Effect of the Magnetron Sputtering Parameters on the Structure and Substructural Characteristics of Tantalum Diboride Films

A.A. Goncharov*, A.N. Yunda, I.V. Shelest, V.V. Buranich

Sumy State University, 2, Rimsky Korsakov Str., 40007 Sumy, Ukraine

(Received 25 April 2017; revised manuscript received 25 July 2017; published online 27 July 2017)

The effect of the RF- and DC-magnetron sputtering parameters on the structure and substructural characteristics of protective coatings based on tantalum diboride thin films was studied in this work. The results of the studies showed that the sign and magnitude of the applied bias potential at the use of both types of magnetron sputtering (RF and DC) have a crucial effect on the structure and substructural properties of tantalum diboride films. It was established that nanocrystalline tantalum diboride films of the overstoichiometric composition (Cb/Cb0 ~ 2.2-2.6) and having strong growth texture in plane (00.1) were obtained at the bias potential of +50 V and ~50 V in the RF- and DC-magnetron sputtering respectively. Thus obtained films had the best physico-mechanical properties and general substructural characteristic quantities: nanocrystallites size of ~30 nm, and increased value of \(c \) parameter compared with the tabulated.

Keywords: Magnetron sputtering, Tantalum diboride, Bias potential, Structure, Nanohardness, Elastic modulus.

DOI: 10.21272/jnep.9(4).04014 PACS numbers: 68.35. – p, 68.55.A –, 68.60.Ba, 81.07.Bc, 81.15.Cd

1. INTRODUCTION

The problem of obtaining thin films and coatings with predetermined properties and structure refers to one of the most important tasks of modern solid-state physics. This is due to the growing practical use of thin films and coatings primarily in solid-state microelectronics and mechanical engineering [1-3].

The film coatings of transition metal diborides (TiB₂, CrB₂, TaB₂, HfB₂, etc.) are actively investigated owing to their high physical and mechanical characteristics. [4]. Compounds of this type have a high melting temperature, therefore their synthesis in the film state is performed by magnetron sputtering (RF and DC). Titanium boride and boridenitride films are most studied in this class of compounds [5-8], at the same time tantalum borides and boridenitrides are least studied [9, 10]. Methods of control of electro-physical properties of tantalum boride and boridenitride films (~300 nm) obtained by reactive and non-reactive RF-magnetron sputtering were studied in these works. Physical and mechanical properties were not studied due to the specifics of these works.

Our preliminary studies [11, 12] showed that the formation process of the film nanostructures in RF-magnetron sputtering is dependent on the parameters of sputtering such as: the structure and temperature of substrate, the power of sputtering, the bias potential applied to the substrate holder.

Therefore, the study of the effect of RF- and DC-magnetron sputtering parameters on the structural and substructural properties of tantalum diboride films is the aim of this work.

2. SPECIMENS, METHODS OF OBTAINING AND RESEARCH OF STRUCTURE

2.1 Specimens

Unbalanced planar round magnetron equipped with a disc target of diameter 100 mm and thickness of 10 mm made of sintered TaB₂ powder was used in the RF- and DC-magnetron sputtering systems. The tantalum diboride coatings were deposited on a substrate 20 × 5 × 5 mm in size made of AISI 302 stainless steel. Substrates were polished to the roughness of \(R_{a} = 0.25 \mu m \) before deposition. Prior to deposition, the substrates were ultrasonically precleaned in acetone and then sputter cleaned in an argon DC discharge. The substrate was fixed in a holder with a clamp and the temperature was measured by a thermometer at the holder-specimen interface.

2.2 Method of RF-magnetron Sputtering

A horizontal RF-sputtering system based on a planar magnetron was used in this work for the deposition of TaB₂ films.

The upgraded setting UVN-75r-3 was used as a vacuum post. The magnetic field of the magnetron with an intensity about \(4 \times 10^5 \text{ A/m} \) on the surface of the target is created by a set of annular permanent magnets (Co-Sm) with a steel polar tip.

The generator UV-1 (13,56 MHz, 1 kW) was used as a source of RF power.

Schematic diagram of the sputtering assembly is shown in Fig. 1. Sputtering of the target was carried out in Ar² plasma. The pressure of the residual gases in the chamber before deposition was \(2 \times 10^{-3} \text{ Pa} \).

