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In this investigation, Ni50Mn45Sn5 alloy powder is synthesized by employing mechanical alloying tech-

nique in a high energy planetary ball mill. Systematic study on microstructural evolution and magnetic 

properties after different milling time is conducted by X-ray Diffraction (XRD), Scanning Electron Micro-

scope (SEM), Transmission Electron Microscope (TEM) and Vibrating Sample Magnetometer (VSM). It is 

revealed that formation of single phase alloy with an average of ~ 7 nm crystallite size is achieved after 

20 hr milling by mechanically induced inter-diffusion of atoms. Moreover, changes in lattice parameters 

and lattice strain as a function of milling time is also studied. Change in morphology of particles with in-

creasing milling time has been studied by SEM. In addition, d-spacing and diffraction planes obtained from 

analysis of HRTEM image and SAD pattern respectively corroborate with XRD results. Low coercivity in-

dicated by hysteresis loop is suggestive of soft ferromagnetic behavior of the alloy powder. 
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1. INTRODUCTION 
 

Heusler based ferromagnetic shape memory alloys 

Ni-Mn-X (X = Sn, Sb, In, Ga) have received considera-

ble attention as smart materials due to their multifunc-

tional properties viz. magnetic superelasticity [1], mag-

netocaloric effect [2, 3] and large magnetoresistance [4]. 

In particular, NiMnGa alloy has been the most exten-

sively studied system over the past few years. However, 

due to some of the problems of Ga based alloys (such as 

high cost of Gallium, toxic nature, brittleness, low mar-

tensitic transformation temperature) limits their prac-

tical applications [5]. To conquer these disadvantages, 

development of Ga-free alloy is required. Alternatively, 

Ni-Mn-Sn Heusler alloy has become a choice of re-

search because of its properties viz-a-viz low cost, non-

toxicity, good ductility and high martensitic transfor-

mation temperature etc. [6, 7].  

In recent years, a lot of researches [5, 8-10] have 

been done so far on the variety of methods of the alloy 

preparation. Several synthesis methods such as arc 

melting, melt spinning and spark erosion have been 

used to synthesize such alloys. Arc melting technique 

[5, 10-12] has been commonly used for the synthesis of 

NiMnX Heusler alloys but the alloys produced by this 

technique are usually brittle presumably due to coarse 

grains. Another major issue with arc melting technique 

is that it is difficult to maintain alloy composition be-

cause Mn is extremely volatile compound which causes 

the smelting loss. Although alloys prepared by melt-

spinning [13-16] technique shows enhanced ductility 

due to smaller grain size, this technique is suitable for 

preparation of only ribbons [17]. From the application 

point of view, the fine powders into desired consolidat-

ed shapes are technologically much important for the 

fabrication of magnetocaloric devices [18]. Therefore, 

powder metallurgical routes has grown up as the most 

potential methods for improving the ductility of alloys, 

especially when there are reports in favor of improve-

ments of not only ductility but also shape memory 

properties [19, 20]. In recent years, mechanical alloying 

(MA) has been considerably used to synthesize Heusler 

alloys because of its simplicity, cost effectiveness and 

high productivity for industrial scale applications [21]. 

In the present work, we have synthesized 

Ni50Mn45Sn5 alloy by using mechanical alloying tech-

nique instead of traditional melting methods. Efforts 

have been made to unveil the structural transformation 

and microstructural changes arising during mechanical 

alloying. The magnetic behavior of finally obtained 

powder after 20 hr milling has been studied. The major 

significance of this investigation lies in the fact that it 

will add to the existing knowledge in the understanding 

of various aspects of mechanical alloying for NiMn 

based Heusler alloys. 

 

2. EXPERIMENTAL PROCEDURE 
 

Ni50Mn45Sn5 alloy was synthesized by a planetary 

ball milling machine (Fritsch Pulverisette P6), using 

Tungsten carbide (WC) (vial and balls), and nickel 

powder (Alfa Aesar-99.5%), Mn powder (Alfa Aesar-

99.8%) and Sn powder (Alfa Aesar-99.9%). WC balls 

with 10 mm diameter and vial with 250 ml volume 

were used for milling purpose. Ball to powder (BPR) 

weight ratio was kept constant as 10:1. 50 WC balls 

were loaded into vial with 8 gm weight of each ball. 

