Эмиссия фотонов при взаимодействии электронов с поверхностью наногетероструктур

Л.М. Маркович*, М.И. Линтур, М.В. Приходько, Г.Ю. Подгорецкая

Ужгородский национальный университет, ул. Пидгирна, 46, 88000 Ужгород, Украина

(Получено 30.11.2016; в отредактированной форме – 30.01.2017; опубликовано online 30.06.2017)

Получено количественные данные о спектральном составе и интенсивность излучения в диапазоне 200 – 800 нм при облучении электронами с энергией $E_n = 450$ эВ пленок As₂S₃ и многослойных пленок Se/As₂S₃, Te/As₂S₃ и Bi/As₂S₃. Установлено природу излучателей основных компонент, которые выявлены в исследуемых спектрах, а также место локализации наблюдаемого свечения. Важным результатом работы является определение абсолютного выхода фотонов с поверхности исследуемых образцов, которые составляют соответственно для As₂S₃ $N_1 = 1.75 \cdot 10^{-3}$ фот./эл., $N_2 = 7.57 \cdot 10^{-4}$ фот./эл.и для многослойных пленок $N_3 = 1.8 \cdot 10^{-3}$ фот./эл., $N_4 = 8.8 \cdot 10^{-4}$ фот./ эл., $N_5 = 1.3 \cdot 10^{-3}$ фот./эл.

Ключевые слова: Электронно-фотонная спектроскопия, Фотон, Электрон, Бомбардировка, Эмиссия.

DOI: 10.21272/jnep.9(3).03012

PACS number: 78.68. + m

1. ВВЕДЕНИЕ

В начале нового столетия мы становимся свидетелями больших достижений квантовой инженерии в электронике твердого тела, которая создает искусственные атомы – квантовые точки и приборы на их основе, а также объекты, не имеющих аналогов в природе, разрабатывает методы управления движением единичных электронов, и делает то, что раньше считалось невозможным. Логика современного этапа развития физики состоит в том, что основными объектами исследований все в большей мере становятся не монокристаллы, не отдельные пленки, а сложные наноструктурные материалы.

Упаковывая атомы с точностью до одного двух слоев, можно создать искусственные кристаллы, молекулы с заданными свойствами. Многослойные тонкие пленки имеют большое количество интересных свойств, потому что в таких материалах, вследствие уменьшения размеров и возрастающей роли поверхности, наблюдаются отклонения от их поведения в объемных материалах. Можно выделить две основные физические причины для объяснения отличий в свойствах многослойных материалов и объемных твердых телах. Первая причина – это высокая дисперсность нанокристаллических систем, то есть приблизительно одинаковое число атомов на поверхностях или границах зерен кристаллических областей и число атомов, размещенных в середине кристаллической частицы. Другая причина – оченьмелкие нанометровые размеры частиц: длина волны де Бройля электронов (дырок) в этом случае становится соразмерной с размером зерна кристаллита. Кинетическая энергия теплового движения электронов и дырок $E \approx 0.025$ эВ,соответственно длина волны электрона приблизительно 8 нм, а для дырок 3 нм. При этих условиях поведение носителей заряда объясняется квантово-механически как частиц потенциальной ямы. Потому в этом новом состоянии вещества зоны проводимости и валентности перестают быть непрерывными, они расщепляются на дискретные электронные уровни, а запрещенная

зона возрастает с уменьшением размера структуры. Вследствие этого появляются дискретные линии оптического поглощения и люминесценции, наблюдаются эффекты туннелирования между квантовыми состояниями сосседних ям, то есть в целом меняются оптические свойства вещества.

Высокая прозрачность в инфракрасной области спектра, эффекты перемыкания и индуцированных изменений стали основой применения халькогенидных стеклоподобных полупроводников (ХСН) в голографии, электронике, оптической записи. Большой интерес вызывает возможность использования ХСН в качестве сред для разработки автомобильных систем ночного видения, термического отображения информации, квантового считывания и т.д. Нами было исследовано пленки As_2S_3 и многослойные пленки Se/As_2S_3, Te/As_2S_3 и Bi/As_2S_3 методом электронно-фотонной спектроскопии (ЕФС). Выбор этих образцов обусловлен тем, что, в отличии от оптических методов исследования [1, 2], взаимодействие электронов с поверхностью ХСН почти не изучалось.