The following parameters and conditions were varied during the deposition: working gas pressure from 0.32 to 0.65 Pa; power of RF generator of 500 W; the bias potential applied to the substrate from +50 to ~50 V relatively to the ground.

* o.goncharov@mss.sumdu.edu.ua
2.3 Method of DC-magnetron Sputtering

Ion-plasma system for the deposition of coatings was assembled on the basis of a vacuum processing unit of the URM3 type (Fig. 2).

![Diagram](image_url)

Fig. 1 – Schematic diagram of the RF-magnetron sputtering system. 1 – toroidal magnet; 2 – anode; 3 – target; 4 – inlet of working gas; 5 – the housing of cathode assembly; 6 – the matching coil of variable inductance; 7,8 – the variable matching capacitors.

The composition of the ion-plasma system includes: the low-pressure magnetron located at the end face of the chamber, the RF-inductive couple plasma source located within the chamber, the ion source located on the side flange of the chamber.

The working pressure in the chamber of the sputtering system was ~ 0.1 Pa. The discharge power was 2500-2800 W. The substrate temperature was varied from 200 to 300 °C. The deposition was carried out both at a grounded metal substrate holder and at the application of a positive or negative bias potential. The specimens were placed at a distance of 20 cm from the target, the time of deposition was 30 min. Ion purification was performed directly before deposition by argon ions within 3 min.

2.4 X-ray Diffraction Researches

X-ray diffraction researches of the material structure were carried out on an automated diffractometer DRON-3. The CuKα radiation (wavelength 0.154 nm) and the Bragg-Brentano focusing methodθ–2θ (2θ – Bragg angle) were used in the shooting. The values of current and voltage on the X-ray tube were 20 mA and 40 kV. Shooting of specimens was carried out with horizontal slits of 4 mm on the tube and of 1 mm on the detector in continuous registration mode with a rate of 1°/min in a 2θ angle range from 25° to 60°. Calculation of the nanocrystallites size was performed by approximation method.

3. RESULTS AND DISCUSSION

The effect of various substrates on the orientation and structure of the films as well as the effect of the deposition modes on the film growth were studied in previous works [11, 12]. These studies show that the process of formation of the film nanostructures depends on several factors: the structure and temperature of the substrate, the power of sputtering and the bias potential supplied to the substrate.

3.1 RF-magnetron Sputtering

The results of X-ray diffraction researches have shown a significant effect of the bias potential on the structure of the obtained films. The textured films with predominant growth by normal to the plane (00.1) were formed at zero and +50 V bias potentials supplied to the substrate holder. The supplying of a negative bias potential (~25 V) led to the formation of untextured amorphous-like nanocrystalline coatings (Fig. 3).

The growth of textured nanocrystalline TaB₂ films occurred in the case of a grounded substrate holder (the bias potential is zero) (in addition to the peaks (00.1) and (00.2), the peaks (10.1), (10.0), (11.1), (10.2) are seen in the X-ray diffraction pattern) (Fig. 3 a).

The degree of texture of the films increased (Fig. 3 b) at the bias potential of +50 V supplied the substrate holder. The shift in the position of the lines (00.1) and (00.2) occurred in this case.

The supply of a negative substrate bias (~25 V) most significantly affected on the mechanism of coating formation – an amorphous phase TaB₂ was formed (Fig. 3 c).

The lattice parameters were significantly different from the tabulated values (a = 0.30981 nm, c = 0.92266 nm), the parameter a was varied within
0.3157-0.3244 nm, the parameter \(c = 0.3271-0.3333 \) nm, which probably reveals on the increased concentration of dissolved boron atoms in the lattice \(\text{TaB}_2 \). The size of nanocrystallites was varied from 24 to 42 nm. The texture perfection of the formed coatings grew with the increase in the size of nanocrystallites. The level of microdeformation of the lattice was 0.2-0.3 \%. The study of physico-mechanical properties showed a significant difference in the characteristics of films obtained at different bias potentials and having different structures. The obtained textured coatings with a columnar structure exhibited an increase in the value of nano-hardness and the elastic modulus from 35 and 266 GPa (grounded substrate) to 44 and 348 GPa (substrate bias of +50 V) respectively. The amorphous-cluster coatings obtained at negative substrate bias are different in their physico-mechanical characteristics from the coatings described above. The hardness of coatings of 11.5 GPa (at a bias potential of −25 V) is smaller in comparison with hardness of the solid tantalum diboride of stoichiometric composition (25 GPa). The elastic modulus of the films is lower −232 GPa and 262 GPa, respectively.

