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In this study, three-dimensional modified time-independent Schrödinger equation of modified Kratzer 

potential was solved using Bopp’s shift method instead to apply star product, in the framework of both 

noncommutativity three dimensional real space and phase (NC: 3D-RSP). We have obtained the explicit 

energy eigenvalues for ground and first excited states for interactions in one-electron atoms. Furthermore, 

the obtained corrections of energies are depended on infinitesimal parameters  ,  and  ,   which 

are induced by position-position and momentum-momentum noncommutativity, respectively,  in addition 

to the discreet atomic quantum numbers (j  l ± 1/2, s  1/2, l and m). We have also shown that, the usual 

states in ordinary three dimensional spaces for ordinary Kratzer potential are canceled and have been re-

placed by new degenerated 2(2l + 1) sub-states in the extended new quantum mechanics.  
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1. INTRODUCTION 
 

During the last years the energy spectrum of atoms 

have been studied by several analytic methods, for exam-

ple: Laplace integral transform, factorization method, 

proper quantization rule,  exact quantization rule, Nikifo-

rov–Uvarov method, supersymmetry quantum mechanics 

for solving the non-relativistic Schrödinger with central 

and non-central potentials for describing atoms, nuclei, etc 

[1-9]. In particular the Kratzer potential (known also by 

inverse power potential) has well accounted for some ob-

served phenomena in atomic, molecular and chemical 

physics, in addition to study the Shannon entropy [10], 

this potential studied in two dimensional spaces by the 

author Shi-Hai Dong et al. [11] and by Süleyman Özcelik 

and Mehmet Simsek in three dimensional space [12]. The 

main goal to this study is to extended our previously study 

in ref. [13] to the noncommutative three dimensional 

space-phase to possibility to obtain a new another applica-

tions to this potential, we have using the physical terms 

contained in my previous relevant works, in the context of 

two-dimensional physical potentials (see, for example, 

[14, 15]) or in the context of three-dimensional physical 

potentials (see, for example, [16, 17]. It is important to 

notice that the author H. Snyder was firstly who introduce 

this idea (see, for example, [27]). The study of Kratzer 

potential has now become a very interest field due to their 

applications in different fields [10], the bound state solu-

tions of the non-relativistic Schrödinger equation, with the 

modified Kratzer potential has not been obtained yet. This 

is the priority for this work. The modified Kratzer poten-

tial used in this framework takes the form: 
 

    nc-kp 6 5 4 3

2 3
ˆ

22 2

d c b a
V r V r

r r r r 

 
      

 

L
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 (1) 

 

where V(r) denote to the ordinary Kratzer potential 

(will be determine in the next section). The crucial pur-

pose of this paper is to determine the energy levels of 

above potential in (NC: 3D-RSP) symmetries using the 

generalization Bopp’s shift method which depend on 

the concepts that we present now and in the third sec-

tion to discover the new symmetries and a possibility to 

obtain another applications to this potential in differ-

ent fields. Furthermore, much considerable effort has 

been expanded on the solutions of Schrödinger, Dirac 

and Klein-Gordon equations to noncommutative quan-

tum mechanics,  to search an a profound interpretation 

in microscopic scales [16 – 18], which based to new 

noncommutative canonical commutations relations 

(NNCCRs) in both Schrödinger and Heisenberg pic-

tures ((SP) and (HP)), respectively, as follows: 
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the new operators     ˆ ˆ,i ix t p t in (HP) are related to 

the corresponding new operators  ˆ ˆ,i ix p  in (SP) from 

the following projections relations: 
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here H and Hnc – kp denote to the ordinary and new 

quantum Hamiltonian operators in the quantum me-

chanics and it’s extension. The very small two parame-

ters   and  –  (compared to the energy) are ele-

ments of two antisymmetric real matrixes and (*) de-

note to the new star product, which is generalized be-

tween two arbitrary functions 

   ˆ ˆ ˆ,  ,f x p f x p and    ˆ ˆ ˆ, ,g x p g x p  to 

      ˆ ˆˆ ˆ ˆ ˆ, , ,f x p g x p f g x p   instead of the usual prod-

uct    ,fg x p  in ordinary three dimensional spaces 

[13 – 21]: 
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where  ˆ ˆ ˆ,f x p  and  ˆ ˆ ˆ,g x p  are the new function in 

