. PROBLEM STATEMENT

Let us consider a conductive polycrystalline ferro-
magnet inside which using external devices a perma-
nent magnetic field with intensity H O(Xk) and a time-
varying magnetic field H*(Xk ,t) = |:|*(Xk )(-:'i(”t are creat-
ed, where X, - coordinates of a point in the right-
(physical)
i=+-1; @ - circular frequency; ¢ - time. In the vol-

handed Cartesian coordinate system;

ume V of ferromagnet and on its surface S a system of
force factors appears, which is the source of elastic vi-
brations of the material particles of the metal. If there

is a strong inequality‘H-O(XkX>>‘|:|.*(Xk1, then the
desired displacement vector of material particles
ist(x,t)=0U(x e'”. Amplitude value un(xk) of the

n-th component of the displacement vector satisfies the
equation of steady harmonic vibrations (the second
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Newton's law in differential form), which is written in
the form:

Omn,m + COZPOUn — Ln = vak eV, (1.1)

where o - time-varying amplitude value under the

law €' of tensor of the resulting elastic stresses in a
ferromagnetic metal; a comma between indices means
the operation of expression differentiation, which is
written before a comma, by the coordinate which index
is put after the comma; p, - ferromagnet density. The

symbol L, denotes n-th component of the amplitude

value of the vector of the volume density of Lorentz
forces. Neglecting the currents that are caused by the
motion of the material particles of the deformed

ferromagnet, the component L,= 8nkakB,?,, where

Enkm - component of the Levi-Civita tensor that is

equal to plus one, when the indices n, k, m form
permutations of numbers 1, 2, 3 with an even number
of derangements, equal to minus one, when the indices
n, k, m form permutations of the numbers 1, 2, 3 with
an odd number of derangements and equal to zero,
when any two of the three indices are equal to each
other; J, - k-th component of the amplitude value of

the vector of the eddy current density, which varies in
time according to the law glt , and which is
determined by the rotation of an alternating magnetic
field in the volume of metallic ferromagnet;

B,?, =,u§mH,? m-th component of the magnetic

induction vector of the constant bias field; w7,

component of the magnetic permeability tensor of a
magnetized ferromagnet, which is experimentally
determined in the regime of constancy (equal to zero) of
elastic deformations (symbol &).

The amplitude value of the n-th component of the
eddy current density vector J, (Xk) is determined by the

Ohm's law in differential form, that
isJ, (Xk) =nRE, (Xk ), where ro - electric conductivity of a

ferromagnet; E, (Xk) - amplitude value of the n-th com-

ponent of the intensity vector of an alternating electric
field in the volume of the deformable ferromagnet.

The electric and magnetic states of a dynamically-
deformed ferromagnet are determined by the Maxwell
equations, which, neglecting the motion of material
particles and displacement currents, are written in the
following form:

m m, m;
m, m m,

m m m
”mﬂ}’ " = 02 02 01
0 0 0

0 0 0

Substituing relations (1.4) and (1.5) into equations
(1.1) and Maxwell's equations (1.2) u (1.3), allows us to
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é‘nspH p,S: roEn, (1.2)

&ignEn q= —ioB (1.3)

j’

where H,=H ;; + hp; hp - amplitude value of the p-th

component of the intensity vector of the internal mag-
netic field, which arises in the deformable ferromagnet
due to the motion of the domain walls; B; - amplitude
value of the j - th component of the vector of magnetic
induction of an alternating magnetic field in the vol-
ume of the deformable ferromagnet.

The connecting link between the fundamental equa-
tions (1.1) of mechanics and the equations of electrody-
namics (1.2) and (1.3) are the equations of the physical
state. If at any point of the deformable ferromagnet

there is a strong inequality‘ qu(xkj >> ‘I:| (ka ,

where H (Xk ) =H *(Xk) + H(Xk ), then from the general

nonlinear relations follows the linear approximation,
which can be written in the form:

H 0 *
Omn = Crmnkelk, ¢ — mpkmnH p(Hk + hk) (1.4)

