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1. INTRODUCTION 
 

One of the directions which is still developing now, 

is the study of dissipative processes affecting the pro-

cess of electron tunneling in open multilayer resonance 

tunneling structures (RTS), which act as active ele-

ments of quantum cascade lasers (QCL)[1, 2] and de-

tectors [3]. These processes are caused by the electron-

electron interaction and interaction of electrons with 

phonons and impurities. The effect of electron-electron 

interaction on electron tunneling was investigated in 

the paper [4]. The electron-phonon interaction and the 

influence of phonons on the electronic spectrum were 

studied in the works [5-7]. The effect of static and dy-

namic charge fields generated by electrons on the elec-

tron transport in open RTS is studied poorly. Similar 

works taking into account the effect of static space 

charge on the electrons spectrum in closed RTS have 

been considered in [8, 9]. However, the self-consistent 

impact of static and dynamic spatial charges on the 

tunneling of electrons interacting with time-dependent 

electromagnetic field was studied in [10, 11] in a very 

rough model of RTS with -like potential barriers. 

In the proposed paper the theory of electronic 

transport through the three-barrier RTS with applied 

constant longitudinal electric field based on the found 

self-consistent solution of full Schrödinger equation and 

the Poisson’s equation has been developed. Basing on 

the three-barrier RTS as the active region of the exper-

imentally realized QCL with In1-xGaxAs – wells and In1-

xAlxAs – barriers the influence of spatial static and dy-

namic charges on the spectral parameters of quasi-

stationary states (QSS) of the electrons and active dy-

namic conductivity of nanostructure. 

 

2. SELF-CONSISTENT SCHRÖDINGER AND 

POISSON EQUATIONS. THEORY OF DYNAM-

IC CONDUCTIVITY OF THREE-BARRIER 

RESONANCE TUNNELING STRUCTURE 
 

To calculate the active dynamic conductivity of elec-

trons by three-well active region of QCL we assume that 

the nanostructure in the Cartesian coordinates is located 

so, that layers are perpendicular to the boundaries heter-

oboundaries of nanosystem. Perpendicular to the layers of 

RTS constant electric field with intensity F  is applied. 

The geometric parameters of nanosystem are known 

(Fig. 1). 
 

 
 

Fig. 1 – Geometric and energy schemes of the three-barrier RTS 
 

Since the difference between lattice constants of 

well and barrier layers is insignificant, the model of 

effective masses and rectangular potentials is used for 

electron: 
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where (z) – Heaviside function, z1  – , z6  ; m 

and mb – effective mass of electron in the potential 

wells and barriers of nanostructure respectively. 

It is assumed, that mono-energetic current of elec-

trons with energy E and initial concentration 0n  falls 

at RTS from the left side perpendicularly to its layers. 

The motion of electron is assumed to be one-

dimensional and described by the wave function (z, t), 

which satisfies the full Schrödinger equation: 
 

 
2( , ) 1

( ) ( , ) ( , ),
2 ( )

z t
i U z H z t z t

t z m z z

   
         

. (3) 

– where 
 

  5 5( , ) ( ) ( ) ( ) ( ) ( , )i t i tH z t eЄ z z z z z z e e e z t            ,    (4) 

 

Hamiltonian, the first term of which describes the 

time-dependent electromagnetic field with frequency  

and amplitude of its electric component Є , and the 

second term describes the interaction of the electron 

with the field of space charge, potential ( , )z t  of which 

is determined by the Poisson’s equation: 
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– dielectric permeability of three-barrier TRS,  and b 

– dielectric permeability of the potential well and bar-

rier layers material correspondingly, 
 

  
2

0( , ) ( , )n z t n z t    (7) 

 

is variable in space electrons concentration. 

It is seen from the equations (3) and (5), taking into 

account Hamiltonian (4) and relation (7), that they 

form self-consistent system. 

Solution of full Schrödinger equation (3) with Ham-

iltonian (4) in the weak signal approximation is found 

as: 
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Having substituted the relation (7) in the Poisson’s 

equation (5) taking into account (8) we obtain:
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For random p – layer inside the RTS the solution of 

equation (9) is found as: 

 
5

( ) ( ) ( )
1

1

( , ) ( ) ( ) ( ) ( ) ( )p p i t p i t
st p p

p

z t z z e z e z z z z      
  



            (11) 

 

From the equation (9), taking account (11) with 

keeping the summands of the first degree we obtain: 
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the solutions of which have the appearance: 
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(15) 
 

They determine potential ( )( )p
st z  caused by static 

spacial charge, and potentials, which are caused by 

spacial dynamic charge in the case of electronic transi-

tion with the absorption ( )( )p z  and the emission of 

photons ( )( )p z  correspondingly. 

