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The modified theories of noncommutative quantum mechanics have engrossed much attention
in the last decade, especially its application to the fundamental three equations: Schriédinger,
Klein-Gordon and Dirac equations. In this contextual exploration, we further investigate for modi-
fied quadratic Yukawa potential plus Mie-type potential (MIQYM) in the framework of modified
nonrelativistic Schrédinger equation (MSE) using generalization of Bopp’s shift method and stand-
ard perturbation theory instead of using directly the generalized Moyal-Weyl product method, we
obtained modified energy eigenvalues and corresponding modified anisotropic Hamiltonian opera-
tor in both three dimensional noncommutative space and phase (NC-3D: RSP) symmetries.
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1. INTRODUCTION

The exact analytic solutions of an arbitrary, or mul-
tidimensional, nonrelativistic Schrédinger equation
and relativistic Klein-Gordon and Dirac equations has
been the principal area of research interest in the field
of quantum mechanics, many authors have used differ-
ent methods like asymptotic iteration method, im-
proved AIM, Laplace integral transform, factorization
method, proper quantization rule and exact quantiza-
tion rule, Nikiforov—Uvarov method , supersymmetry
quantum mechanics in two, three and D-dimensional
spaces to study the central and non central potentials
[1-9]. The algebraic physical structure of ordinary
quantum mechanics based on the following fundamen-
tal three canonical commutations relations (CCRs),
which plays as fundamental postulates of quantum

mechanics, [Xi,ij, [xi,x]} and[pi,pj], in both

Schrédinger and Heisenberg pictures, respectively, as
(c=n=1):

boleioy 0 boslbonko @
and

[x:(t).p;(t)] =i0; and

EICEACIEFACHAGIE

Furthermore, the two timely operatorsx; (t) and

@)

p; (t) are determined from the projection relations:
x; () = expGH (t —t, ))x; exp(—iH (t —t,))

3
p; (t) =exp(H (t —t, ))pi exp(—iH (t —1, )) @

Here H denote to the Hermitian Hamiltonian opera-
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tors on a Hilbert space of physical states, by differenti-

ating eq. (3), we find the Heisenberg equation of mo-

tions:
dx; (

Tt):i[H,xi (t)] and

dpéft) =i[H.p,(t)] @)

Recently, theoretical physicists have shown a great
deal of interest in solving two and three-dimensional
nonrelativistic Schrédinger equation and relativistic
Klein-Gordon and Dirac equations for various spheri-
cally symmetric potentials in the case of new structure
of quantum mechanics namely noncommutative quan-
tum mechanics, which know firstly by H. Snyder [6], to
obtain an profound physical interpretations in the mi-
croscopic scales. In this recently work we attempt to
investigate the problem of the generalized (IQYM) po-
tential within the framework of the (MSE) in (NC-3D:
RSP) symmetries with the interaction of modified Yu-
kawa potential and modified Mie-type potential using
both Bopp’s shift method and standard perturbation
theory methods:

Vi (1) =220 202 (€ -2y +
B-V, 2Vs-A e ©®)
r 2r 2u

On based to the work of the author B.I. Ita [9] to the
case of the noncommutative space and space phase in
addition to the our previously works [11-23]. It is worth
to mentioning that the (CCRs) will be changes in non-
commutative three dimensional spaces and phases to
the new canonical commutations relations (NCCRs), in
both Schrédinger (SP) and Heisenberg (HP) pictures, as
follows [7-11]:
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&ifpj}:iqj,{xifﬁj}:iqj and |:f)itf)j:|=ic9ij
&(0). b, (t)} - iéij,{aéi ()4 (t)} i, and @

oy (t)} _id;

The very small two parameters 6“" and 0" (com-
pared to the energy) are elements of two antisymmetric
real matrixes and (*) denote to the new star product

(the generalized Moyal-Weyl product), which is gener-
alized between two arbitrary functions f(x,p)

and g(x,p) to (f*g)(x,p), in the first order of two

parameters 6“Y and 0" ,instead of the old product
(fg)(x,p) 12]:
(f*g)(x,p)=

i . Of O i—w Of 0O
fg—Llow O 8 1w O 28 ()
2 ox* ox" 2 op* op

+O(92,§2)