_ 0 & *
Bj=MpjqsH pus,q+'”im(Hm+ hm). (1.5)

where ¢/1,, - modulus of elasticity of a ferromagnet,
which is experimentally determined in the regime of
constancy (equal to zero) of the magnetic field (symbol
H) or, in other words, the elastic modulus of the de-
magnetized ferromagnet; Mpym, magnetostrictive

constant, whose numerical value depends on the mag-
nitude and direction of the constant bias field. Obvious-
ly, in the case of a polycrystalline, non-textured metal,

the material constants CSnkZ U Mpymy are components

of isotropic tensors of the fourth rank and are defined
by the following relations

Crlr-:nkf = A8y + G(5mk5n1€ + 5m£5nk)s

m—-m, (

Mokmn = r'nzgpkgmn + §pm5kn + 5pn5km )s

where 4 and G - Lame's constants (moduli of elastici-
tY); Omns --
linearly independent, experimentally determined con-

stants. From the above definition of magnetostrictive
constants it follows that the tensor matrix mg, (S and

.s Oun - Kronecker symbols; m; and m, -

¥ - Voigt indexes) has the form:

0 0 0
0 0 0
0 0 0
(m-my)2 0 0
0 (m,—m,)/2 0
0 0 (m;—m,)/2

write the following system of differential equations:
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H 2 0 *
CrnkeUk,em + @~ Pl _mpkmn(H phk)m - f, =0Vvx, eV

. B .
Ejgnénsplp,sq T 101 jmhy + Tlgm

p.sq

where f'=L, + Mpokann (H SH[(k )m - the resulting value of

the amplitude of the n-th component of the volume
density vector’s forces generated by external sources;
when writing the equations (1.7) it was taken into ac-

count that gjqngnspH;Sq + ia)l’o,u‘jgmH;, =0 by the defini-

tion of the vector H *(Xk) as an intensity vector of al-
ternating magnetic field in the volume of conducting
ferromagnet.

The uniqueness of the solution of equations (1.6)
and (1.7) is determined by the boundary conditions.
Assuming that the ferromagnetic sample is in vacuum,
we write condition:

n-(ajk— U]—‘k)z 0V x €S,

J (1.9)

which, in its essence, is the third Newton's law in a
differential form. The symbol n; denotes the j-th com-
ponent of the vector of the outer unit normal to the
surface S at the point with the coordinates xr. The am-
plitude value of the component of the elastic stress ten-
sor 1is ijz G(ijk + uk,j)+ é‘jklunyn . The amplitude

value of the surface density of forces, which are created

by  external
where l\/l}‘k = (H}F+ hj)BE +0jk l(|:|*+ ﬁ) EOVZ - am-

plitude value of the Maxwell tensor of tension.

Many ferromagnets have relatively small values of
magnetic permeabilities and therefore, in contrast to
piezoceramic materials, it is necessary to take into ac-
count the emission of the energy of the electromagnetic
field in the surrounding space of ferromagnet. In this
case, the boundary conditions for the amplitude values

* 0 * *
sources O'j = t‘npnijp(Hn + hn)+ M,

of the components of the intensity vector ﬁ(xk) of the

internal magnetic field are written as follows:

Zroqnp g — Fq)= 0¥ X €S, (1.9

n, (B, - 1oH )= 0¥ x, S, (1.10)

where Ny - p-th component of the unit normal vector;

Hq - amplitude value of the g-th component of the in-

tensity vector I—~|(xk) of the stray magnetic field, which

with time law e'™ ;

0 £
Bp = mqpmanum,n + :upnhn

varies according to the
- amplitude value of the

p-th component of the magnetic induction vector in the
volume of the deformed ferromagnet; Uy =41 107 H /m

- vacuum permeability.

The vector ﬁ(xk) is defined by the Maxwell equa-

tions in vacuum, that is, it is the general solution of

J. NANO- ELECTRON. PHYS. 9, 05041 (2017)

) (1.6)
pigsH gquS=OVXk eV ’ wn
equation:
rotrot H — PR =0V x eV,  (L11)

And satisfies the conditions of physical realizability
of the source of the field, that is, the limiting conditions

lim [A,, Ay n]=0,

R—>w

(1.12)

where R - distance from the surface S of the ferromag-
netic sample. The symbol y, in equation (1.11) denotes

the dielectric constant 4 =8,85.10 F/m.

