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1. INTRODUCTION 
 

The exact analytic solutions of an arbitrary, or mul-

tidimensional, nonrelativistic Schrödinger equation 

and relativistic Klein-Gordon and Dirac equations has 

been the principal area of research interest in the field 

of quantum mechanics, many authors have used differ-

ent methods like asymptotic iteration method, im-

proved AIM, Laplace integral transform, factorization 

method, proper quantization rule and exact quantiza-

tion rule, Nikiforov–Uvarov method , supersymmetry 

quantum mechanics in two, three and D-dimensional 

spaces to study the central and non central potentials 

[1-9]. The algebraic physical structure of ordinary 

quantum mechanics based on the following fundamen-

tal three canonical commutations relations (CCRs), 

which plays as fundamental postulates of quantum 

mechanics,  ji px , , ,i jx x 
   and ,i jp p 

  , in both 

Schrödinger and Heisenberg pictures, respectively, as 

 1 c   : 
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Furthermore, the two timely operators  ix t and 

 ip t  are determined from the projection relations: 

 
     

     
0 0

0 0

exp( ) exp( )

exp( ) exp( )

i i

i i

x t iH t t x iH t t

p t iH t t p iH t t

   

   
 (3) 

 

Here H  denote to the Hermitian Hamiltonian opera-

tors on a Hilbert space of physical states, by differenti-

ating eq. (3), we find the Heisenberg equation of mo-

tions: 
 

 
 

 
 

 ,      and  ,i i
i i

dx t dp t
i H x t i H p t

dt dt
         (4) 

 

Recently, theoretical physicists have shown a great 

deal of interest in solving two and three-dimensional 

nonrelativistic Schrödinger equation and relativistic 

Klein-Gordon and Dirac equations for various spheri-

cally symmetric potentials in the case of new structure 

of quantum mechanics namely noncommutative quan-

tum mechanics, which know firstly by H. Snyder [6], to 

obtain an profound physical interpretations  in the mi-

croscopic scales. In this recently work we attempt to 

investigate the problem of the generalized (IQYM) po-

tential within the framework of the (MSE) in (NC-3D: 

RSP) symmetries with the interaction of modified Yu-

kawa potential and modified Mie-type potential using 

both Bopp’s shift method and standard perturbation 

theory methods: 
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On based to the work of the author B.I. Ita [9] to the 

case of the noncommutative space and space phase in 

addition to the our previously works [11-23]. It is worth 

to mentioning that the (CCRs) will be changes in non-

commutative three dimensional spaces and phases to 

the new canonical commutations relations (NCCRs), in 

both Schrödinger (SP) and Heisenberg (HP) pictures, as 

follows [7-11]: 
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The very small two parameters   and 


  (com-

pared to the energy) are elements of two antisymmetric 

real matrixes and    denote to the new star product 

(the generalized Moyal-Weyl product), which is gener-

alized between two arbitrary functions  ,f x p  

and  ,g x p  to   ,f g x p , in the first order of two 

parameters   and 


 ,instead of the old product 

   ,fg x p  [12]: 
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Here  22,O    stands for the second and higher order 

terms of   and  , the new canonical coordinates  ˆ
ix t  

and new momentum  ˆ
ip t   in (HP) are determined 

from two corresponding operators ˆ
ix  and ˆ

ip in (SP) 

from the projection relations, respectively [12-14]: 
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Which are satisfying the new Heisenberg motion equa-

tions [11-12]: 
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(9) 

 

The formalism of star product, Bopp’s shift method 

and the Seiberg-Witten map were played crucial roles 

in this new theory. The Bopp’s shift method will be ap-

ply in this paper instead of solving the Schrödinger 

equation in (NC-3D:RSP) with star product, the Schrö-

dinger equation will be treated by using directly the 

two new commutators, in addition to usual commutator 

on quantum mechanics, in the both Schrödinger and 

Heisenberg representations  [12-14]: 
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It is important to noticing that the new operators ˆ
ix  

and p̂
i
 in (NC-3D: RSP) are depended with ordinary 

operator ix  and p
i
 from the projections relations: 

 

1312 2321ˆ ˆ,      
2 2 2 2

31 32ˆ ,   
2 2

y z

x y

x x p p y y p p
x z

z z p p



 

     

  

 (11) 

 

and 
 

 

12 13

23 31 3221

ˆ ,
2 2

ˆ ˆ and 
2 2 2 2

y y z z

p p y z
x x

p p x z p p x

 

  

  

     

(12) 

 