Here 0(92,52) stands for the second and higher order

terms of @ and @, the new canonical coordinates £, (¢)

and new momentum p,;(t) in (HP) are determined

from two corresponding operators %, and p,in (SP)

from the projection relations, respectively [12-14]:
%;(t) = exp(GH, (t—t,)) * &, * exp(=iH,,, (t 1, ))

. A R . ®)

b, (t) =exp(H, (t—t, ) * p; * exp(-iH, (¢t —ty))
Which are satisfying the new Heisenberg motion equa-
tions [11-12]:

dx, (t * dp; (¢ *
% = i|:an "&:i (t):| and %U = i|:an ’i)i (t):| (9)
The formalism of star product, Bopp’s shift method
and the Seiberg-Witten map were played crucial roles
in this new theory. The Bopp’s shift method will be ap-
ply in this paper instead of solving the Schriédinger
equation in (NC-3D:RSP) with star product, the Schro-
dinger equation will be treated by using directly the
two new commutators, in addition to usual commutator
on quantum mechanics, in the both Schrédinger and
Heisenberg representations [12-14]:

(2.8, =[£(2).%;(t)] =10

v (10)
(00, )= [2:(2). £, (8)] =105

It is important to noticing that the new operators «;
and f)i in (NC-38D: RSP) are depended with ordinary

operator x; and p; from the projections relations:
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’e—x‘%l’o %Pz, y=y-2lp —2p,
%1 Y39 (H)
=Ry DTy Py
and
by=p Ty O
9 > - - (12
by=p,~—tx-—tzandp, =p -—ta-—%

So the purpose of this present work is to study the
(IQYM) potential in noncommutative three dimensional
spaces and phase to generate accurate energy spectrum
in this new symmetries, which plays an important role
in many fields of physics such as molecular physics,
solid state and chemical physics [8-9]. The rest of this
paper is organized as follows: in the next section we
briefly review the basic of eigenvalues and eigenfunc-
tions for: (IQYM) potential in ordinary three dimen-
sional spaces. In section 3, we give a brief review of
Bopp’s shift method and then, we derive the spin-
orbital noncommutative Hamiltonians for (MIQYM)
potential in (NC-8D: RSP) symmetries, we find the ex-
act spectrum produced by noncommutative spin-orbital
Hamiltonians H so—iqym for (MIQYM) potential by apply-

ing ordinary standard perturbation theory and then we
deduce the exact spectrum produced by noncommuta-

for (MIQYM) po-

tential in (NC: 3D- RSP) symmetries. In section four we
summarize the global spectrums for (MIQYM) poten-
tial. The conclusion of the present work comes at the
section 5.

tive magnetic Hamiltonian H, , .

2. THE (IQYM) POTENTIALS IN ORDINARY
THREE DIMENSIONAL SPACES

A First we give a briefly review of eigenvalues and
eigenfunctions for ordinary (IQYM) potential V. (r),

on based to the principal reference [5]:

Viqym (r) =T 2

B-V, +2VO5—A+(
r r

c—zvoaz) (13)

Where r represent inter nuclear distance, the potential
parameters (A,B,C) are constants, § is the screening
parameter and V| is the dissociation energy. The ordi-

nary Schrédinger equations (SE) with above potential
can be written in spherical coordinate (r,0,¢) as [B]:

ﬂ(_%‘g(rz %) + r siln(B) %(Sln (9)5) * m o9 )X
¥ (r,0.9) (14)
+‘/iqym (r)lp (ra 97 ¢) = Eiqym\P (7’, 9’¢)

Where E.

iqym TEPTESENE the ordinary energy in ordinary

three dimensional spaces and u is the rest mass of the
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confined particle. The method of separation of variable
has been applied in reference [5]:

w(7) -2y 00,0 as)

The radial function R, (r) and the spherical func-
tions ¢,,(6) and @, (#) for ordinary (IQYM) potential
are satisfying the following three differential equations,
respectively [5]:

d’R,,(r
sz() + 2”(Eiqym - Viqym (r) -

2]Rnl(r) =0 (16)

and

dp,, (9) +eot(0) de,, () [l B m>

J(pml (6)=0

o’ do sin®(6)
a7
&0, (¢) . d,(9)
dg? d¢

here A =1(l+1), according Nikiforov-Uvarov method,

the normalized energy eignenfunctions ‘I’(;) and cor-

responding eigenvalues E, for ordinary (IQYM) po-

iqgym
tential [5]:

1

‘{’(;) = an:?(i1+ +4y)/ze"EZL‘,{“f” X

(18)
><(—2\/Zz) O (9) D, (¢)
and
2
E,, =C+2V,5" - (2= 4) 12 5 (19)

(n+%+~¢2y3+(l+1/2)zj

wherez =712, N, is the normalization constant and the

factor y is given by [5]:

y=2u(B-V,)+11+1) (20)

3. NONCOMMUTATIVE THREE DIMENSIONAL
PHASE-SPACES (NC-3D: RSP) HAMILTONI-
AN FOR (MIQYM) POTENTIAL

3.1 Formalism of Bopp’s Shift Method

In this formulation we may now proceed to present
the fundamental bases of (MSE) in (NC-38D: RSP) on
based to essentially our previously works [15-17], to
achieve this goal, we apply the important 4-steps on the
ordinary Schréodinger equation:

1. Ordinary three dimensional Hamiltonian opera-

tors I:I .

iom (P3,%;) will be replace by new Hamiltonian

operators H iqym (ﬁi"’ei) :

2. Ordinary complex wave function ‘I’(;) will be re-
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placing by new two complex wave functions ¥ (7:“ ) .

3. Ordinary two energies E, will be replace by

iqgym
new values £, ;..

And the forth steps correspond to replace the ordi-
nary old product by the new generalized Moyal-Weyl

product (*) , which allow us to constructing the (MSE)
in both (NC-3D: RSP) as:

Hiqym (ﬁl,ﬁl)*‘i—’(;) :Enc—iqqu‘(;) (21)

The Bopp’s shift method allows finding the reduced
above (MSE) without generalized Moyal-Weyl product
as:

Hum (B, %)) = o) 22)

Where the modified Hamiltonian H,,, (p;,%;) for

(MIQYM) potential defined as a function of the two
operators x; and p, which can be expressed as a func-

tion of generalized coordinates x; (x, y,z) and general-
ized momentums p; (px,py,pz) in usual quantum me-

chanics:

A2
H,,, (%)= ;’y +Vigym (7) 23)

wiqym

here the modified potential V,, (f“) is obtained by re-
place the old position r by new operator 7 in the ex-

pression of the ordinary potential V, . (r) to obtain

the following new potential:

o BV (2Mo-a)

igym (’A' ) = 72 + 7

+(C-2v,6%) (29)

On based to our references [15-17], we can write the

two operators 72 and ﬁz in (NC-3D: RSP) as follows:

7 =r’-LO
L (@5)
2u 2u 2u

Where the two couplings L® and L0 are given by,
respectively [31-44]:

LO=L0,,+ L0y +L0O;,
= _ _ _ (26)
LO=L 612+L 02 +L, 03

With®; =6,/2, after straightforward calculations one

can obtains the different terms for (MIQYM) potential
in (NC-3D: RSP) as follows:

B-V, _B-V, +(B—VO)
4

L6
72 r r @7
2%§—A _2V,6-A +(2V06—A) 6
r r 2r®
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Which allow us to writing the (MIQHM) global poten-
tial V,_,,, (7) in (NC-3D: RSP) as follows:

igym

_B-V, +2VO5—A+(

‘/iqym (;') r2 r

(i)

C- 2V052) +
(28)
+V

pert—igym

Where the o additive operator V,
by:

ert—iqym (r,@, 0) 1s given

\%

pert—yh

(r,@,@): BV, 2Vo-Alg LO (29)
rt 2r® 2u

It is obvious that the above operator is proportional

with two infinitesimals parameters © and 0, which
allows us to considering as a perturbative terms.