2. ТЕХНИКА И МЕТОДИКА

Исследования взаимодействия электронов с поверхностями пленок As₂S₃, напыленных на стеклянную и кремниевую подложки, Se/As₂S₃, Te/As₂S₃ и Ві/Аs₂S₃ проводились на "Сверхвысоковакуумном электронно-фотонном спектрометре" в диапазоне длин волн 200 – 800 нм, где исследуемые образцы облучались электронами с энергией $E_n = 450$ эВ под углом 15° относительно нормали к поверхности. Остаточное давление атмосферных газов в рабочей камере установки составляло $P \sim 10^{-9}$ Торр, электронный ток на мишени І л. = 1,85 – 2 мкА. Свечение, которое возникает при взаимодействии электронов с поверхностью, фокусируется линзой на входную щель монохроматора МДР-12, где выделенное излучение детектируется фотоэлектронным умножителем ФЭУ-106, работающим в режиме счета отдельных фотоэлектронов. Полезный сигнал регистрируется частотомером и записывается спектр исследуемого

2077-6772/2017/9(3)03012(4)

pnilfe_lyuba@mail.ru

излучения с помощью самописца КСП-4. Поскольку в монохроматоре МДР-12 в исследуемом диапазоне длин волн 200 – 800 нм используются две дифракционные решетки, то кривая относительной чувствительности измерялась для обеих решеток №1 в диапазоне 200 – 500 нм и № 2 в диапазоне 400 – 1000 нм.

Калибровку системы регистрации осуществляли с помощью эталонных источников неполяризованного излучения, а именно: вольфрамовой лампы СИ-8-200 (для спектральной области 350 - 800 нм) и газоразрядной водородной лампы ДВС-25 (для области 200 - 350 нм). Истинное спектральное распределение вольфрамовой лампы СИ-8-200 рассчитывали по формуле Планка для заданной известной температуры T ее ленты с учетом излучательных свойств серого тела. Спектр, записанный для лампы ДВС-25, "спивали" с распределением интенсивности вольфрамовой лампы СИ-8-200. Определенная таким способом кривая относительной чувствительности системы регистрации излучения сверхвысоковакуумного электронно-фотонного спектрометра представлена на рис. 1.

Рис. 1 – Кривая чувствительности системы регистрации излучения. 1 – решетка в диапазоне 200 – 500 нм; 2 – в диапазоне 400 – 1000 нм

Абсолютный выход фотонов с облучаемой электронами поверхности для выбранной длины волны определяли по формуле:

$$N\left[\frac{\Phi_{\text{OT}}}{c \cdot \text{HM}}\right] = \frac{I_{\text{эксп.}}(\lambda) \cdot S \cdot 2\pi \cdot}{\beta(\lambda) \cdot S_{\text{эксп.}} \cdot I_{\text{эл.}} \cdot \Omega \cdot D \cdot \Delta \ell_{\text{эксп.}}}, \qquad (1)$$

где $I_{\rm JKCH.}(\lambda)$ – интенсивность излучения в относительных единицах для данной λ ; $\beta(\lambda)$ – коэффициент чувствительности системы регистрации для данной λ ; S – площадь пучка электронов на поверхности исследуемого образца; $S_{\rm JKCH.}$ – площадь, с которой наблюдаем свечение поверхности исследуемого образца; $I_{\rm JJ.}$ – ток электронного пучка; Ω – телесный угол наблюдения излучения; D – обратная линейная дисперсия монохроматора МДР-12; $\Delta I_{\rm JKCH.}$ – ширина входной щели монохроматора [3].

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спектры свечения поверхности пленок As₂S₃, напыленных на стекло и кремний, приведенные на кривую чувствительности системы регистрации (рис. 1) представлены в абсолютных единицах на рис. 2.