3.2 DC-magnetron Sputtering

X-ray diffraction studies show (Fig. 4 a-d) that textured films with preferential texture growth in plane (00.1) and composition close to the stoichiometric phase of \(\text{TaB}_2 \) (AlB\(_2\) structural type, \(\text{P6/mmm space symmetry group} \) were formed at a grounded substrate, a floating potential and a positive or negative bias potential.

The peaks corresponding to the \(\text{TaB}_2 \) phase (00.1), (10.1), (00.2) (11.1), (10.2) are shown in the X-ray diffraction patterns (Fig. 4), however, the intensity of the lines is violated: the strongest line (10.1) has an intensity less than line (00.2). This reveals that films were formed nanostructural, i.e. were growing preferentially in plane (00.1). In addition, there was a weak asymmetry of the lines (00.1) and (00.2), which could be due to the absence of the phase stoichiometry or the presence of a stacking faults.

The films with a growth texture in plane (00.1) were formed at grounded substrate; a weak asymmetry of peaks (00.1) and (00.2), and peaks of weak intensity (10.0) (10.1), (11.1), (10.2) were observed (Fig. 4 a).

The supply of a negative bias potential of −50 V (Fig. 4 c) leads to an increase in the degree of texture in plane (00.1). There were only peaks (00.1) and (00.2).

The degree of texture decreases substantially at floating potential (Fig. 4 b) unlike the negative one. A diffraction peak corresponding to the plane (10.1) is appeared. This peak has a blurred shape characterizing the nanostructured state of the film. An appeared diffraction peaks (10.0), (00.2) and (11.1) are more intensive. The degree of asymmetry (00.1) and (00.2) is amplified. The supply of a positive bias potential also leads to a significant increase in the degree of texture, there is a significant asymmetry of the peaks (00.1) and (00.2), which reveals to stacking faults.

Highly textured films obtained at a negative and positive bias potentials (Table 3) had lattice parameters: \(a = 0.3114-0.3117 \) nm, \(c = 3.3317 \) nm, which were substantially larger than tabulated (\(a = 0.30981 \) nm,
Влияние параметров магнетронного распыления на структуру и субструктурные характеристики пленок диборида тантала

А.А. Гончаров, А.Н. Юнда, Е.В. Шелест, В.В. Буранчин
Сумский государственный университет, ул. Римского-Корсакова, 2, 40007 Сумы, Украина

В работе проведены исследования влияния параметров магнетронного (ВЧ и ПТ) распыления на формирование структуры и субструктурных характеристик защитных покрытий на основе тонких пленок диборида тантала. Результаты проведенных исследований показали, что знак и величина приложенного потенциала смешения при использовании обоих типов магнетронного распыления (ВЧ и ПТ) имеет определяющее влияние на формирование их структуры и субструктурных свойств. Установлено, что нанокристаллические пленки диборида тантала сверхстехиометрического состава (Cr/СrN = 2.2-2.6), обладающие сильной текстурой роста плоскостью (00.1) были получены при потен-
шиль деніць дибориду танталу надстехіометричного складу більше схематично залежить від знаку і величини прикладеного потенціалу зміщення при використанні обох типів магнетронного розпилення (ВЧ та ПС) має визначальний вплив на формування структури, складу і фізико-механічних властивостей півник дибориду танталу.

Результати проведених досліджень показали, що значення структурних величин: розмір нанокристаллів ~ 30 нм, і збільшене значення параметра е» по порівняння з табличним.

Ключові слова: Магнетронне розпилення, Диборид танталу, Потенціал зміщення, Структура, Нанотвердість, Модуль упругості.

Вплив параметрів магнетронного розпилення на структуру і склад півник дибориду танталу

О.А. Гончаров, А.М. Юнда, І.В. Шелест, В.В. Буранчыч

Сумський державний університет, вул. Римського-Корсакова, 2, 40007 Суми, Україна

У роботі проведовалися дослідження впливу параметрів магнетронного (ВЧ та ПС) розпилення на формування структури і складу півник дибориду танталу. Результати проведених досліджень показали, що значення структурних величин: розмір нанокристаллів ~ 30 нм, і збільшене значення параметра е» по порівняння з табличним.

Ключові слова: Магнетронне розпилення, Диборид танталу, Потенціал зміщення, Структура, Нанотвердість, Модуль упругості.