3.1The Spin-orbital Noncommutative Hamiltoni-
an for (MIQYM) Potential in (NC- 3D: RSP)

In order to discover the new contribution of the per-

turbative terms V. (r,@,g’) for (MIQYM) poten-

pert—igym
tial, we turn to the case of spin % particles described by
the (MSE), we make the two simultaneously transfor-
mations:

[6>20SL and L8->20SL (30)
Then the above two  perturbed operators
V:wt_iqym (r,@,é) becomes as:

mefiqym (r,@,é) =

:2{(b;:/0)+(2vo ;-ba%;{}ié 31

Here S denote to the spin of a fermionic particle (like

electron). It is possible to replace the spin-orbital inter-
. —2 =2 =2

action LS by G*= %(J -L -S ) to obtain directly

the corresponding eigenvalues, and then new physical

form of the eq. (26) can be expressed as:

me_yh (r,@,é) =

- - - 2 = (32)
:{B 4VO+2VO§3 A+1}(J2_L2_Sz)

r 2r 2u

It is well known that the, the 4-operators (:72 , ZZ ,

=2
S and J,) formed a complete basis on ordinary quan-

=2 =2 =32
tum mechanics, then the operator (J -L -8 j will

be gives 2-eigenvalues
1 1 3 l
ko=ldl+=|(+=+D)+I(I+1)-=}=—, d
. 2{( 2J(+2+ )+I(l+1) 4} 2 an
k =;{(z—;](z—;+1>+1(1+1)—i}——”21 corre-
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sponding j=I+% and j=1I-1 respectively and then,

we can form a diagonal matrixes ﬁsmmm of or-
der(3x3), with non null elements(Hso_iqym)n,

(Hemigyn),, and (Hyiy),, for (MIQYM) potential in

(NC-3D: RSP) symmetries:

- ~ B-V, 2V,6-A) 0 |.
(Hsofiqyrn)ll = k+ {@( r4 +2r3]+2lu}1f

. 1 .
]:l+§ = spin up

- :k{(a[B—VO +2VO5—AJ+9} ¢ 69)
22 2u

r 2r?

. 1 .
J =l—§ = spin down

(ﬁso—iqym )% =0

After profound calculation, one can show that, the ra-
dial function R, (r) for (MIQYM) potential and two

spherical functions ¢, (0) and @, (¢) are satisfying

the following differential equations, in new structure
(NC-3D: RSP):

danl(r) .
dr?
B-V, 2VS5-A ’ A
EfrizofOff(cuzvoy)fm2 (34)
+241 a(7)
oleB Vo, o2V0-4_ 9 |ig
rt or? 2u
and
d*p 1(9) do 1(9) m?
— A t (6 = A- d)=0
dé’z reo ( ) do Sin2 (9) fnt ( ) (35)
d’®,, (¢) 2 4P (9) _ 0
dg* dg

3.2 The Exact Spectrum Produced by Noncom-
mutative Spin-orbital Hamiltonian I:Iso_iqym

for (MIQYM) Potential by Using the Stand-

ard Perturbation Method in (NC- 3D: RSP)

The aim of this subsection is to obtain the modifica-

tions to the energy levels for n'® excited
statesE . and Eg, . corresponding a fermionic par-

ticle with two polarizations spin up and spin down,
respectively, at first order of two infinitesimal parame-
ters ® and@. In order to achieve this goal, we apply

the standard perturbation theory using eq. (18) for
MIQYM) potential:

Eu-iqym - %‘Nn‘z k+ Tzillw(ihﬁ)eizﬁz x
20 B-V, 2VSs-A) 0 (36)
ot (o o 2 B o
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E,. =

d-igym
(o o255 22,

(n,l,s,A,B,V,,5)and
three

‘N‘ k J?" —1/24( 1+W}e,gﬁzx
G

It is possible to write both E

u-igym
Ed_iqym(n,l,s,A,B,VO,é') as functions of

terms 7., T2 and Tigm as follow:

igym > “igym

Eyipn (0,15, A,B,V,,5) =

u-igym (

1 0 = (38)
:2Nn2k{ (Tulzym_"leym) QﬂTiqym}

and

Ed-iqym (nal>s>A,B,‘/0,6) =
Linvpe 0 - (39)
= E‘Nn‘ k { (T’L}Iym +T:§ym) 2/uTiqym}

The explicit mathematical forms of three

terms T T2

igyms Ligym and Tigym are given by:

” =(B " ) J Z[ 3 (- 1+W}} _2\/;2 [L@(—Zﬁzﬂz &

igym

iqgym

0
[7—+ +4y

Tzqym = j z ’Z‘Fz [L‘W( Z«Fz)}

To obtain the modifications to the energy levels for

n'" excited states we apply the following special inte-

gration [26]:
T t* " exp(-ot) L, (ot) L (St)dt =
0

6T (n—a+p+1)T (m+2+1)
C minlT(1-a+pB)r(1+2)
x(-m,a,a - fi—n+a,A+1;1)

