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In this paper, we study the influence of external electric field on the propagation characteristics of two-

dimensional few cycle optical pulses in silicene. This electric field is perpendicular to the silicene plane. We 

obtain an effective equation, which has the form of nonlinear wave equation with a saturating 

nonlinearity. Also, we investigate the dependence of electromagnetic field intensity on the amplitude and 

on the spatial period of the external electric field. 
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1. INTORDUCTION 
 

In recent years, researchers have increasingly paid 

more attention and interest to the nonlinear light 

propagation in the graphene-like structures (graphyne, 

stanene, germanene, borophene and so on). These 

structures have unique properties, which can be used 

in many practical applications [1]. One of such 

materials is silicene, which consists of a single layer of 

silicon atoms in a hexagonal lattice [2-3]. Contrary to 

graphene, silicene is not flat, but has a periodically 

buckled topology. However, a main feature of silicene is 

stronger spin-orbit interaction then in graphene (in 

1000 times: 10 – 3 meV vs. 3.9 meV) [4].  

All of these circumstances and the fact that silicon 

is still the main element of the modern microelectronic 

devices makes the problem of its properties 

investigation more attractive from the point of view of 

studying the few cycle optical pulses.  

In recent works, we studied the problem of the 

propagation of 1D few cycle optical pulses in silicene 

waveguides [5]. We observed a signal inversion from a 

certain time moment. Herewith the amplitude of the 

inverted signal is almost twice the original amplitude. 

Thus, we can talk about amplification of the few cycle 

optical pulses at the change in their shape.  

At the same time there are many questions related 

to the study of the multi-dimensional (2D and 3D) 

pulses propagation in silicene.  

However, the problem of the control pulse parameters 

within wide ranges (is environment with alternating 

refractive indices) is not solved. Due to the reflection at 

the interface and due to the subsequent interference, the 

velocity of the pulse propagation reduces, and this 

environment can be used as a delay line. 

But, the synthesis of these environments makes it 

impossible to control the time delay, which has a great 

influence for applications. In silicene, the silicon atoms 

do not lie exactly in one plane, and are located above 

and below it. So, it is possible to control the width of 

the band gap by applying an electric field in the 

direction perpendicular to the plane. In this case, since 

the potential difference between the sublattices of the 

gap directly depends on the applied constant electric 

field. Obviously, if we change the value and the 

intensity of the constant electric field, one can receive 

the Bragg environment analogue. 

 

2. BASIC EQUATIONS 
 

In the long-wavelength approximation, the 

Hamiltonian for silicene can be written as [6-7]: 
 

   0.5 0.5 ,x x y y SO z z z zH k k               (1) 

 

where  – ± is the valley sign for two Dirac points, v is 

the velocity of the Dirac electrons, p  (kx, ky) is the 

electron quasi-momentum, ∆SO is the spin-orbit 

interaction in silicene, ∆z is the potential on the one 

lattice side (∆z  Ezd,  zE B sin z    is the constant 

electric field with the spatial period: 2/, d is the 

distance between two sublattice planes, i, i are the 

Pauli matrices). 

We can write the Hamiltonian in the matrix form 

and we obtain the following eigenvalues: 
 

  
22 2 1

4
z SOv k        (2) 

 

here  is the electron spin (spin «up» and «down»). 

The Maxwell`s equations with taking into account 

this calibration: E  –∂A/c∂t and the following 

replacement: /p p eA c   (е is the electron charge), 

can be written in 2D case as: 
 

 
2 2 2

2 2 2 2

A A 1 A 4
j 0

cx z c t

  
   

  
 (4) 

 

where vector-potential: A  (0, A(х,z,t),0), and the 

density of current: j  (0, j, 0). 

Further, we consider the low-temperature case, 

when the only small area in the momentum space near 
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the Fermi level is taking into account. Then the density 

of electric current can be written as: 
 

 ( ( , , ))z y y

e
j e dp dp v p A x z t

c

 

 

    (5) 

 

The integration region can be defined from the 

conservation condition for the particle number:  
 

 ,z y z y qz qy qzqy
ZB

dq dq dq dq a a
 



 

     

 

where ZB means the first Brillouin zone. 

The equation of the few cycle pulse propagation has 

the form: 
 

 
2 2 2

2 2 2 2

A A 1 A 4
(A) 0

cx z c t

  
    

  
,  (6) 

 

here (A)  is determined by the integration in Eq. (6). 

Equation (6) is solved numerically [8]. The initial 

condition in two-dimensional case was chosen in the 

few cycle pulse, consisting one oscillation of the field: 
 

      2 2,0 / / ,z xA z Q exp z exp x       (7) 

 
   2 2,0 2

/ /z
z x

z

dA z z
Qexp z exp x

dt


 


     (7) 

where Q is the pulse amplitude, ,z x
 

are the initial 

velocity along z and x axis, ,z x  are the pulse width along 

z and x axis. The values of energy parameters are 

expressed in units of Δ. Time is the evolution coordinate. 

 

3. NUMERICAL MODELING AND RESULTS 
 

The evolution of 2D electromagnetic filed 

propagating in silicene is presented in Fig. 1. 

During propagation, the main pulse form undergoes 

minor changes, losing in amplitude. It should be noted, 

that in process of time a "tail" appearing after the main 

pulse increases. This fact may be associated with the 

excitation of the nonlinear wave pulses. 

Comparison for two cases (with taking into account 

external electric field and without it) is shown in Fig. 2. 

As can be seen in Fig. 2, taking into account the 

external field of momentum has a great influence on 

the pulse propagation process. In addition to the "tail" 

appearance, there is a decrease in the amplitude of the 

main pulse, caused by an energy transfer to the pulse 

behind the main pulse. Thus, the introduction of the 

additional field destroys the balance between the  

 
 

Fig. 1 – The intensity of two-dimensional electromagnetic pulse I(x,z,t)  E2(x,z,t) in the different time points: а) initial form;  

b) t  1.0∙10 – 13 s; c) t  3.0∙10 – 13 s; d) t  5.0∙10 – 13 s 
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Fig. 2 – The intensity of two-dimensional electromagnetic pulse I(x,z,t)  E2(x,z,t) at time t  4.0∙10 – 13 s: а) Ez  0; b) Ez  0 
 

 
 

Fig. 3 – The intensity of two-dimensional electromagnetic pulse I(x,z,t)  E2(x,z,t) at time t  5.0∙10 – 13 s: а)   0.05; b)   0.2 
 

dispersion and the nonlinearity of the system, which 

leads to the amplitude damping. 
The influence of the spatial period 2π/ of the 

alternating momentum field is given in Fig. 3. This 

figure shows that the wider the pulse of the external 

alternating momentum field, the smaller the formed 

“tail”. That is changing the spatial period of the field Ez, 

we can control the form of the few cycle optical pulse. 

The numerical results showed that the decrease in 

the amplitude of the external alternating momentum 

field is two times reduces the main pulse peak at 1.7% 

 

4. CONCLUSION 
 

1. Consideration of the external alternating 

momentum field violates the balance between the 

dispersion and the nonlinearity in the system, causing a 

reduction in the amplitude of the few cycle optical pulse.  

2. Few cycle optical pulse in silicene causes the 

appearance of the “tail”. This fact can be associated 

with the excitation of nonlinear waves.  

3. We can control pulse propagation in silicene by 

selecting the parameters of the external alternating 

momentum field Ez (amplitude, and particularly, width). 
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