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The polycrystalline Sm2MgMnO6 (SMMO) was synthesized at 1173 K by means of sol-gel technique. 

Rietveld refinement of X-ray diffraction (XRD) pattern confirmed the formation of a single phase monoclin-

ic structure with space group P21/n. The band gap achieved from UV-vis spectra shows the semiconducting 

nature of the material. To observe the effect of grains and grain-boundaries in the conduction process and 

dielectric relaxation measurements are carried out on SMMO sample at different frequencies between 

313 K and 673 K. An electrical equivalent circuit consisting of the resistance and constant phase element is 

used to clarify the impedance data. 
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1. INTRODACTION 
 

Previous years, there is a great activity in develop-

ing new multifunctional double perovskite oxides 

(DPOs), which are very charming for their potential 

application in solid oxide fuel cells, thin film substrate 

for superconductors, electrolytes also in spintronics and 

magnetoelectric devices [1-5]. The alternating current 

impedance spectroscopy (ACIS) is very acceptable and 

powerful diagnostic tool for investigating the electrical 

properties of dielectric materials [6-8]. It helps to in-

vestigate the capacitance and conductance over a wide 

range of frequency range at various temperatures. This 

method describes the electrical processes arise in a 

system by applying an ac signal as an input perturba-

tion. Hence, these days’ ACIS has become very popular 

method in materials research and development. The 

dielectric studies of DPOs have been the focus of re-

searchers in recent years due to their scientific as well 

as technological importance and some considerable 

works have been already reported [9-11]. Though the 

electrical properties of various DPOs have been stud-

ied, no attempt has been made to study the DPO 

Sm2MgMnO6. In this paper we, therefore, report the 

dielectric relaxation behaviour of a new DPO 

Sm2MgMnO6 (SMMO) compound prepared by sol-gel 

technique in a wide range of frequency (42 Hz-5 MHz) 

and temperature (313-673 K) using impedance spec-

troscopy. 

 

2. EXPERIMENTAL 
 

SMMO was synthesized by the sol-gel citrate meth-

od. At first, stoichiometric quantities of the reagent 

grade Sm(NO3)3, 6H2O, Mg(NO3)2, 6H2O and Mn(NO3)2, 

6H2O were taken and dissolved separately in de-

ionized water by stirring using a magnetic stirrer. citric 

acid (CA) and ethylene glycol (EG) were added to this 

solution drop wise according to the molar ratio of 

{Sm3+}:{CA}:{EG}  1:1:4 to form a polymeric-metal cat-

ion network. The solution was stirred at 303 K using a 

magnetic stirrer for 6 h to get a homogeneous solution 

which was dried at 393 K to obtain the gel precursor. 

After combustion of the gel, a fluffy powder of the ma-

terial was collected. The powder was calcined at 1173 K 

in the air for 12 h and cooled down to room tempera-

ture (RT ~ 300 K) at a cooling rate of 1 K/min. The disc 

of thickness 0.9 mm and diameter 8 mm was prepared 

by the calcined sample using polyvinyl alcohol (PVA) as 

the binder. Finally, the disc was sintered at 1273 K and 

cooled down to RT by cooling at the rate of 1 K/min. 

The crystal-structure of SMMO was studied using a X-

ray powder diffractometer (Rigaku Miniflex II) having 

Cu-K radiation in the 2 range of 10-80° by scanning 

at 0.02° per step at RT. The refinement of the X-ray 

diffraction (XRD) pattern was performed by the 

Rietveld method with the full-prof program [12]. In the 

refinement process of the XRD profile, the background 

was fitted with the 6-coefficients polynomial function, 

and the peak shapes were described by the pseudo-

voigt profiles. During the refinement, the scale factor, 

lattice parameters, positional coordinates (x, y, z) and 

thermal parameter (Biso) were varied whereas the oc-

cupancy parameters of all the ions were kept fixed.  