Thus, a precise determination of the parameters of
the stress-strain state of a magnetized ferromagnet
assumes a joint solution of a system of six differential
equations (1.6) and (1.7). The uniqueness of the solu-
tion of this system of equations is provided by the
boundary conditions (1.8) - (1.10), in which the compo-
nents of the intensity vector of the stray magnetic field
are determined as a result of the solution of the com-
plementary boundary value problem (1.11), (1.12).

2. MODEL EXAMPLE AND QUANTITATIVE ES-
TIMATION OF THE CONNECTION OF ELAS-
TIC AND MAGNETIC FIELDS IN THE VOL-
UME OF DEFORMED FERROMAGNET LAY-
ER

Suppose that at the end of a semi-infinite prismatic
layer of a rectangular cross-section (Figure 1)
harmoniously varying forces produced by external
devices are operated. The external forces are
distributed uniformly on the surface X, =0 with
surface density O'; = Goei“‘. The layer is magnetized
by a constant longitudinal magnetic field, the intensity
of which Hg is constant throughout the entire volume

of the layer.

Xy

* ot

Fig. 1 - To the definition of the dynamic stress-strain state of
a longitudinally magnetized layer
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It is obvious that external forces excite harmonic
elastic waves that spread in the positive direction of
the coordinate axis Ox, . The displacement vector of the
material particles of the layer can be described as fol-
lows G(x,t)=0(x )e'*, where G(x,) - spatially-
developed amplitude. The components of the displace-
ment vector satisfy the equations of steady-state har-
monic vibrations (1.1).

Since torsion and bending in the ferromagnetic
state are absent in the sense of the problem statement,
the tangential stresses are zero, and the amplitude
values of the normal resultant stresses are determined
as follows:

o1 = (ZG + /1)511 + 1(522 + 533) - mzHg h,, (2.1)

B = h; B, :mzHg(511+533)+mnggzerﬂ‘zghz; By = 13 hy.

Consider the frequency range in which the length of
the elastic wave is many times greater than the largest
cross-sectional dimension of the layer. For the variable
magnetic field frequencies traditionally used in physi-
cal studies, as well as the ranges of magnetic permea-
bilities and electrical conductivities of materials, the
physical transformation of energies occurs for the layer
thicknesses of 0.1 ... 100 pm. Therefore the length of an
elastic wave is a measure and scale of the spatial in-
homogeneity of the stress-strain state of the rod. Tak-
ing this circumstance into account, it can be stated that
in the region of established frequencies the stress-
strain state practically does not change within the
cross-sectional area of the layer.

Since on the lateral surfaces perpendicular to the
axes OX; and Ox;, normal stresses oy; and o035 of the
layer being in the vacuum shall be zero (Newton's third
law in differential form), and the change in the stress-
strain state in the cross-sectional plane is absent, then
it can be asserted that oy; = 033 =0V X, €V, where
V -layer volume.

According to the assumptions about the nature of
the strained-deformed state in the plane of the cross-
section, we assume that the magnetic induction also
remains practically unchanged in the limits of the
cross-sectional area of the layer. From this assumption
it follows that B; = B; =0V X, €V .

If we turn to the Maxwell equation rotE = —iwB

and calculate the divergence of its left and right sides,
we obtain the condition for the absence of magnetic

charges, that is divB =0. For the one-dimensional

problem under consideration, this condition is equiva-
lent to the assertion that

BZ,Z = 0 (25)

Substituting the zeros into the left-hand sides of
equations (2.1) and (2.3), we define deformations &4,

and €33 through deformationé,, :
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Oy = A1y + (2G + A)syy + 33 —mMHoh,,  (2.2)

where &4, &, U £33 - compression-extension defor-
mations along the coordinate axes OX;, OX, and OXg
respectively; h, - longitudinal component of the inten-
sity vector of the internal magnetic field in the volume
of the deformable ferromagnet.

The magnetic state of the deformable ferromagnetic
layer is described by the law of magnetic polarization of
a ferromagnet layer with allowance for its
magnetostrictive properties (1.5), from which the
calculated relationships for the amplitude values of the
components of the magnetic induction vector are:

2.9

where v = 4/[2(1 + G)] - Poisson's ratio of the demag-
netized ferromagnet.