So the purpose of this present work is to study the 

(IQYM) potential in noncommutative three dimensional 

spaces and phase to generate accurate energy spectrum 

in this new symmetries, which plays an important role 

in many fields of physics such as molecular physics, 

solid state and chemical physics [8-9]. The rest of this 

paper is organized as follows: in the next section we 

briefly review the basic of eigenvalues and eigenfunc-

tions for: (IQYM) potential in ordinary three dimen-

sional spaces. In section 3, we give a brief review of 

Bopp’s shift method and then, we derive the spin-

orbital noncommutative Hamiltonians for (MIQYM) 

potential in (NC-3D: RSP) symmetries, we find the ex-

act spectrum produced by noncommutative spin-orbital 

Hamiltonians ˆ
so iqymH   for (MIQYM) potential by apply-

ing ordinary standard perturbation theory and then we 

deduce the exact spectrum produced by noncommuta-

tive magnetic Hamiltonian ˆ
m iqymH   for (MIQYM) po-

tential in (NC: 3D- RSP) symmetries. In section four we 

summarize the global spectrums for (MIQYM) poten-

tial. The conclusion of the present work comes at the 

section 5. 

 

2. THE (IQYM) POTENTIALS IN ORDINARY 

THREE DIMENSIONAL SPACES 
 

A First we give a briefly review of eigenvalues and 

eigenfunctions for ordinary (IQYM) potential  iqymV r , 

on based to the principal reference [5]: 
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2
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     (13) 

 

Where r represent inter nuclear distance, the potential 

parameters  , ,A B C  are constants,   is the screening 

parameter and 0V is the dissociation energy. The ordi-

nary Schrödinger equations (SE) with above potential 

can be written in spherical coordinate  , ,r    as [5]: 
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Where iqymE represent the ordinary energy in ordinary 

three dimensional spaces and   is the rest mass of the 
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confined particle. The method of separation of variable 

has been applied in reference [5]: 
 

  
 

   nl
ml m

R r
r

r
      (15) 

 

The radial function  nlR r  and the spherical func-

tions  ml   and  m   for ordinary (IQYM) potential 

are satisfying the following three differential equations, 

respectively [5]: 
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here ( 1)l l   , according Nikiforov-Uvarov method, 

the normalized energy eignenfunctions  r  and cor-

responding eigenvalues iqymE  for ordinary (IQYM) po-

tential [5]: 
 

 
 

 

     

1
1 1 4 2

1 42

2

z
n n

ml m

r N z e L

z




   

    
  

  

 (18) 

 

and 

 
 

 

2

02
0 2

2

2 / 2
2

1
2 1 / 2

2

yh

V A
E C V

n B l

 





  

 
    

 

 (19) 

 

where 2z r , nN is the normalization constant and the 

factor  is given by [5]: 
 

  02 ( 1)B V l l      (20) 

 

3. NONCOMMUTATIVE THREE DIMENSIONAL 

PHASE-SPACES (NC-3D: RSP) HAMILTONI-

AN FOR (MIQYM) POTENTIAL 
 

3.1 Formalism of Bopp’s Shift Method 
 

In this formulation we may now proceed to present 

the fundamental bases of (MSE) in (NC-3D: RSP) on 

based to essentially our previously works [15-17], to 

achieve this goal, we apply the important 4-steps on the 

ordinary Schrödinger equation: 

1. Ordinary three dimensional Hamiltonian opera-

tors  ˆ ,iqym i iH p x  will be replace by new Hamiltonian 

operators  ˆ ˆ ˆ,iqym i iH p x . 

2. Ordinary complex wave function  r  will be re-

placing by new two complex wave functions  r . 

3. Ordinary two energies iqymE  will be replace by 

new values nc iqymE  . 

And the forth steps correspond to replace the ordi-

nary old product by the new generalized Moyal-Weyl 

product   , which allow us to constructing the (MSE) 

in both (NC-3D: RSP) as: 
 

      ˆ ˆ ˆ,iqym i i nc iqymH p x r E r    (21) 

 

The Bopp’s shift method allows finding the reduced 

above (MSE) without generalized Moyal-Weyl product 

as: 
 

      rErxpH nciqymiiiqym ˆ,ˆ  (22) 

 