3B % (41)

where ,F, (-m,a,a - f;—n+a,A+1;1) denote to the hy-

function, obtained from
,Bq,z) for p=3 and q=2. After

pergeometric
pFZI(al,...,ap,ﬂl,....,

straightforward calculations, we can obtain the explic-
itly results:
! . (n,A,BY,,5)=

igym
)(21\/0_:)(75/2+W)1"(n+7/2)F(n+~ﬁ +ay +1)
()’ T(1+5/2)0(1+1+47)
SFZ(—n,—5/2+ +4y,-512-n+-5/2+J+4y,fl+4y +1;1)

and

~(B-V,

- :(2V5 A Tl T s L () | e, 40)

(42)
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T, (n,AB V0,5)=

wigym

_(2V,-4) (24 )

(43)
2 ( ( +47)
FQ(fn,\/1+4y,O;\/1+4;/fn,\/1+4;/+1;1)
and
Tiqym:
=T
=(2JZ7)Z r(n+2 +4y+1)r(n+,f1+4y+1/2) s

(n)’T(1/2)r(1/2{i+47)
3F2(_n,m_%,_é;_n_%+W,mmj

Inserting the above obtained expressions (42), (43)
and (44) into equations (38) and (39), gives the follow-

ing results for exact modifications of E ;. and

Ey;ymproduced by  new  spin-orbital  effect

Voert—yh (’" ,®,§> for (MIQYM) potential [15-18]:
Eu-iqym (n,l,S,A,B,VO,5):
0 — (45)
‘N‘ k. { qum(n’A’B’Vo’é‘)"'zﬂTiqym}
Ed-iqym (n,l,S,A,B,V()’é‘) =

G- | 4o
‘N ‘ k lqym (n,A,B,VO,g)"‘?Tiqym
U

Where the new factor 7.

wgym

n,A,B,V,,5) is given by:
( )

T (1A, B,V,,5) =

wgqym

=T (R, ABV,,5)+ T2

iqym qym

ey
(n,A,B,V,,5) “n

3.3 The Exact Spectrum Produced by Noncom-

mutative Magnetic Hamiltonian I:Im_iqym for

(MIQYM) Potential in (NC-3D: RSP) Symme-
tries

Having found out how to calculate the corrections of
energies for the automatically produced spin-orbital,

\%

ert—iqym (r,G),H) we can discover a second symmetry

produced by the effect and influence of the noncommu-
tativity of space-phase by modified Zeeman Effect for
(MIQYM) potential, to found this physical symmetry
we apply the same strategy in our previously works as
follows:

® > yBand 6-oB (48)

The two parameters y and o are just only infini-
tesimal real proportional’s constants and B is a uni-
form external magnetic field, we orient it to (Oz) axis

and then we can make the following two translations
for (MIQYM) potential:

02017-5



ABDELMADJID MAIRECHE

{(E)[B _4V° + 72‘/05; A] + Q}EZ -
r 2r 2u

_ (49)
_)B[Z[B—4VO +2V05—Aj+ o ]Lz

r ord ﬂ

Which allow us to introduce the two modified new
magnetic Hamiltonians H in (NC-3D: RSP) for

m—igym
MIQYM) potential, as:

- [ (B-V, 2V,6-A) o (55 ¢
Hmfiqym = (I[ r4 +2r3J+2/J](BJ+HZ) (50)

Where I—ifz =-SB denote to the ordinary operator of
Hamiltonian for Zeeman Effect in ordinary quantum
mechanics. To obtain the exact noncommutative mag-

netic modification of energy E for modified

mag-iqym

(IQYM) potential, it is sufficient to replace the 3-
parameters: k,, ® and 6 in the eq.(45) by the follow-

ing new parameters: », ¥ and o, respectively:

E

mag-igym (

n,m, A, B,Vy,6) = 2N, " Bx
: 1)

igym

X{ZT (n,A,B,VO,a)+2iﬁqym(n,A,B,Vo,5)}m
7

Where m denote to the eigenvalues of the operator L,

which can be taking the values -1, - [+ 1,...,0,..., L.