Substituting the deformations €4 and €33 from
(2.6) into the equations of the physical state (2.2) and

(2.4), we obtain the calculated relations of the following
form:

B, = HJ &5, + 150, =M HJU, , + 1551y, (2.8)

where E = G(ZG + 3/1)/ (G + /1) - Young's modulus of
. « myA
the demagnetized ferromagnet; m =m — ——=
(A1+G)
*_ & 0 ..
and o =15 + (m2H2)2 / (/1 + G) - magnetostrictive
constant and magnetic permeability for uniaxial ten-
sion-and-compression mode of a prismatic layer.
It is quite clear that the system of equations (1.6) is
reduced to one equation for the longitudinal compo-
nentU, of the displacement vector of the material par-

ticles of the layer, which can be written in the following
form:

Eu2122 - meZOhZ,Z + poa)zuZ = O . (29)
Substituting (2.7) and (2.8) into condition (2.5), we
find that

_
m;Hj

hy o =———"=Uy,.
Ho

(2.10)

Eliminating the derivative h, , from the equation

(2.9) with the help of the relation (2.10), we obtain an
ordinary differential equation of the following form:

E(L+ AE), 2, + pooo’U, = 0, (2.11)
where AE = (meg )2 / (ﬂ;E) - increase in the mechani-

cal rigidity of the pre-magnetized ferromagnet due to
the corresponding (coherent) action of elastic forces and
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the forces of magnetic interaction between the poles of
domains in the deformable ferromagnet.
The solution of the equation (2.11) is obvious

Uz(xz) = er_i}“2 )

where U - constant to be determined; y = @/V - wave

number of longitudinal nondispersive waves;

v=,JE@ + AE)/p, - propagation velocity of longitudi-
nal nondispersive waves (bar velocity) in a pre-
magnetized ferromagnet. In cross section X, =0 The

third Newton's law must be satisfied, from which the
constant U is defined

iO-O

DT AE)

The relative change AE of the Young's modulus, or,
as they say, AE -effect, is the result of the interaction
(connection) of elastic and magnetic fields in the vol-
ume of the deformed, pre-magnetized ferromagnet. The
consequence of coherence or correspondent action of
elastic forces and magnetic forces is the emergence of

new material constants M, u ;. For a ferromagnet
with E=2-10"Pa
andv =0,3(G=7,69-10'"°Pa, 1=11,54-10"Pa) and
constants m =0,2 H/m, m, =—0,1 H/m (the order

of the magnetostrictive constants corresponds to the
experimental data) with magnetic permeability
15 =304, =3,77-10° H/m. The connection between

elastic moduli

elastic and magnetic fields at magnetic bias field
H§=1 xA/m appears as follows: AE =8,95-107°,

(1 + 2G)grad divii — Grotrotii + w’pyli — f*=0V X eV ,

where the amplitude value of the time-varying under

the law €' vector of the volume density of external

forces l?*zl:—i-énmpkmn(HgH;)m (€, - unit vector

(vector with unit length) of the coordinate axis OX,) is

a value that is known by the meaning of the problem
statement.

The boundary conditions (1.8), which ensure the
uniqueness of the solution of equation (3.1), retain
their form, that is:

n-(ajk— G}‘k): 0vx S,

, (3.2)

but the meaning of the component G]fk changes sig-

nificantly. The surface density

Tk = mpnijgH;+H;B£ + 0 H*B%/2 becomes the

known value as of the problem statement.

The boundary value problem (3.1), (3.2) has the
meaning of the problem of excitation of harmonic vibra-
tions in an isotropic solid by a system of volume and

h()
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m =0,26 H/m, 2 =3,775-10° H/m. In this case, the
bar speed increases by Av = 4,5-1073. If the magneto-
strictive constants are of great value, such as
m, =1,0 H/m and m, =-0,5 H/m, then for the same
values of the remaining parameters we get the follow-
ing values of material constants: AE =0,217,

m’ =1,30 H/m, z =3,90-10° H/m and Av =0,103.
In all probability, the value AE = 0,3 is the maxi-

mum value of AE -effect, which can be observed in de-
formable, pre-magnetized ferromagnets.

It is obvious that in the case of ferromagnets with
low values of the magnetostrictive consonant, one can
neglect the effects that appear due to the connection
between the elastic and magnetic fields.