Where the modified Hamiltonian  ˆ ˆ,iqym i iH p x  for 

(MIQYM) potential defined as a function of the two 

operators ˆ
ix  and ˆ

ip  which can be expressed as a func-

tion of generalized coordinates  , ,ix x y z  and general-

ized momentums  , ,i x y zp p p p  in usual quantum me-

chanics: 
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here the modified potential  ˆiqymV r  is obtained by re-

place the old position r  by new operator r̂  in the ex-

pression of the ordinary potential  iqymV r  to obtain 

the following new potential: 
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On based to our references [15-17], we can write the 

two operators 2r̂  and 2p̂  in (NC-3D: RSP) as follows: 
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Where the two couplings L  and L  are given by, 

respectively [31-44]: 
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With / 2ij ij  , after straightforward calculations one 

can obtains the different terms for (MIQYM) potential 

in (NC-3D: RSP) as follows: 
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Which allow us to writing the (MIQHM) global poten-

tial  ˆiqymV r  in (NC-3D: RSP) as follows: 
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Where the o additive operator  , ,pert iqymV r    is given 

by: 
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It is obvious that the above operator is proportional 

with two infinitesimals parameters  and , which 

allows us to considering as a perturbative terms. 

 

3.1 The Spin-orbital Noncommutative Hamiltoni-

an for (MIQYM) Potential in (NC- 3D: RSP) 
 

In order to discover the new contribution of the per-

turbative terms  , ,pert iqymV r    for (MIQYM) poten-

tial, we turn to the case of spin ½ particles described by 

the (MSE), we make the two simultaneously transfor-

mations: 
 

 2       and    2SL SL  L L  (30) 
 

Then the above two perturbed operators 

 , ,pert iqymV r    becomes as: 
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HereS  denote to the spin of a fermionic particle (like 

electron). It is possible to replace the spin-orbital inter-

action SL  by 
2 2 2

2 1

2
G J L S    

 
 to obtain directly 

the corresponding eigenvalues, and then new physical 

form of the eq. (26) can be expressed as: 
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we can form a diagonal matrixes ˆ
so iqymH   of or-

der  3 3 , with non null elements  
11
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22
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so iqymH   for (MIQYM) potential in 

(NC-3D: RSP) symmetries: 
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After profound calculation, one can show that, the ra-

dial function  nlR r  for (MIQYM) potential and two 

spherical functions  ml   and  m  are satisfying 

the following differential equations, in new structure 

(NC-3D: RSP): 
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3.2 The Exact Spectrum Produced by Noncom-

mutative Spin-orbital Hamiltonian ˆ
so iqymH   

for (MIQYM) Potential by Using the Stand-

ard Perturbation Method in (NC- 3D: RSP) 
 

The aim of this subsection is to obtain the modifica-

tions to the energy levels for thn  excited 

states u-iqymE and d-iqymE  corresponding a fermionic par-

ticle with two polarizations spin up and spin down, 

respectively, at first order of two infinitesimal parame-

ters   and . In order to achieve this goal, we apply 

the standard perturbation theory using eq. (18) for 

(MIQYM) potential: 
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It is possible to write both  u- 0, , , , , ,iqymE n l s A B V  and 

 d- 0, , , , , ,iqymE n l s A B V   as functions of three 

terms 1
iqymT , 2

iqymT  and iqymT  as follow: 
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The explicit mathematical forms of three 

terms 1
iqymT , 2

iqymT  and iqymT  are given by: 
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To obtain the modifications to the energy levels for 
thn  excited states we apply the following special inte-

gration [26]: 
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where  3 2 , , ; , 1;1F m n          denote to the hy-

pergeometric function, obtained from 

 1 1,..., , ,...., ,p q p qF z     for p  3 and q  2. After 

straightforward calculations, we can obtain the explic-

itly results: 
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Inserting the above obtained expressions (42), (43) 

and (44) into equations (38) and (39), gives the follow-

ing results for exact modifications of u-iqymE and 

d-iqymE produced by new spin-orbital effect 

 , ,pert yhV r    for (MIQYM) potential [15-18]: 
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Where the new factor  0, , , ,iqymT n A B V   is given by: 

 

 
 

   

0

1 2
0 0

, , , ,

, , , ,  , , , ,  

iqym

iqym iqym

T n A B V

T n A B V T n A B V



 



 
. (47) 

 

3.3 The Exact Spectrum Produced by Noncom-

mutative Magnetic Hamiltonian ˆ
m iqymH   for 

(MIQYM) Potential in (NC-3D: RSP) Symme-

tries 
 

Having found out how to calculate the corrections of 

energies for the automatically produced spin-orbital, 

 , ,pert iqymV r    we can discover a second symmetry 

produced by the effect and influence of the noncommu-

tativity of space-phase by modified Zeeman Effect for 

(MIQYM) potential, to found this physical symmetry 

we apply the same strategy in our previously works as 

follows: 

  and   B B     (48) 
 