(NC: 3D-RSP), the two covariant derivatives 

    , , ,x pf x p f x p     denotes to 

the
   , ,

,
f x p f x p

x p 

  
    

, respectively while the two fol-

lowing terms    , ,
2

x xi
f x p g x p

     and 

   , ,
2

p pi
f x p g x p



     are induced by (space-space) 

and (phase-phase) noncommutativity properties, re-

spectively. A Bopp’s shift method can be used, instead 

of solving any quantum systems by using directly star 

product procedure [18 – 21]: 
 

 ˆ ˆ ˆ ˆ, and , iji j ij i jx x i p p i          (5)  

 

The new generalized positions and momentum co-

ordinates  ˆ ˆ ˆ, ,x y z  and  ˆ ˆ ˆ, ,x y zp p p in (NC: 3D-RSP) are 

depended with corresponding usual generalized posi-

tions and momentum coordinates  , ,x y z  

and  , ,x y zp p p  in ordinary quantum mechanics by the 

following, respectively [16, 17]: 
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which allow us to getting the two operators ( 2r̂  and 2p̂ ) 

in (NC-3D: RSP), respectively [16, 17]: 
 

 2 2 2 2ˆ ˆ and     r r p p    L L  (8) 
 

where the two couplings L  and L  are given by, re-

spectively  / 2ij ij  : 

 

12 23 1312 23 13  and x y z x y zL L L L L L           L L

 

where Lx, Ly and Lz are the three components of angu-

lar momentum operatorL . The organization scheme of 

the study is given as follows: In next section, we briefly 

review the Schrödinger equation with Kratzer potential 

on based to ref. [10]. The Section 3, devoted to studying 

the three deformed Schrödinger equation by applying 

both Bopp's shift method to the Kratzer potential. In 

the fourth section and by applying standard perturba-

tion theory we find the quantum spectrum of the excit-

ed states in (NC-3D: RSP) for spin-orbital interaction 

corresponding the ground states and first excited 

states. In the next section, we derive the magnetic 

spectrum for studied potential. In the sixth section, we 

resume the global spectrum and corresponding non-

commutative Hamiltonian for Kratzer potential. Con-

clusions are drawn in Sect 6. 

 

2. REVIEW OF THE EIGNENFUNCTIONS AND 

THE ENERGY EIGENVALUES FOR 

KRATZER POTENTIAL IN ORDINARY 

THREE DIMENSIONAL SPACES 
 

Let’s present a brief review of time independent 

Schrödinger equation for a fermionic particle like elec-

tron of rest mass  and its energy E moving in Kratzer 

potential [10]: 
 

  
2 3 4

a b c d
V r

r r r r
     (10) 

 

where a, b, c and d are constant coefficients. If we in-

sert this potential into the Schrödinger equation: 
 

    2 3 42

a b c d
r E r

r r r r

 
        
 

 (11) 

 

In spherical coordinates, the complete wave func-

tion  
 

 ,
, , , ,

n l
n l l

r
r Y

r
   


  , thus the radial func-

tion  ,n l r  satisfied the following equation, in three 

dimensional spaces space [10]:  
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Here ( , , , , ) 2 ( , , , , )A B C D E a b c d  , the complete or-

thonormalization eignenfunctions and the energy ei-

genvalues respectively in three dimensional spaces for 

Kratzer potential for ground state and first excited 

state, respectively [10]: 
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and  
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where     , D   , 
2

A



 


,  

 
2

' 1 / 2 1 / 2l l B     and  2 / 2 1D C D    , 

 

while 0, 'lN  and  1 'lN  are two normalizations constants.  

 

3. THREE DIMENSIONAL NONCOMMUTATIVE 

REAL SPACE-PHASE FOR  KRATZER PO-

TENTIAL 
 

In this section, we shall study the Kratzer potential 

in (NC: 3D-RSP), to perform this task the physical form 

of Schrödinger equation should be written as [16, 17]:  

Ordinary two dimensional Hamiltonian operators 

 ˆ ,kp i iH p x  will be replaced by new two Hamiltonian  

operators  ˆ ˆ ˆ,nc kp i iH p x , 

– ordinary complex wave function  r  will be replac-

ing by new complex wave function  r , 

– ordinary energy E will be replaced by new values Enc – kp, 

and the last step corresponds to replace the ordinary 

old product by new star product (*), which allow us to 

constructing the modified Schrödinger equations in 

both (NC-3D: RSP) as:  
 