Рис. 2 – Электронно-фотонная эмиссия поверхности пленки As_2S_3 , с учетом чувствительности системы регистрации, напыленной на: 1 – стеклянную подложку; 2 – кремниевую подложку

В обоих случаях наблюдаем непрерывное излучение в широком диапазоне длин волн с двумя четко выраженными максимумами $\lambda_1 = 300$ нм и λ₂ = 500 нм. Непрерывное излучение с максимумом вблизи $\lambda_1 = 300$ нм, считаем, соответствует межзон-Излучение с ным переходам. максимумом $\lambda_2 = 500$ нм связываем с возбуждением электронным пучком "дефектных" кластеров, а именно AsS_3 , As_4S_4 и As₂S₅, которые характерны не только для пленок, но и для массивного аморфного образца As₂S₃. Мы считаем, что поверхность, на которую напылен данный объект, вносит весомый вклад в спектрограмму свечения пленок As₂S_{3.} На это указывают отличия в спектрограммах ЭФЕ пленок As₂S₃, а именно, смешение максимума непрерывного излучения $(\lambda = 300 \text{ нм})$ для As₂S₃, напыленного на кремниевую подложку, в коротковолновую область длин волн по отношению к As₂S₃, напыленного на стеклянную подложку. В пользу этой гипотезы свидетельствует также наличие в спектре пленок As₂S₃ на кремнии особенности при длине волны $\lambda = 280$ нм, которая соответствует максимуму непрерывного излучения для поверхности кремния. Энергетическое положение этого максимума соответствует энергии квантов межзонных переходов кремния, в частности переходам электронов с поверхностных электронных состояний к объемным состояниям зоны Бриллюена (S4-<u> Γ_2 </u>). Вероятно, максимум при $\lambda = 420$ нм, в спектре свечения пленки As₂S₃, напыленной на стекло, соответствует особенности, которая характерна для спектрограммы стекла марки К-8.

Сравнивая кривые 1 и 2 рис. 2, видно, что интенсивность излучения I с поверхности As_2S_3 , напыленного на стеклянную подложку, почти в три раза больше, чем с поверхности пленки As_2S_3 напыленной на кремний. Это связываем с тем, что вклад в спектр свечения As_2S_3 стеклянной подложки намного больший, чем кремниевой.

Пользуясь методикой, которая описана выше, мы получили данные абсолютного выхода фотонов на

один падающий электрон при взаимодействии электронов средних энергий с поверхностью пленки As_2S_3 , напыленной на стекло марки К-8 (N_1) и кремний высокой чистоты (N_2), в диапазоне длин волн 200 – 800 нм:

$$N_1 = 1,75 \cdot 10^{-3}$$
 фот./эл., $N_2 = 7,57 \cdot 10^{-3}$ фот./эл.

Спектры свечения поверхности многослойных пленок Se/As_2S_3 , Te/As_2S_3 та Bi/As_2S_3 приведенных на кривую чувствительности системы регистрации в абсолютных единицах, которые получены по формуле (1) представлены на рис. 3.

Рис. 3 – Электронно-фотонная эмиссия многослойной пленки с учетом чувствительности системы регистрации: 1 – Se/As₂S₃; 2 – Te/As₂S₃; 3 – Bi/As₂S₃

Для всех спектров наблюдаем непрерывное Для всех спектров наблюдаем непрерывное излучение в пироком диапазоне длин волн с максимумами близко $\lambda_1 = 300$ нм и $\lambda_2 = 750$ нм, а в случае Se/As₂S₃ – пик свечения при $\lambda_3 = 500$ нм. Непрерывное излучение с максимумом $\lambda_1 = 300$ нм, которое наблюдается во всех спектрах, имеет одинаковую природу. Его по механизму связываем с электронными межзонными переходами в пленках As₂S₃. Спектральная особенность при длине волны $\lambda = 500$ нм также характерна для пленок As₂S₃ и соответствует излучению "дефектных" кластеров AsS₃, As₄S₄ и As₂S₅, которые возбуждаются бомбардирующими электронами. Непрерывное излучение с максимумом близко $\lambda_2 = 750$ нм, по нашему мнению, это свечение дефектов, которые возникают на границе между двумя слоями (Se и As₂S₃, Te и As₂S₃, Bi и As₂S₃) вследствии их перемепивания под воздействием пучков электронов [4].

Используя значения, которые представлены на рис. 3, мы вычислили абсолютный суммированный выход фотонов с поверхности многослойных пленок Se/As₂S₃, Te/As₂S₃ та Bi/As₂S₃ на один падающий электрон в диапазоне длин волн от 200 до 800 нм, который составляет соответственно:

> $N_3 = 1,8 \cdot 10^{-3}$ фот./ эл., $N_4 = 8,8 \cdot 10^{-4}$ фот./ эл., $N_5 = 1,3 \cdot 10^{-3}$ фот./эл.