In order to study the microstructure of SMMO, the 

pellet has been fractured and is kept on a stub with 

gold coating on the surfaces of the sample. The micro-

structural images are taken using FEI quanta 200 

scanning electron microscope to determine the grain 

size distribution, surface morphology. Standard UV-

visible absorption spectrum of the sample was obtained 

in the range of 200-900 nm using a Shimadzu UV-

visible spectrometer. To study the electrical properties, 

both the flat surfaces of the sintered pellet were elec-

troded with the thin gold pellet to performing the ex-

periment. The impedance (Z), capacitance (CS), con-

ductance (G) and phase angle () were measured using 

an LCR meter (Hioki) in the frequency range from 

42 Hz to 5 MHz at the oscillation voltage of 1.0 V. the 

measurements were performed over the temperature 

range from 313 to 673 K using an inbuilt cooling–

heating system. The temperature was controlled by a 

Eurotherm 818p programmable temperature controller 

connected with the oven. Each measured temperature 

was kept constant with an accuracy of ± 1 K. The com-
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plex dielectric constant * 1/iC0Z* was obtained from 

the temperature dependence of the real (Z') and imagi-

nary (Z'') parts of the complex impedance Z*  Z – iZ'', 

where  is the angular frequency   2 and i  √(– 1). 

C0  0A/d is the empty cell capacitance, where A is the 

sample area and d is the sample thickness. The ac elec-

trical conductivity   Gd/A was calculated from the 

conductance. 

 

3. RESULTS AND DISCUSSION  
 

3.1 X-ray diffraction 
 

Fig. 1 shows the XRD pattern of SMMO where the 

symbol represents the best fit to the diffraction pattern 

obtained by Rietveld refinement [13]. The vertical bar 

symbols denote the Bragg-positions and the solid curve 

at the bottom represents the difference between the 

experimental and the calculated patterns. It has in-

ferred that SMMO may crystallize in a perovskite 

structure with monoclinic P21/n space group. The pres-

ence of the super-lattice diffraction peak (101) at 

2  20° in the XRD pattern indicates in phase tilting 

of the octahedra with B-site cation ordering. Hence the 

centrosymmetric space group P21/n, which permits B-

sites ordering is adopted here to refine the crystal 

structure of SMMO. 
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Fig. 1 – Rietveld refinement plot of SMMO at room tempera-

ture. Inset (right) shows the schematic presentation of the 

SMMO monoclinic unit cell. The scanning electron micrograph 

of the sample as shown in inset (middle) 
 

The refined lattice parameters are found to be 

a  5.3667 Å; b  5.5012  Å; c  7.6299  Å; 

  90.0833°. A schematic presentation of the SMMO 

unit cell is shown in the inset of Fig. 1 with the distri-

bution of ions at crystallographic positions 4e for Sm3+ 

ions, 2c for Mg2+ ions, 2d for Mn4+ ions, and 4e for O2- 

ions as given in Table 1. Each of Mg2+ and Mn4+ ions is 

surrounded by six O2 –  ions, constituting MgO6 and 

MnO6 octahedra respectively which are arranged alter-

natively. The final structure parameters along with the 

bond lengths and the bond angles associated with 

MgO6 and MnO6 octahedra are listed in Table 1. It is 

well known that for an unmixed DPO of A2B′B″O6 type, 

the degree of distortion is determined by the tolerance 

factor,   0 0/ 2f A Bt r r r r   . Where rA and r0 de-

note the ionic radii of A and O-ions, respectively and 

Br

 

denote the average ionic radius for the ions on the 

B site. Usually a cubic perovskite structure is obtained 

for tf close to unity, whereas it can be lower symmet-

rical structure (orthorhombic, monoclinic) for lower 

value of tolerance factor. The theoretical value of tf for 

SMMO is 0.86 which supports the lower symmetrical 

structure of the sample. 
 

Table 1 – Various structural parameters extracted from 

Rietveld-refinement of XRD data for SMMO 
 

Space group  P21/n (Monoclinic) 

Lattice parameters: a  5.3667 Å; b  5.5012 Å;  

c  7.6299 Å;   90.0833° 

Refinement parameters: Rp  5.70; Rwp  7.14; 

Rexp  6.63 and 2  1.16 
Atom Wyckoff 

site 

x y z 

Sm 4e 0.4966 0.5481 0.2523 

Mg 2c 0 0.5000 0 
Mn 2d 0.5000 0 0 
O1 4e 0.7487 0.3076 0.0135 
O2 4e 0.1975 0.7917 0.0955 
O3 4e 0.5999 0.0021 0.2612 

Bond 

length

s (Å) 

Mg-O1(×2): 1.71(10) Mn-O1(×2): 2.16(9) 

Mg-O2(×2): 2.06(9) Mn-O2(×2): 2.12(9) 

Mg-O3(×2): 1.90(13) Mn-O3(×2): 2.06(13) 
Bond 

angles 

(o) 

Mg-O1-Mn: 166(4) 

Mg-O2-Mn: 134(3) 

Mg-O3-Mn: 149(5) 

 

3.2 Microstructural and optical studies 
 

The SEM micrograph of the surface morphology of 

the SMMO ceramic is shown in inset (middle) of Fig. 1. 