The two parameters   and   are just only infini-

tesimal real proportional’s constants and B  is a uni-

form external magnetic field, we orient it to  Oz  axis 

and then we can make the following two translations 

for (MIQYM) potential: 
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Which allow us to introduce the two modified new 

magnetic Hamiltonians ˆ
m iqymH   in (NC-3D: RSP) for 

(MIQYM) potential, as: 
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Where ˆ
zH SB   denote to the ordinary operator of 

Hamiltonian for Zeeman Effect in ordinary quantum 

mechanics. To obtain the exact noncommutative mag-

netic modification of energy mag-iqymE for modified 

(IQYM) potential, it is sufficient to replace the 3-

parameters: k ,   and   in the eq.(45) by the follow-

ing new parameters: m ,   and  , respectively: 
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 (51) 

 

Where m denote to the eigenvalues of the operator zL  

which can be taking the values – l, – l + 1,…, 0,…, l. 

 

4. RESULTS 
 

Let us now resume the global exact spectrum of thn  

excited states:  ncu- 0, , , , , , ,iqymE n m l s A B V  , 

 ncd- 0, , , , , , ,iqymE n m l s A B V   and  com- 0, , , ,iqymE n A B V   

for (MIQYM) potential in (NC-3D: RSP) which pro-

duced by the diagonal ele-

ments  
11

ˆ
nc iqymH  ,  

22

ˆ
nc iqymH  and  

33

ˆ
nc iqymH   of non-

commutative Hamiltonians operator ˆ
nc iqymH  .  The orig-

inal eigenvalue iqymE  in ordinary three dimensional 

spaces for (IQYM) potential and the obtained results 

(45), (46), (51) allow us to getting the following global 

results: 
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The explicit diagonal elements  
11

ˆ
nc iqymH  ,  

22

ˆ
nc iqymH   

and  
33

ˆ
nc iqymH  of operator ˆ

nc iqymH   for (MIQYM) po-

tential in (NC-3D: RSP) can deduced as follows: 
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It is well known that the atomic quantum number 

m  can be takes ( 2 1l  ) values and we have also two 

possible values for eigenvalues 
1

2
j l  , thus every 

state in usually three dimensional space for (MIQYM) 

potential will be replace, in (NC-3D: RSP) by 

 2 2 1l  sub-states and then the degenerated state can 

be take   
1

2

0

2 2 1 2
n

i

l n




  values. It is important to no-

tice that our recent study can be extended to apply to 

molecular with spin
1

2
s  , we replace the factors 

1

2

1 1 3
( 1) ( 1)

2 2 4
k l l l l

  
        

  
 by new fac-
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tor  , ,k j l s : 

 

    1

2
, , ( 1) ( 1) ( 1)k j l s j j l l s s       (58) 

 

With l s j l s    , which allow us to obtaining 

the modifications to the energy levels 

 nc- 0, , , , , , , ,iqymE n m j l s A B V  for (MIQYM) potential: 
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And the corresponding noncommutative two Hamil-

tonian operators ˆ
nc iqymH   can be fixed by the following 

results: 
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(60) 

 

It is important to noticing that these results are ex-

cellent agreement with our reference [12]. Further-

more, the appearance of the polarization states of a 

fermionic particle for (MIQYM) potential indicates the 

validity of obtained results at very high energy where 

the two relativistic equations Klein-Gordon and Dirac 

will be applied, which allowing to apply these results of 

various Nano-particles at Nanoscales. Finally, if we 

make the two simultaneously limits    , 0,0    we 

obtain all results of ordinary quantum mechanics. 

 

5. CONCLUSION 
 

To find the analytic solutions for the modified in-

versely quadratic Yukawa potential plus modified Mie-

type potential, the general method Bopp’s shift has 

been used and we are investigated the spectrum per-

turbatively around the solution of the standard inverse-

ly quadratic Yukawa potential plus Mie-type potential 

in the case of (NC-3D: RSP) symmetries, we showed the 

obtained degenerated spectrum depended by new dis-

crete atomic quantum numbers ( m , 1

2
j l   

and 1

2zs   ) and the validity of obtained corrections 

can be prolonged to Nano-particles at Nano and Plank’s 

scales. In addition, we recover the ordinary commuta-

tive spectrums when, we make the two simultaneously 

limits:    , 0,0    for (MIQYM) potential. Finally, 

because of the accuracy and simplicity of the elegant 

method presented in this study (the general method 

Bopp’s shift method and standard perturbation theory), 

we recommend its application in finding bound state 

solutions of some other model of central potentials  in 

different fields. 
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