3. METHOD OF SEQUENTIAL APPROXIMA-
TIONS IN MATHEMATICAL MODELING OF
ELECTROMAGNETIC FIELD TRANSFOR-
MATION IN THE FIELD OF ELASTIC OSCIL-
LATIONS IN A CONDUCTING PRE-
MAGNETIZED FERROMAGNET LAYER.

At moderate values (m; <0,5) of magnetostriction

constants, the corrections to the elastic moduli do not
exceed 5%, which entails a variation of the propagation
velocities of elastic waves not exceeding 3%. These
errors are commensurable, or less, with systematic
errors in the experimental determination of the
numerical values of the material constants of
ferromagnetic metals. This circumstance makes it
possible to neglect the coupling effect of elastic and
magnetic fields in dynamically deformed, pre-
magnetized ferromagnets and write equations (1.6) in
the following for

(3.1)

surface loads.

The results of the solution of the boundary value
problem (3.1), (3.2) determine in the zeroth approxima-
tion the stress-strain state of a conductive, pre-
magnetized ferromagnet layer. We denote the ampli-
tude values of the components of the displacement vec-
tor of the material particles of the ferromagnet, ob-
tained as a result of solving the boundary value prob-

lem (3.1), (3.2) by the symbol ug")(xk ) . From the known

values ugo)(xk) the deformations in equations
ué?g (Xk) are determined, after which the zero approx-

imations hg))(xk) to the exact amplitude values of the

components of the intensity vector of the internal mag-
netic field are determined.

The values hg))(xk) are determined as a result of

solving the next boundary value problem

0 i 0), 0,0
Ejgnénspp.sq + |a>r0yfmhr(n)+ i oM pjqsH puéyl:OVxk ev, (3.3)
o
G (0= F )= 0 €8, (3.4)
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n, (B - H )= 0 xS, (3.5)

H Our(]?')n + ﬂ‘; nhr(lo); Amplitude values

() _
where Bp”=mg,mHyg

of the components of the vector I-|(Xk) of the stray

magnetic field are determined exactly as a result of the
solution of the complementary boundary value problem

(1.11), (1.12). The first approximation ugl)(xk) to the

exact value of the components U, (Xk) is defined

ur(})(xk) = ur(f’)(xk) + Aug,l)(xk ), (3.6)

where Au,(,l) (Xk) - first order correction.
Substituting the definition (3.6) and the found zero
approximation h(o)(xk) to the exact amplitude value of

the intensity vector of the internal magnetic field into
equations (1.6) and the boundary conditions (1.8), we

as follows: obtain:
(1 + 2G)grad divai® — Grotrot AGY + w?p,Ai® — FO=0vx eV, (3.7
n(oW-ol%)=0vxes, 3.9
where pkmn(th )m; (3.8) is written by replacing the values H;;(x,) while

ag}):G(AuJ |+ Aud, )+ 28 )

n, n’
ol9=m, HONO + hOBY + 5, h©B/2.

The solution of the boundary value problem (3.7),
(3.8) allows us to determine the correction of the first

approximation Aur(ll)(xk) to the exact amplitude value

n-th of the displacement vector’s component of the ma-
terial particles of the ferromagnetic metal layer. It
should be emphasized that the solution of the boundary
value problem (3.7), (3.8) has exactly the same con-
struction as the general solution of the boundary value
problem (3.1), (3.2). The solution of the problem (3.7),

gjqngnSpAh() +Ia)|’0,quAh()+|a)r0 pJqSHgAugl?S=OVXk ev,

gkpqnpAh(g) =0Vx. €S, npABg) =0Vx, €S,

where ABg) MgpmHg OAur(n)n + ,upnAh()

The boundary value problem (3.10), (3.11) allows us
to determine the corrections Ahg)(xk) as functions of
the corrections Au,(})(xk )

After determining the corrections Ahg)(xk ), assum-

ing that the second approximation to the exact value of
the displacement vector U(Xk ) is
U(Z)(Xk )= U(l)(xk )+ AU(Z)(XK ), the boundary value
problem (3.7), (3.8) is solved, and corrections Aur(lz)(xk)

are determined. By them, as a result of solving the
boundary value problem (3.10), (3.11), corrections

Ah&z)(xk) are determined. Computational procedures
can be repeated as many times as you like.