All unknown coefficients ( ) ( ) ( ) ( )
1 2 1 2; ; ;p p p pC C C C  are 

definitely determined from the continuity conditions of 

the potential and the vector of electric displacement 

field on all RTS hetero-boundaries: 
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Taking account (11) from the system of equations 

(16) we obtain the boundary conditions for potentials 
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On the left and on the right of the RTS boundaries for 

the potentials caused by the static and dynamic charges, 

the conditions of their disappearance must be satisfied: 
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Taking into account (11) and (8) from the full 

Schrödinger equation after equating the coefficients at 
i te   and zero order values, we obtain the equations: 
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The obtained Schrödinger equations (18), (19) to-

gether with the Poisson’s equations (12), (13) form the 

system of self-consistent equations, while solving this 

system of equations in order to simplify the bulky equa-

tions, let as omit the symbol E in 0(z) and st(z) these 

two functions depend on, caused in opened nanosystem. 

at the first the solution of equation (18) is found in zero 

approach without taking into account the static spacial 

charge, substituting in it st(z)  0. Taking into account 

the analytical complexity of the equations (18) and (19), 

they are worth being solved due to linear approxima-

tion of the effective potential Ueff(z)  U(z) on all the 

RTS layers. Then the approximated effective potential 

for electron has the appearance: 
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Now, the solution of the stationary Schrödinger 

equation (20), found with the necessary accuracy, is 

obtains as: 
 

 

   

1

(0 ) (0 ) (6 )
0 0 0 5

( ) ( )
0 0

5
(0) (6) ( )

0 0 0 5 0
1 0

( )(0) (0) (6)
0 0 0 5

( ) ( )( ) ( )
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[ ] ( ) (

l l

l l
p pl l

l

N
p
l p p

p l

ik z ik z ik z z

ik z z ik z zp p
l l p

z z z z z z z z z z z

A e B e z A e z z

A e B e z z z

   

 

 


 

 

  

             
 

     

    

 

1

5

1 0

) ,
l

N

p
p l

z


 

 
  

  (21) 

 

where 
 

1

( ) ( )
0 0 1

2 ( ); wells
( )

2 ( ). barriers

l
l l

l

l

w pp p
p

b p

m E eFz
k k z

m E U eFz





 


  
 

 

 

Substituting the solution (21) in the Poisson’s equa-

tion (12), taking into account (20) the potential 
0
( )st z  

is found. Further the potential 
0
( )st z  is linearized: 
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where in the expressions (20) and (22): 
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N – is the number of mesh intervals in the Р-th RTS 

layer. 

Having substituted the potential 
0
( )st z  in (18), we 

obtain the equation: 
 

0
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for the wave function of the first approximation 1(z). 

Its solution is: 
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where 
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The found in the first iteration order the stationary 

wave function I(z) makes possible to obtain the poten-

tial of the static spatial charge ( )st z


 of the first order 

as well due to the already applied algorithm. 

Self-consistent solution of the equation system (18) 

and (12) is obtained with the necessary accuracy in the 

L – iteration cycle, if the relationship is satisfied: 
 

1
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  . 

 

 Then, having used the omitted earlier energy sign 

(E), we will obtain: 
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 The found wave function 0(E, z) makes possible to 

calculate analytical function of transparency coefficient 
of nanostructure: 
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 Wave function 0(E, z)  makes possible to find simi-

larly the self-consistent solution of equation systems 

(19) and (13). In the zero iteration order it is assumed, 

( ) 0z   can be put in equation (19). Then the solu-

tions of these equations with the linearized potential 

( )st z  are found as: 
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- are solutions of homogenous equations (21), 
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- partial solutions of correspondingly inhomogeneous 

equations (21), where: 
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 Similar to the mentioned above scheme of calcula-

tion of the static potential, the analytical calculation of 

the dynamic component of the potential 0 ( )z   in zero 

iteration order is carried out. As result we obtain: 
 