Accordingly in order to maintain 10:1 ball to powder 

weight ratio, absolute 40 gm of powder was processed 

in a batch. The process was carried out at ambient 

temperature with a speed of 300 RPM. Milling was 

conducted in presence of Toluene (process controlling 

agent) to avoid excessive cold welding and oxidation of 

powder at room temperature. Powder samples were 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
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extracted after 0 hr, 2 hr, 6 hr, 12 hr and 20 hr milling 

to look into the progress of alloy formation. X-ray dif-

fraction measurements were carried out for all the 

samples at room temperature, using Xpert-Pro Pan 

Analytical diffractometer (Cu K radiation). Average 

crystallite size and lattice-strain generated during mill-

ing were calculated through Williamson Hall formula. 

The morphology and particle size of the milled powders 

were analyzed by FESEM (Nova Nano FESEM 450 

FEI). HRTEM image and SAD pattern of 20 hr milled 

powder sample were obtained by TEM (Technai 20 

FEI). The magnetic properties of the 20 hr milled pow-

der were measured by VSM (PPMS cryogenics limited 

USA) at room temperature.  

 

3. RESULTS AND DISCUSSION  
 

Fig. 1 displays X-ray diffraction patterns of powders 

milled for various times. Diffraction peaks for 0 hr 

milled powder mixture can be assigned to Ni (fcc) 

[JCPDF Card- 00-004-0850], Mn (bcc) [JCPDF Card- 

00-032-0637] and Sn (tetragonal) [JCPDF Card- 00-

004-0673]. XRD pattern corresponding to 2 hr milled 

powder did not undergo any major structural transfor-

mation.  
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Fig. 1 – XRD diffraction patterns of powder milled for differ-

ent times 
 

Elemental diffraction peaks of precursor materials 

are still observed; this stage is known as early stage of 

milling. At this stage of milling, diffraction peaks are 

sharp. After 6 hr of milling, broadening of Bragg dif-

fraction peaks is observed which indicates continuous 

refinement of particles as milling progresses. Simulta-

neously, there is a considerable decrease in intensity of 

diffraction peaks of Sn which is due to dissolution of 

Sn. After continuous milling up to 12 hr, intensity of Ni 

(111) peak decreases whereas intensity of Mn (330) 

peak increases which indicates mutual dissolution of Ni 

and Mn atoms into each other’s lattice. Disappearance 

of Bragg diffraction peaks of Sn indicates complete dis-

solution of Sn. After 20 hr, all elemental Bragg diffrac-

tion peaks are disappeared which means that mechani-

cal alloying is completed and the obtained diffraction 

pattern is indexed as NiMnSn alloy with BCC crystal 

structure. This is to be noted that no extra peaks be-

longing to any unwanted compounds were detected 

except minor oxidation of manganese.  
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Fig. 2 – XRD peak shifting and broadening with milling time  
 

Fig. 2 shows effect of milling time on the peak posi-

tions and peak width of the diffraction lines falling in 

the range of 2  41°-46°. 0 hr milled powder mixture 

consists of Mn (330) and Ni (111) diffraction peaks in 

this range. Between 2 hr to 6 hr of milling, diffraction 

peaks are broadened and Mn (330) peak shifts towards 

lower degree of reflection. Broadening of diffraction 

peaks with increasing milling time occurs due to effec-

tive size reduction, increasing of lattice distortions and 

microstrain introduced by milling [22] whereas, shift-

ing of Mn (330) peak towards lower degree is attributed 

to increase in interplanar spacing and hence lattice 

parameter due to continuous dissolution of Sn. Since 

the atomic diameter of Sn is 1.62 Å [23] which is larger 

than Mn 1.26 Å [23], therefore, dissolution of Sn induc-

es distortion in the lattice which increases lattice pa-

rameter of Mn. In the duration of 6 hr to 20 hr milling, 

lattice parameter changes non monotonically which can 

be ascribed to the fact that atomic radii of Ni (1.24 Å) 

[23] and Mn (1.26 Å) are very close to each other there-

fore mutual dissolution of Mn and Ni into crystal struc-

ture of each other forming Ni-Mn and Mn-Ni is possi-

ble. Such dissolution does not change the lattice pa-

rameter and peak shifting significantly due to minor 

difference in atomic radii of Ni and Mn. After 20 hr 

milling, Ni (111) peak is disappeared and a single broad 

peak of NiMnSn alloy is formed. Table 1 summarizes 
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lattice parameters calculated by utilizing the Bragg’s 

law for a cubic system [24]: 
 

 
2 2 2

a
d

h k l


 
 (1) 

 

where d is interplaner distance of (h k l) planes and a is 

lattice parameter. 