A small parameter of the described above procedure
of successive approximations is the square of the coeffi-

cient of the magnetomechanical coupling, the numeri-
cal value of which does not exceed the value of the

AE -effect. Where in ‘Aﬁ(l)‘/‘ﬁ(o)‘ <AE,
6 0] < (aEP, . |ag)J60) < )"

lar estimates are valid for corrections to the zero ap-

. Simi-

solving the problem (3.1), (3.2) to the values h®)(x, ).
The first approximation hg)(xk) to the exact value

hp (Xk ) is determined by the expression

h(l)(xk) = h(o)(xk) + Ahg)(xk), (3.9

p p

where Ahg)(xk) - first-order correction.

After substituting the expressions (3.6) and (3.9) in-
to (3.3) and the boundary conditions (3.4), (3.5), we ob-
tain:

(3.10)
(3.11)

proximation to the exact value of the vector F\(Xk ) .

If the magnetostrictive properties of the
ferromagnet ensure the AE -effect at the level of less
than 10%, then it can be assumed that the zero

approximations U(O)(Xk) and H(O)(Xk) to the exact

values of the displacement vector of material particles
and the intensity vector of the internal magnetic field
provide estimates of the physical state of the deformed,
pre-magnetized ferromagnet, which, in terms of
technical applications, are quite satisfactory both in a
quantitative sense and in terms of qualitative
(physical) content.

4. CONCLUSIONS

1. A boundary problem is formulated for the elec-
tromagnetic excitation of elastic oscillations in the mi-
cro-thick layers (films) of ferromagnetic group metals,
in which the linear approximation of the phenomeno-
logical theory of magnetostriction phenomena is used.

2. A mathematical model of electromagnetic energy
into acoustic one transformation process in a thin met-
al layer is developed, taking into account the coherence
of the elastic and magnetic fields in the volume of the
dynamically deformable micro-thick layer of an electri-
cally conductive ferromagnet.
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An increase in the mechanical rigidity of a pre-
magnetized ferromagnet due to the coupling action of
elastic forces and magnetic interaction forces between
the poles of domains in a deformable thin layer of fer-
romagnet (AE effect) is estimated. The boundaries are
determined for which the AE effect can be ignored in
practical calculations.

3. On the basis of numerical values of the AE effect
estimates, a method of successive approximations is
proposed for solving the boundary problem of the con-
version of a high-frequency electromagnetic field into
the field of elastic waves in the micro-thick layers of
ferromagnetic group metals.

J. NANO- ELECTRON. PHYS. 9, 05041 (2017)

4. It is shown that the developed mathematical
model is adequate in wide range of frequencies of the
applied high-frequency electromagnetic field. For the
conventionally used in physical studies variable mag-
netic field frequencies, as well as ranges of magnetic
permeabilities and electrical conductivities of materi-
als, the physical transformation of energies occurs in
the layer thicknesses of 0.1 ... 100 pym. The length of
the excited elastic wave will be much larger than the
thickness of the layer’s section, therefore providing a
metal layer stress-strain state, which practically does
not change within the area of its cross section.

MaremaTuueckoe MogeIrpoBaHyie PU3NIECKUX MPOIEeCCOB IIPe00pPa3oBaHUA JJIEKTPOMATHUT-
HOTO II0JIA B MOJIe YIIPYTUX KOJI€OAHUHA B MUKPOTOJIMIUHHBIX CJI0AX METAJIJIOB

C.10. Ilnecuenos?, P.I1. Murymenxo!, O.H. Ilerpumes?, I'M. Cyuros!, I'.C. Xpumysos!

1 HayuonanvHbili mexnudeckuli ynusepcumem «Xapvko8cKull nosiumexuuueckuli uncmumym», ya. Kupnuuesa, 2,
61002 Xapvros, Yepaura
2 HayuornanvHoiii mexnuueckuil ynusepcumem Yrpaunot «Kuesckuii nonumexnuueckuti uncmumym umenu Heopsa
Curopcrozon, np-m. Ilo6eowt, 37, 03056 Kues, Yxpauna