 
1

5
( , )

0
1 0

( ) ( ) ( ) ( ) ,
l l l

N
p l

p p p
p l

z z z z z z   
 

 

    
     (29) 

 

where 
 

 

 

( , ) ( , ) ( , ) ( , )
0 0

1,

( , ) ( , )
0

( )( ) ( )( )( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) 0 0 0

1 2 ( , ) ( , ) 2
, 0

( )(( , ) ( , )
0

4
( ) ( )

( )

p l p l p l p l
p pl l

lw b

p l p l
pl

i K K z z i K K z zp l p l p l p l
p l p l p l

p p l p l
w b

i K K z zp l p l

en A A e B B e
z C z z C

K K

A B e






 





     
   





 


 
     





( , ) ( , )
0

( , ) ( , ) ( , ) ( , ) ( , ) ( ,
0 0 0

) ( )( )( , ) ( , )
0

( , ) ( , ) 2
0

( )( ) ( )( ) (( , ) ( , ) ( , ) ( , ) ( , ) ( , )
0 0 0

( , ) ( , ) 2
0

( )

( )

p l p l
pl

p l p l p l p l p l p
p pl l

i K K z zp l p l

p l p l

i K K z z i K K z z i K Kp l p l p l p l p l p l

p l p l

B A e

K K

A A e B B e B A e

K K



 

  




         







 



 

) ( , ) ( , )
0

( , ) ( , )
0 0

)( ) ( )( )( , ) ( , )
0

( , ) ( , ) 2
0

2 ( ) 2 ( )( , ) ( , ) ( , ) ( , )
0 0 0 0( , ) 2

0

( )

.
2

l p l p l
p pl l

p l p l
p pl l

z z i K K z zp l p l

p l p l

iK z z iK z zp l p l p l p l

p l
l

A B e

K K

ieЄ
A B e B A e

K m

    

   







  



  (30) 

 

 

Conditions of continuity of wave functions and their 

flows density on all boundaries define the necessary 

coefficients (A, B). As the result of L - iteration the 

functions 0(z), 1(z) are definitely found, hence, the 

total wave function (z, t). 

Using the found wave functions similar to those as 

in the works [4, 12], the calculation of the electron cur-

rents density due to RTS is carried out: 
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which are in the proportion to the corresponding parts 

of the active dynamic conductivity ( , )E   . 

The calculated full active conductivity of RTS (E, ) 

is defined by the sum of two partial components: 
 

( , ) ( , ) ( , ) ,E E E           (31) 
 

where 
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 (32) 

 

As to their physical content these partial components 

are formed by the electronic flows, directed to the input 

( ( , )E   ) and output ( ( , )E   ) of the nanostructure 

relatively to the initial direction of electron flow. 

3. DISCCUSSION OF THE RESULTS  
 

Taking advantage of the developed theory, the cal-

culating of potentials ( )( )p
st z  caused by the static spa-

cial charge was carried out, as well as the potentials, 

defined by the spacial dynamic charge for radiation 

electronic transitions ( )( )p z . 

The calculations where carried on the example of 

the experimentally realised three-barrier RTS [13] with 

GaAs – potential wells and Al0.15Ga0.85As – potential 

barriers with the known physical parameters: 

m 0.063 me; mb 0.075 me; U  516 meV, 

F  62 kV/cm, where me – mass of free electron. Geo-

metric parameters of the examined three-barrier RTS 

are as follows: the widths of the potential wells 
b1  8.0 nm; b2  5.7 nm, the thicknesses of the input, 

internal, and output potential barriers Δ1  4.5 nm; 

Δ2  1.0 nm; Δ3  2.4 nm  respectively. 

In Fig 2а the nanosystem potential profile,  
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Fig. 2 – Potential profile of RTS renormalized by static charge (а) and dependencies of potential, caused by dynamic charge in 

laser transitions 3 → 2, 2 → 1 і 3 → 1 on z 
 

renormalized by static charge is presented, calculated 

for different values of the electron concentration in the 

beam falling on RTS. As it is seen from the Figure, with 

greater of concentration of electrons, the potential pro-

file of RTS is deformed greater, the heights of the po-

tential barriers being greater and the bottom of the 

conductivity zone of the input and output quantum 

wells being raised. As it will be shown further, the 

identified effect is revealed as the sufficient effect on 

spectral parameters of the quasi-stationary states of 

electron in the investigated RTS – its resonance energy 

and widths. 