 
Table 1 – Variation in lattice parameters with milling time 

 

Milling time (hr) Lattice Parameter  (Å) 

0 8.89 

2 8.91 

6 8.92 

12 8.90 

20 8.91 
 

Fig. 3 illustrates the variation in crystallite size (D) 

and lattice-strain () with milling time calculated by 

using Williamson-Hall equation [25]. As milling time 

increases, crystallite size becomes finer and reaches to 

~ 7 nm after 20 hr. This refinement is brought by high 

speed collisions between ball-powder-ball and ball-

powder-bowl converting larger size particles into finer 

ones. Refinement increases uniformly with the milling 

time and is more dominant during initial few hours of 

milling [26]. The lattice strain increases gradually and 

finally reaches to 1.4%. Typically, the lattice strain in-

creases with rising milling time. As milling progresses, 

fraction of grain boundaries and dislocation density 

increases which results in an increase in lattice strain 

[27]. 
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Fig. 3 – Variation in crystallite size and lattice strain with 

milling time  
 

Fig. 4a elucidates the morphology of elemental pow-

der mixture without milling with an average particle 

size 20-25 µm. Ni particles have round shape while the 

Mn and Sn particles have polygonal and oval shape 

respectively. As alloying progresses, continuous change 

in morphology and average particle size is noticed. Just 

after 2 hr, powder particles become irregular in shape 

along with 6-8 µm average particle size (Fig. 4b). Dur-

ing initial hours of milling a very high rate of ball-

powder-ball collisions is primarily responsible for rapid 

decrease in particle size. After 6 hr, the powder parti-

cles get flattened to platelet shapes (Fig. 4c) due to the 

development of compressive forces by virtue of micro-

forging. The average particle size at this stage was ob-

tained 9-11 µm. This stage of milling incorporates both 

the cold welding and micro-forging processes simulta-

neously; therefore increase in particle size was noticed.  

After 12 hr, powder particles are work hardened there-

fore fracturing process becomes more prominent conse-

quently; the average particle size at this stage was de-

creased and found 7-9 µm (Fig. 4d). Prolonged milling 

up to 20 hr produced more refined particles with an 

average particle size 5-8 µm (Fig. 4e). 
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Fig. 4 – SEM micrographs of as-milled Ni50Mn45Sn5 powder (a) 

0 hr (b) 2 hr (c) 6 hr (d) 12 hr (e) 20 hr (f) EDS spectrum 
 

SEM-EDS spectrum of 20 hr milled powder (Fig. 4f) 

shows that the composition of finally obtained alloy 

powder does not contain any other metallic contamina-

tion from the milling media. However, low percentage 

of oxygen was detected. Introduction of oxygen may be 

explained by oxidation of Mn particles on the surface 

during mechanical alloying process which corroborates 

to XRD results. 
 

 
 

Fig. 5 – Secondary electron image of 20 hr milled powder  
 

Secondary electron image (Fig. 5) shows elemental mapping of 

20 hr milled alloy powder indicating homogeneous distribution 

of elements in alloy powder. Ni, Mn and Sn atoms distribu-

tions are closely correlated suggesting that three elements are 

almost completely alloyed which is an evidence of true alloy 

formation [28]. These results are very consistent with that of 
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XRD analysis. Fig. 6a and b shows TEM bright field im-

age and the corresponding selected area diffraction (SAD) 

pattern of 20 hr milled alloy powder respectively. Figure 

6a shows a collection of particles from which the average 

crystallite size was estimated between ~ 10-15 nm. SAD 

pattern exhibits diffraction rings for the (330), (332), (422) 