[IpuBeneHs! pe3ysibTaThl MATEMaTHYECKUX FCCJIEJOBAHUI 10 MOJIEJIMPOBAHUIO IIpoliecca Iipeobpa3oBa-
HUS BBICOKOYACTOTHOIO 3JIEKTPOMATHUTHOIO TI0JISA B I0JIe YIPYTUX KOJIeOAHUN B MUKPOTOJIIIUHHBIX MIOBEPX-
HOCTHBIX CJIOSIX WMJIM TOHKHUX IUIEHKAX W3 JIEKTPOIPOBOJIHOIO (PepPOMATHUTHOIO MaTeprasia, [OMeIleHHOIo
B MATHUTHOE TI0JIe, C YY€TOM CBSI3HOCTH YIIPYIHUX, 9JeKTPUUECKUX W MATHUTHBIX CBOMCTB MeTasia. [lokasa-
HO, YTO IPH IPAKTUYIECKUX PACYETAX, OCOOEHHO B CJIydae BBHICOKOYACTOTHBIX KOJIEOAHUM, HEOOXOMUMO Y4 U-
THIBATH TOJIIMHY CKUH-CJIOSI, B KOTOPOM IIPOMCXOJUT IIPeobpasoBaHue 9JIeKTPOMATHUTHOIO II0JISI B aKyCTH-

YecCKoe.

Kinrouessie cnosa: Marematuyeckas moneinsb, ['panuunas 3amgada, @eppomarserur, MuUKpOTOIIIMHHBIN
CJION MeTaJuia, JJIEKTPOIIPOBOJHEIN MaTepuas, Yupyrue KojebaHus, JJIEKTPOMATHUTHOE I0Jie, DJIEKTDPO-

MAarsuTHO-aKyCTH4YeCKOoe HpeOGpaSOBaHHe .

MartemaTuuHe momaeroBaHHA Pi3UIHUX MPOIECIiB e PEeTBOPEHHA €JIEKTPOMATHITHOIO IMOJIA B
moJie MPYKHUX KOJIMBAHb B MiKPOTOBIIMHHUX IIAPAX METAJIIB

C.10. Ilnecuemon?, P.I1. Murymenxo!, O.H. ITerpuies2, I'"M. Cyuros!, I.C. XpumyHos!

1 HauionasoHutl mexuiuHull ynisepcumem «XapKi8cbKull nosiimexHivkutl incmumym», 8y, Kupnuuwosa, 2, 61002
Xaprie, Yipaina
2 HauioHanvHuil mexuiunuil yHigepcumem Yrpainu «Kuiscvruli nosiimexuiunull incmumym imeni Ieops Cikopco-
Kxoeon, np-m. Ilepemoecu, 37, 03056 Kuis, Yxpaina

Hagsenerno pesyibpratn MareMaTUIHUX JOC/IPKEHD 3 MOJIE/IIOBAHHS IIPOIECY IePEeTBOPEHHS BUCOKOYAC-
TOTHOTO €JIEKTPOMATHITHOTO II0JISI B II0JIe MPYKHUX KOJIMBAHD B MIKPOTOBIIMHHIX IIOBEPXHEBUX IIapax ado
TOHKHX IUIIBKAX 3 €JIeKTPOIIPOBIAHOrO (PepOMATrHITHOrO MaTepiajy, pO3MIIIEHOI0 B MATHITHOMY IIOJI, 3 ypa-
XyYBAHHSM 3B'S3HOCTI IIPYKHUX, eJIEKTPUYHUX 1 MATHITHUX BJIacTUBOCTed MeTasty. [lokasawo, 1o mpu mpaxk-
THYHHUX PO3PaXyHKAX, 0COOJIMBO B Pa3i BUCOKOYACTOTHHMX KOJIMBAHb, HEOOX1THO BPAXOBYBATH TOBIIUHY CKIH-
mapy, B SKOMY B1JI0YBA€ThCS IIEPETBOPEHHS €JIEKTPOMATHITHOTO II0JISI B aKyCTUYHE.

Knouosi ciosa: Marematnuna mozmesb, ['pannuna samaua, @epomaruernk, MikpoTOBIMUHHMIA IIap MeTa-
ny, EinexrtpompoBimumit matepias, Ilpysxni konmBauus, EiserxrpomarmitHe mosie, EjerrpomarsiTHO-

aKyCTHUYHe IIepeTBOPEHHH.
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