The particles are nearly spherical and unequal in 

shape. The average grain size range 0.275-0.400 μm. 

The density of the sample is found to be 7.019 gm/cm3. 
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Fig. 2 – Tauc plot for SMMO sample 
 

The band gap of SMMO has been estimated from 

the absorbance coefficient (α) data as a function of 

wavelength using Tauc relation [14]. 
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where, h is the incident photon energy and Eg is the 

optical band gap.  

The exponent n is a dimensionless parameter hav-

ing value of 3/2 for direct forbidden transitions. The 

(h)2/3 vs. h plot shows the linear nature near the 

absorption edge for SMMO as shown in the Fig. 2. The 

extrapolation of the linear part of this curve near the 

absorption edge to (h)2/3  0 axis gives the direct 

band gap energy of 2.64 eV. 

 

3.3 Dielectric relaxation and ac conductivity 
 

The angular frequency dependence of dielectric 

constant (') and loss tangent (tan) of SMMO at vari-

ous temperatures is shown in Fig. 3. The presence of 

two well resolved relaxation peaks in Fig. 3(b) confirms 

the existence of at least two types of relaxation process 

in SMMO. In the higher frequency range ( 104 Hz) the 

relaxation process corresponds to the grain effect and 

in the lower frequency side ( 104 Hz) the grain bound-

ary contribution is more dominant. To explain the re-

laxation phenomenon in each frequency region, we 

have considered the Debye model. According to this 

model, below the relaxation frequency of each relaxa-

tion process all the dipoles follow the applied field and 

fully contribute to the relaxation process. With the in-

crease of the applied field frequency, the dipoles begin 

to lag behind the applied field and at the relaxation 

frequency a sudden drop of the ' is evident. For further 

increase of the applied frequency, most of the dipoles 

do not respond and ' becomes nearly independent of 

the frequency. But this feature is not clearly observed 

in Fig. 3(a), may be due to the overlapping of the fre-

quency range associated with more than one relaxation 

process.  
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Fig. 3 – Frequency (angular) dependence of ' (a) and tan (b) 

at various temperatures for SMMO 
 

It is observed from Fig. 3 that the dispersions in ' 

and the corresponding relaxation peaks in tan move 

towards the higher frequencies with the increase of 

temperature which suggests the thermally activated 

nature of the relaxation process. Since the peak in the 

tan depends on the mobility and the temperature, the 

mobility of the thermally activated charge carriers in-

creases with the increase of the temperature, and they 

start to relax at the higher frequency thereby shifting 

the loss peak towards the higher frequency side. It is 

observed from Fig. 3b that the value of tan in the 

grain region is smallest ( 0.3) with respect to the 

grain-boundary (≥ 0.3) regions. Since the increase in 

the value of ' with the increase of the temperature is 

more pronounced in the lower frequencies, the observed 

high value of ' and tan at the lower frequency side 

can be attributed to the presence of the electrode-

semiconductor interface, which results in the Maxwell-

Wagner type polarization [15]. The Maxwell-Wagner 

type polarization may be originated due to the presence 

of heterogeneous components in the material, which 

have different interfaces with different conductivity. 

The surface charge accumulation is taken place when 

the current is passed through these interfaces which 

gives a Debye like relaxation under the application of 

an ac voltage. At the electrode-semiconductor contact, a 

high capacitance is formed due to the Schottky-type 

barrier layer which may be originated due to different 

work functions of the charge carriers at the electrode 

and in the materials [16]. This results in the high die-

lectric constant at the lower frequency and at the high-

er temperature in SMMO. The transport mechanism in 

SMMO can be assessed by the hopping of charge carri-

ers, and the frequency dependent tan is a requisite 

part of the charge carriers hopping transport process. 

In order to understand the origin of the different re-

laxation processes in SMMO, we have studied its com-

plex impedance plane plot (Z-plot) as shown in Fig. 4. 