4. ВЫВОДЫ

Исследован спектральный состав излучения в диапазоне 200 - 800 нм при бомбардировке поверхности пленок As_2S_3 , напыленных на стекло и кремний, а также поверхности многослойных пленок Se/As_2S_3 , Te/As $_2S_3$ и Bi/As $_2S_3$ электронами.

Получено спектры свечения поверхности пленок As_2S_3 напыленных на кремний высокой чистоты и стекло марки К-8, определено место локализации и природу непрерывного излучения с максимумами вблизи $\lambda_1 = 300$ нм і $\lambda_2 = 500$ нм. Приведено спектрограммы излучения пленок As_2S_3 на кривую чувствительности системы регистрации и определено абсолютный выход фотонов в диапазоне длин волн 200 – 800 нм.

Исследовано взаимодействие электронов средних энергий с поверхностью многослойных наногетероструктур Se/As₂S₃, Te/As₂S₃ та Bi/As₂S₃, объяснена природа особенностей непрерывного спектра для данных образцов определен абсолютный выход фотонов с поверхности многослойных пленок Se/As₂S₃, Te/As₂S₃ та Bi/As₂S₃ в диапазоне длин волн 200 – 800 нм.

Emission of Photon Sunder Electron Sinteraction with the Surface Nano Hetero Structures

L. Markovych, M. Lintur, M. Prichodko, G. Podgoretska

Uzhgorod National University, 46, Pidgirna Str., 88000 Uzhgorod, Ukraine

For the first time quantitative data and intensity of radiation in the range of 200 - 800 nm is received by electron-photonspectroscopy irradiated by electrons with energies $E_n = 450$ eV and films As₂S₃ and multilayer films Se/As₂S₃, Te/As₂S₃ and Bi/As₂S₃. The nature of emission accompanying electron bombardment studied and also a place of localization related to observed glow. Important result of the study is to determine the absolute output of photons from surface samples, which are respectively for As₂S₃ $N_1 = 1.75 \cdot 10^{-3}$ phot./el., $N_2 = 7.57 \cdot 10^{-4}$ phot./el. for the multilayer films of $N_3 = 1.8 \cdot 10^{-3}$ phot./el., $N_4 = 8.8 \cdot 10^{-4}$ phot./el. and $N_5 = 1.3 \cdot 10^{-3}$ phot./el.

Keywords: Electron-photon spectroscopy, Photon, Electron, Bombardment, Emission.

Емісія фотонів при взаємодії електронів з поверхнею наногетеро структур

Л.М. Маркович, М.І. Лінтур, М.В. Приходько, Г.Ю. Подгорецька

Ужгородський національний університет, вул. Підгірна, 46, 88000 Ужгород, Україна

Одержано кількісні дані про спектральний склад та інтенсивність випромінювання в діапазоні 200 – 800 нм при опроміненні електронами з енергією $E_n = 450$ еВ плівок As₂S₃ та багатошарових плівок Se/As₂S₃, Te/As₂S₃ та Bi/As₂S₃. Встановлено природу випромінювачів основних компонент, які виявлено в досліджуваних спектрах, а також місце локалізації спостережуваного свічення. Важливим результатом роботи є визначення абсолютного виходу фотонів з поверхні досліджуваних зразків, які становлять відповідно для As₂S₃ $N_1 = 1.75 \cdot 10^{-3}$ фот./ел., $N_2 = 7.57 \cdot 10^{-4}$ фот./ел. і для багатошарових плівок $N_3 = 1.8 \cdot 10^{-3}$ фот./ел., $N_4 = 8.8 \cdot 10^{-4}$ фот./ел. та $N_5 = 1.3 \cdot 10^{-3}$ фот./ел.

Ключові слова: Електрон-фотонна спектроскопія, Фотон, Електрон, Бомбардування, Емісія.

СПИСОК ЛІТЕРАТУРИ

- 1. R.D. Shull, J. Nano. Struct. Mater. 2, 213 (1993).
- 2. H.H. Gleiter, J. Nano. Struct. Mater. 6, 3 (1995).
- М.І. Лінтур, Л.М. Маркович, В.О. Мастюгін, М.В. Приходько, І.С. Шароді, Науковий вісник УжНУ.

Серія фізика. 10, 191 (2001).

 K. Adarsh, K. Sangunni, S. Kokenyesi, I. Ivan, M. Shipljak, J. Appl. Phys. 97, 044314 (2005).