      ˆ ˆ ˆ,nc kp i i nc kpH p x r E r     (15) 

 

Now, we apply the Bopp’s shift method on the above 

equation to obtain the reduced Schrödinger equation: 
 

      ˆ ˆ,i i nc kpH p x r E r   (16) 

 

Where the new operator of Hamiltonian  ˆ ˆ,i iH p x  

can be expressed as: 
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After straightforward calculations, we can obtain the 

five important terms, which will be use to determine 

the modified Kratzer potential in (NC: 3D- RSP): 
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From above relations, one can write the deformed 

operator  kp
ˆV r  for Kratzer potential and the noncom-

mutative kinetic term
2ˆ

2

p


, respectively:  
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which allow us to obtaining the global potential opera-

tor  nc-kp
ˆH r  for Kratzer potential in (NC: 3D-RSP) as: 
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It’s clearly, that the four first terms are given the 

ordinary Kratzer potential in three dimensional space, 

while the rest terms are proportional’s with two infini-

tesimals parameters (  and ) and then gives the 

terms of perturbations  per-kpH r   in (NC: 3D-RSP) as:  
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4. THE EXACT SPIN-ORBITAL SPECTRUM 

MODIFICATIONS FOR KRATZER POTEN-

TIAL IN BOTH  (NC:3D- RSP): 
 

Again, the perturbative term  per-kpH r  can be re-

written to the equivalent physical form:  
 

  per-ip 6 5 4 3

2 3
2

22 2

d c b a
H r SL

r r r r





  
       

  
 (22) 

 

Furthermore, the above perturbative terms 

 per-kpH r  can be rewritten to the following new form: 

 

 
2 2 2

per-kp 6 5 4 3

2 3
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H r J L S
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We just replace SL  by the expres-

sion
2 2 21

2
J L S   
 

, in quantum mechanics, this op-

erator traduces the coupling between spin and orbital 

momentum.  After profound straightforward calcula-

tion, one can show that, the radial function  ,n l r  

satisfied the following two equations, in (NC: 3D-RSP), 

respectively: 
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The set (  so-ikpH r , 2J , 2L , 2S and )zJ  forms a 

complete of conserved physics quantities and the eigen-

values of the spin orbital coupling operator are  

1

2

1 1 3
( 1) ( 1)

2 2 4
k l l l l

  
        

  
corresponding:  

j  l + 1/2 (spin up) and j  l – 1/2  (spin down), respec-

tively, then, one can form a diagonal (3  3) matrix, 

with non null elements are (Hsc – kp)11, Hsc – kp)22 and  

(Hsc – kp)33  0 for Kratzer potential in (NC: 3D-RSP) as:  
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4.1 The Exact Spin-orbital Spectrum Modifi-

cations for Kratzer Potential in Both (NC: 3D- 

RSP) for Ground States 
 

In this sub section, we are going to study the modi-

fications to the energy levels for ground states Eu-0kp 

and Ed-0kp for spin up and spin down, respectively, at 

first order of two parameters  and   obtained by ap-

plying the standard perturbation theory: 
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A direct simplification gives: 
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where, the five terms  1,5iT i   are given by: 
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After straightforward calculations, we can obtain 

the explicitly results: 
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which allow us to obtaining the exact modifications of 

ground states Eu-0kp and Ed-0kp  produced by spin-orbital 

effect: 
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We have introduced new parameters Tnc – 0skp and 

Tnc – 0pkp  for the sake of simplicity: 
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The first term Tnc – skp produced with the noncom-

mutative geometry of space, while the term Tnc – 0pkp 

produced from the noncommutativity of phases.  

It is important to notice that, the above calculations 

are obtained by applying the following special integral 

[22]: 
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 (35) 

Where  1 2 and    are positive numbers and 

1 2 2
2     and vK  the modified function of second 

kind and orderv .   