In Fig. 2b the dependences of the potential values 

dyn  on the geometric sizes of RTS z, found by the dy-

namic charge in the laser quantum transitions 3  2, 

2 1, 3  1 are presented. As it is seen from the 

Fig. 2b for the calculated potentials dyn  the relation is 

satisfied: 
 

 (3,2) (2,1) (3,1)
dyn dyn dyn     

 

Here the nature of the potentials (3,2) (2,1) (3,1)
dyn dyn dyn, ,    

dependencies on z are qualitatively the same: values of 

potentials increase within the left potential barrier, 

that is, when 0 ≤ z≤ Δ1, being of the maximal values on 

the boundary of this barrier with the input potential 

well. For 0 < z≤ b1 dependencies of potentials on z are 

declining nature. 

In Fig. 3a, b, c, d, e, f the dependencies on the loca-

tion of the internal potential barrier b in the total po-

tential well at the unvariable other geometric TRS pa-

rameters of the energy spectrum of the electron En, 

logarithms of resonance width n, logarithms of dynam-

ic conductivity, are presented, revealed in the quantum 

electron transitions from the third to the second and: 

32 32 32, ,     і from the third to the first energy levels 

31 31 31, ,    . The calculations were performed for the 

electrons concentration n  2·1017 cm-3 within two mod-

els: in the model without taking into account the spa-

cial charge effect [12], the results of which are present-

ed in Fig. 3a, b, c (І), and within the model, for which 

the theory is developed above, and which are presented 

in Fig. 3d, e, f. (ІІ). The value b  bexp corresponds the 

geometric configuration of the experimentally realised 

RTS [13]. 
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Fig. 3 – Dependencies of energy spectrum En, logarithms of resonance widths n, logarithms dynamic of conductivity of electron 

and their partial components, revealed in the laser transitions 3 → 2 (
32 32 32, ,    ) і 3 → 1 (

31 31 31, ,    ) on the position of the 

internal potential barrier (b) in the total potential well without (a, b, c) and with taking into account spatial charge (d, e, f), for 

carrier concentration n  2·1017 cm-3  
 

From Fig. 3а and Fig. 3d it is seen, that the depend-

encies of the energy spectrum En on b, which are calcu-

lated in two models are qualitatively similar. But in the 

dependencies of the energy spectrum, which are calcu-

lated taking into account the effect of spacial static and 

dynamic charge, the effects of the increase of the reso-

nance energies of the first quasi-stationary state are 

revealed, and those of the second – much smaller and 

that of the third – relatively small at all. As it was 

mentioned earlier, these effects are caused by the 

renormalization of potential profile of RTS by the po-

tentials of the static and dynamic spacial charges. For 

the experimentally realised geometric configuration 

bexp in both models we obtain:  
 

(I) (I)
1 220.553 meV; 10.003 meVE E   ; 

(I)
3 158.624 meVE   and (II)

1 8.962 meVE   ; 

(II)
2 18.879meV;E   (II)

3 163.736meVE  .  

 

Thus, for both models the value of the electromag-

netic field energy, generated in the quantum transition 

3  2: (I)
32 148,621 meV   and (II)

32 144,857 meV   is 

different from experimentally realised 
exp
32 146.161 meV   by 1.7% and 0.9% correspondingly. 

From Fig. 3b and Fig. 3e it is seen, that the depend-

encies of resonance width of the quasi-stationary states 

of electron n on b is presented. It should be noted, that 

in spite of the quantitive similarity of the resonance 

width dependencies, calculated in both models, in the 

model, which takes into account the contribution of 

spacial charge, the value of the resonance width is 

smaller, relatively to the model, which does not take 

into account the spacial charge, the value of resonance 

width n become smaller, when the quantum number n 

becomes larger. Thus, for the experimentally realized 

geometric configuration bexp in both models we obtain:  
 

(I)
1 0.638 meV;  (I)

2 0.409 meV; 

(I)
3 1.295 meV   

and (II)
1 0.352 meV;  (II)

2 0.269 meV; 
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(II)
3 0.780 meV  . 