and (510) planes of the bcc crystal structure. Diffraction 

rings were indexed by measuring the distance from the 

centre of the diffraction pattern. In addition, HRTEM 

image is shown in Fig. 6c, for clear visibility of lattice 

fringes, an enlarged view of an area enclosed by rectangle 

in HRTEM image is presented in Fig. 6d, which was fur-

ther processed by Digital-micrograph software to calculate 

the d-spacing (d  2.14 Å) (see Fig. 6e). This value agrees 

well with d-spacing (2.12 Å) obtained from X-ray diffrac-

tion analysis. d-spacing was calculated by generating an 

IFFT profile plot and manually count the cycles, then di-

vide the distance (2.14 nm) by the total number of cycles 

(10) as illustrated in Fig. 6f. Thus, TEM study shows that 

the analysis of SAD pattern and the crystallite size ob-

tained through HRTEM are quite consistent with the 

XRD analysis.  
 

d=2.14Å 

(c) 

(d) (e) (f) (d) 

(330) (332) 

(422) 

(510) 

(b) (a) 

 
 

Fig. 6 –TEM images of 20 hr milled powder: (a) Bright field 

image of powder particles, (b) SAD pattern, (c) HRTEM image, 

(d) Enlarged view of rectangular area shown in image c, (e) 

Lattice fringes with calculated d-spacing, (f) IFFT profile 
 

Fig. 7a shows magnetization curve of 20 hr milled 

powder as a function of field (-10 kOe ≤ H ≤ +10 kOe) at 

room temperature. The associated magnetic properties 

such as saturation magnetization (Ms), coercivity (Hc) 

and remanent magnetization (MR) are deduced from 

the hysteresis loop and summarized in Table 2. It can 

be seen that the 20 hr milled powder sample exhibits a 

typical soft ferromagnetic behavior with saturation 

magnetization (Ms  4.25 emu/gm) at ~ 10 kOe. Low 

value of saturation magnetization is due to ball milling 

which induces severe atomic disordering through the 

movement of dislocations and disturbs the position of 

Mn sites in the lattice, destructing the total magnetic 

moment [29]. It is known that magnetic moment in 

NiMn based Heuslar alloys originate from the ex-

change interaction between Mn atoms. Magnetic prop-

erties of the obtained ball milled alloy powder can be 

recovered by further heat treatment at appropriate 

temperature as shown by Tian et.al. [30]. Heat treat-

ment process restores the magnetic moment in the al-

loy by promoting the atomic ordering of atoms. 

Table 2 – Magnetic properties of 20 hr milled alloy powder  
 

Ms Hc MR Msp 

4.25 

emu/gm 

237.38 O

e 

1.18 mu/gm 14.06 

mu/gm 
 

To investigate the attributes of ground state mag-

netism, a virgin plot of M(H) was drawn in the form of 

Arrott plot M2 versus H/M [11]. The intersection point 

on positive M2 axis indicates the presence of spontane-

ous magnetization (Msp) in the system [31]. Fig. 7b il-

lustrates Arrott plot, where a positive intercept on the 

M2 axis gives spontaneous magnetization (Msp) 

14.06 emu/gm which suggests presence of ferromagnet-

ic ordering in the present alloy system. After successful 

heat treatment, the obtained alloy has great possibility 

to be used as potential ferromagnetic shape memory 

alloy for different applications.   
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Fig. 7 –(a) Magnetization hysteresis loop of 20 hr milled pow-

der (b) Arrott plot (M2 versus H/M) 

 

4. CONCLUSIONS 
 

Single phase NiMnSn alloy powder with significant 

homogeneity was prepared by ball milling method. Pa-

rameters of ball milling reaction were optimized in 

such a way that no metallic contamination was ob-

served from milling balls and bowl. It was found that 

lattice strain increased with milling time with concur-

rent decrease in crystallite size. Change in average 

particle size and modification in morphology of powder 

particles at different stages of milling was detected by 

SEM micrographs. Formation of single phase alloy 

powder after 20 hr milling was confirmed by TEM 

analysis. Narrow hysteresis curve indicating low value 

of coercivity with significant spontaneous magnetiza-

tion makes the present alloy useful as soft ferromag-

netic materials. The results of the present work sug-

gest that ball milling is an effective way to produce 

contamination free single phase magnetic shape 

memory alloys. 
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