The presence of two semicircular arcs in Fig. 4 confirms 

that two different types of relaxation process are in-

volved in the charge transport of SMMO. The inset of 

Fig. 4 shows the high frequency data for the clarity of 

the grain and grain-boundary regions. Usually the Z-

plot is fitted with an electrical equivalent circuit con-

sisting of two parallel resistance-capacitance (RC) cir-

cuits connected in series. One parallel branch is associ-

ated with the grain effect and the other one represent 

the grain-boundary effects. Due to the non-ideal behav-

iour of the capacitance, sometimes both grain and 

grain-boundary contributions, though small, are pre-

sent in the same frequency range, which may give rise 

to the depressed arcs or even only a spike-like nature 

in the low frequency region with a small arc in the 

high-frequency region of the Z-plot. For such cases, the 

capacitance term in the RC-equivalent circuit is re-

placed by a constant phase element (CPE). The capaci-

tance of CPE can be expressed as CCPE  Q1/kR(1-k)/k, 

where k estimates the non-ideal behaviour and Q is the 

CPE component. The value of k is zero for the ideal 

resistance and 1 for the ideal capacitance. The solid 

lines in Fig. 4 represent the fitting to the electrical 

equivalent circuit and the fitted parameters are found 

to be to be 3000 Ω, 10320 kΩ, 1.0 nF, 0.155 nF, 0.85, 

and 0.9 for Rg, Rgb, Cg, Cgb, kg and kgb respectively. 

The frequency dependent log-log plots of the ac con-

ductivity of SMMO are shown in Fig. 5 at a various 

temperatures. A strong frequency dependent and a 

very week temperature dependent effect are observed 

for the ac conductivity in SMMO. Due to the effect of 

grain and grain-boundary, one gets two plateaus and  
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Fig. 4 – The complex impedance plane plots between Z'' and 

Z' at the temperature 473 K. Lower inset shows the two well 

resolved semicircular arcs at high frequency corresponding to 

grain and grain boundaries. Right inset shows the equivalent 

circuit model used for fitting non-ideal (Cole-Cole) behaviour 
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Fig.5 – Frequency (angular) dependence of the ac conductivity 

() at various temperatures. The solid lines are the fitting of 

the experimental data with power law 
 

Table 2 – The various fitted parameters of conductivity spec-

tra in SMMO 
 

Temperature 

(K) 

A1 

(×10-12) 
n1 

A2 

(×10-

11) 

n2 

313 7.299 1.40 3.981 0.95 

473 1.104 1.38 9.338 0.90 

673 0.177 1.34 – – 
 

two dispersion regions in the frequency dependent ac 

conductivity plots as shown in Fig. 5 [17]. The low fre-

quency plateau represents the grain boundary contri-

bution to the total conductivity. The grain-boundary 

contribution relaxes in the dispersion region after this 

plateau. The highest frequency plateau represents the 

contribution of grains to the total conductivity. The 

dispersion region followed by this plateau represents 

the frequency dependence of the bulk conductivity. At 

the higher temperature, the low frequency plateau be-

comes nearly independent of frequency and its value at 

ν→0 gives the value of dc conductivity at that tempera-

ture. This is due to the fact that the intrinsic conductiv-

ity is dominant in the low frequency region at the high-

er temperatures. The increase of the conductivity with 

the increase of the frequency at a particular tempera-

ture indicates that the ac conductivity follows the pow-

er law. Since two plateaus are present in the ac conduc-

tivity we have used the power law equation having two 

frequency dependent parts defined as follows: 
 

   1 2

0 1 2
n nA A      

,
 (2) 

 

where 0 is the frequency independent conductivity, the 

coefficients A1, A2 and n1, n2 are the temperature and 

material dependent parameters. The experimental 

conductivity data are fitted by eq. (2) as shown by the 

solid lines in Fig. 5 for 313, 473 and 673 K. The values 

of the fitted parameters are given in Table 2. The tem-

perature dependence of n1 and n2 gives the information 

to specify the suitable mechanism involved for the ac 

conductivity. It is observed that the values of n1 and n2 

decrease with an increase in the temperature which 

can be explained due to the hopping between uncorre-

lated pairs of hopping centres, i.e., the short range 

translational hopping in the low and mid-frequency 

regions. 
 

4. CONCLUSIONS 
 

The DPO Sm2MgMnO6 (SMMO) has been synthe-

sized by the sol-gel technique. The Rietveld refinement 

of the XRD profile at the room temperature shows the 

monoclinic P21/n crystal symmetry of the system. The 

crystal structure of SMMO differs from its two end ma-

terials SmMgO3 and SmMnO3. The effect of grain and 

grain-boundary in the relaxation process is explained 

from the frequency dependent dielectric constant and 

loss tangent. An electrical equivalent circuit consisting 

of resistance and constant phase element is used to 

explain the complex impedance plane plot. The fre-

quency dependent ac conductivity spectra follow the 

power law equation having two frequency dependent 

parts for the effect of grain and grain-boundary. 
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