4. RESULTS

Let us now resume the global exact spectrum of n®"

excited states: E,viqym (om,1,5,A,B,V,,65),
E aigm (n,m,l,s,A,B,V,,5) and E omigym (n,A,B,V,,5)

for (MIQYM) potential in (NC-3D: RSP) which pro-
duced by the diagonal ele-

ments (an—iqym )11 , (an_iqym )22 and (an—iqym )33 of non-

commutative Hamiltonians operator H, The orig-

ne—igym *

inal eigenvalue E. in ordinary three dimensional

igym
spaces for (IQYM) potential and the obtained results
(45), (46), (51) allow us to getting the following global
results:

E

neu-igym

(n,m,l,s,A,B,VO,§) =
u(2V,s - AY 12

(n+%+«f2y3+(l+1/2)2j

2 —
+Mk+ {@T +6Tiqym}+
2 2u

C+2V,5° -

2

(52)

iqgym

o —
om T MTiqu}m

1 2
A
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E n,m,l,s,A,B,Vo,é):

u(2Vs-AY 12
2
[n+%+4f2,u3+(l+1/2)2j

2 —
+Mk_ {G)T +0Tiqym}+
2 2u

igym

ned-iqgym (

=C+2V,6° -

(63)

1 2 o
+=|N | BT, +—Tigymm
2‘ n‘ {Z igym 2 > }

E

com-igymh (

n,A,B,V,,5) =
2
u(2V,56-A) /2 54)

2
[n+%+1f2,uB+(l+1/2)2j

The explicit diagonal elements (f[ ) ’(ﬁ"”‘iqy’")m

ne=igym |, 4

=C+2V,6° -

and (H

ne—igym )

for (MIQYM) po-
tential in (INC-3D: RSP) can deduced as follows:

33of operator H, . .

uor r
(C-2v,6)+k, @(Blv(ww LA
r 2r 2u (55)
+ ;([B_4V°+2V°5;Aj+o- BL,
r 2r 2u
ifj=1+% = spin-up
(I:Inc—iqu)22 = _2A+ B_ZVO +M+
uor r
+(C72V052)+kf ®(B_4V0+2V°53_Aj+9 +
r 2r 2u (56)
+[®(B_4V° +2V°5;AJ+9JBLZ
r 2r 2u

ifj=1-3 = spin-down

(). =

A +B—VO+2VO§—A+(

2

-— C-2V.6%) (57
2u r r 0 )( )

It is well known that the atomic quantum number
m can be takes (2/+1) values and we have also two
, thus every

. . . 1
possible values for eigenvalues j=1[ ig

state in usually three dimensional space for (MIQYM)
potential will be replace, in (INC-8D: RSP) by
2(21 +1) sub-states and then the degenerated state can

n-1
be take 23 (2l+1) =2n’values. It is important to no-
i=0

tice that our recent study can be extended to apply to

. . 1
molecular with splns¢§, we replace the factors

ki:;{[lt;)(l+;i1)+l(l+1)—i} by new fac-
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tor k(j,1,s):
kU%@z%ﬁQ+D+M+D—4&H» (58)

With|l-s| < j<|l+s

, which allow us to obtaining

modifications to the energy levels
(n, m,j,l,s,A,B,VO,(S') for (MIQYM) potential:

the
E

ne-igym

E

ne-igym (

n7m>j7l>s,A7B7V()75) =
u(2V,s-AY 12

S+
(n+%+,f2y3+(1+1/2)2]

I
2,[1 qy

=C+2V,6" -

‘ ‘2 (59)

+ k(j,l,s){@Tm )

A {ZT O }m
2 wion 9

And the corresponding noncommutative two Hamil-

tonian operators an_iqym

can be fixed by the following

results:

ne-igym —

) B-V,

1 5 N
—— (1 o(p2o)p 1 2(g O\ 1o
= ( = ar('" ar)+ Zain(0) 4(sin(0) %) + g or ) T T2

_ - - o) -~ 60
o4 A+(C72V052)+{®[B 4V°+72V°53 A)+Q}Ls (60)
r r 2r u
[ [B-V0
x|t
r

gy&:léj+fljBL
or3 2u ‘

It is important to noticing that these results are ex-
cellent agreement with our reference [12]. Further-
more, the appearance of the polarization states of a
fermionic particle for (MIQYM) potential indicates the
validity of obtained results at very high energy where
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