 

4.2 The Exact Spin-orbital Spectrum Modifi-

cations for Kratzer Potential in Both (NC: 3D-

RSP) for First Excited States 
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Now, we turn to the modifications to the energy lev-

els for first excited states u1-kpE  and d1-kpE  for spin up 

and spin down, respectively, at first order of two pa-

rameters   and  , which obtained by applying the 

standard perturbation theory: 
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A direct simplification gives: 
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where, the 15- terms  1,15iL i   are given by: 
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Now we apply the special integral which represents 

by eq. (35) to obtain the following results:  
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which allow us to obtaining the exact modifications 

u1-ipE  and d1-ipE  of degenerated first excited states 

produced for spin-orbital effect: 
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Where the two obtained factors 1nc skpT   and 1nc pkpL   

are given by: 
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5. THE EXACT MAGNETIC SPECTRUM MODI-

FICATIONS FOR KRATZER POTENTIAL IN  

(NC:3D- RSP): 
 

5.1 The Exact Magnetic Spectrum Modifica-

tions for Kratzer Potential in (NC: 3D RSP) for 

Fundamental States 
 

We now consider physically meaningful phenomena,  

it’s possible to found another automatically symmetry 

for the production of the perturbative terms of Kratzer 

potential related to the influence of an external uni-

form magnetic field, it’s sufficient to apply the following 

replacements: 
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Here   and   are infinitesimal real proportional’s 

constants, and we choose the magnetic field  B Bk , 

which allow us to introduce the modified new magnetic 

Hamiltonian m kpH   in (NC: 3D-RSP) as:  

 6 5 4 3

2 3

22 2
m kp

d c b a
H BJ SB

r r r r







  
          

 (50) 

 

Here  SB  denote to the ordinary Hamiltonian of 

Zeeman Effect. To obtain the exact noncommutative 

magnetic modifications of energy ( mag-0kpE , mag-1kpE ) for 

Kratzer potential, we replace: k ,   and   in the 

Eqs.(31) and (46) by the following parameters: m ,   

and  , respectively, to obtains: 
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mag-1kp 1 ' 1 1
2

l nc skp nc pkpE N Bm L L
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Where mag-0kpE  and mag-1kpE  are the exact magnetic 

modifications of spectrum corresponding the funda-

mental states and first excited states and we 

have l m l    , which allow us to fixing ( 2 1l  ) values 

for discreet numberm .  

 

5.2 The Exact Modified of the Lowest Excita-

tions Spectrum for Kratzer Potential in (NC:3D- 

RSP) 
 

Let us resume the eigenenergies of the modified 

Schrödinger equation obtained in this paper, the total 

modified energies ( nc u0-ipE - nc  d0-ipE ) and ( nc u1-ipE -

nc  d1-ipE ) of a particle fermionic with spin up and spin 

down are determined corresponding ground and first 

excited states, respectively, for Kratzer potential in 

(NC: 3D-RSP), on based to original results presented on 

the Eqs. (32), (33), (51) and (52): 
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and 
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It is evident to consider the quantum number m  

can be takes (2l + 1) values and we have also two val-

ues for j  l  1/2, thus every state in usually three di-

mensional space of energy for Kratzer potential will be 
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2(2l + 1) sub-states in (NC: 3D-RSP). It’s clearly, that 

the obtained eigenvalues of energies are real’s and then 

the noncommutative diagonal Hamiltonian nc kpH    is 

Hermitian, furthermore it’s possible to writing the 

three elements:  
11nc kpH  ,  

22nc kpH   and  
33nc kpH   

as follows: 
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   2 3 433 2
nc kp

a b c d
H

r r r r



       (59) 

 

It is possible physically to gives interpretations to 

the above obtained results as Hamiltonian operator 

describing atom which has two permanent dipoles: the 

first is electric dipole moment and the second is mag-

netic moment in external stationary electromagnetic 

field as it’s shown in our work [13]. 

 

6. CONCLUSION 
 

In this work, we reviewed the exact solutions of the 

Schrödinger equation with the Kratzer potential and 

the formalism of Bopp’s shift method. Then, we have 

solved the Schrodinger equation for modified Kratzer 

potential in (NC: 3D-RSP), we have obtained the exact 

energy spectrum for ground and first excited states. We 

shown that the old states are changed radically and 

replaced by degenerated new states, describing two 

new original spectrums, the first new one, produced by 

spin-orbital interaction so kpH   while the second new 

spectrum produced by an external magnetic field. Fi-

nally, we have shown that, every state in usually three 

dimensional space of energy for Kratzer potential will 

be  2 2 1l  sub-states in (NC: 3D-RSP). 
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