 

As the electron life-time in the quasi-stationary 

state is connected with the resonance width of this 

state by the relation n  ħ/n, the spacial charge causes 

the increase of the electron life-time in two operational 

quasi-stationary states almost in two times. Thus, we 

may conclude the first, that for the sufficient electron 

concentration n, the effect of the spacial charge is of the 

dissipation nature, causing breaking of the nanodevices 

coherent state. 

In Fig. 3с and Fig. 3 f the dependencies of the loga-

rithms of dynamic conductivities on the b-values are 

presented, which are revealed in the laser electron 

quantum transitions 3  2 and 3  1, and their partial 

components: 32 32 32, ,     and 31 31 31, ,    . It is seen 

from these Figures, that when b varies, the absolute 

values of the conductivities 32  and 31  stay almost 

the same for both models. But in the model, which 

takes into account the effect of the spacial charge, the 

partial components of conductivity 32  , 31  , which are 

defined by the direct electron flow, decrease. The par-

tial components 32  , 31  , defined by the electron flow 

in the opposite direction, increase. It should be noted, 

that this effect sufficiently revealed seen for the quan-

tum transition 3  2, which can be explained by satis-

fying the relation (44). Here, for the experimentally 

realized configuration of RTS bexp , we obtain: 
 

(I) (I)
32 327397.14 S/cm, 7342.96 S/cm,       

(I) (I)
32 3154.18S/cm, 54.15 S/cm,     

(I) (I)
31 3154.12 S/cm, 0.03 S/cm       and  

(II) (II)
32 32

(II) (II)
32 31

(II) (II)
31 31

7423.21 S/cm, 6938.64 S/cm,

484.57S/cm, 56.17 S/cm, 

55.52 S/cm, 0.65 S/cm.

 

 

 





 

  

   

   

 

 

Thus, we can conclude, that the dynamic charge 

causes the redistribution of the partial components of 

the dynamic conductivity, formed in the laser transitions 

3  1 and 3  2 in its total value. Here, the component 

of conductivity +, found on the direct electron flow, de-

creases, and the component    found by the flow in the 

opposite direction, increases. According to the work [13], 

this effect is the dissipative factor, that is why it must be 

taken into account in investigating of the electron tun-

neling transport through the multilayer RTS. 

 

4. CONCLUSIONS 
 

Quantum-mechanical theory of the active dynamic 

conductivity of electrons by the three-barrier RTS with 

the applied constant electric field, taking into account 

the effect of the spacial dynamic and static charges, has 

been developed. It was shown, that the effect of spacial 

charge reveals itself in the displacement of the energy 

spectrum of electron towards the greater energies, in-

crease of the electrons life time in the quasi-stationary 

states and the increase of the partial component of con-

ductivity, which is defined by the electron flow, which 

is directed to the RTS input. 

 

 

Вплив просторового заряду на тунелювання електронів та їх провідність  

резонансно-тунельними структурами в постійному електричному полі 
 

І.В. Бойко, М.Р. Петрик 

 

Тернопільський національний технічний університет імені Івана Пулюя, вул. Руська, 56, 46001 Тернопіль, 

Україна 

 
З використанням моделі прямокутних потенціальних ям і бар'єрів розвинена квантово-механічна 

теорія спектральних параметрів і динамічної провідності електронів, взаємодіючих із створюваним 

ними полем просторового заряду у відкритій плоскій резонансно-тунельній структурі з постійним 

електричним полем. Досліджено вплив просторового заряду на провідність експериментально реалі-

зованої наноструктури як активної області квантового каскадного лазера для різних концентрацій 

електронів в падаючому на резонансно-тунельну структуру пучку. 
 

Ключові слова: Резонансно-тунельна структура, Квантовий каскадний лазер, Статичний заряд, Ди-

намічний заряд, Динамічна провідність. 
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С использованием модели прямоугольных потенциальных ям и барьеров развита квантово-

механическая теория спектральных параметров и динамической проводимости электронов, взаимо-

действующих с создаваемым ими полем пространственного заряда в открытой плоской резонансно-

туннельной структуре с постоянным электрическим полем. Исследовано влияние пространственного 

заряда на проводимость экспериментально реализованной наноструктуры как активной области 

квантового каскадного лазера для различных концентраций электронов в падающем на резонансно-

туннельную структуру пучке. 
 

Ключевые слова: Резонансно-туннельная структура, Квантовый каскадный лазер, Статический за-

ряд, Динамический заряд, Динамическая проводимость. 
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