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The properties of two-dimensional graphene-based superlattice are studied. The creation of a two-

dimensional periodic potential in the graphene layer is assumed to be alternating in a checkerboard pat-

tern of rectangular areas of the substrate materials. For this system the energy spectrum and an expres-

sion for the current in the graphene layer were obtained. The influence of a transverse constant electric 

field on the current is investigated. It is shown that the presence of the transverse field leads to the ap-

pearance of an additional peak in the current-voltage characteristics of the superlattice. 
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1. INTRODUCTION 
 

Recent years were marked by increased researcher’s 

interest to graphene and materials on its basis [1-3]. 

Theoretically and experimentally electronic structure, 

transport properties, electronic, optical and other phe-

nomena were studied. 

But unique properties of pure graphene can be mod-

ified. One of the modification variants is a constructing 

of the superlattice – a structure with additional period-

ic potential.  

A number of methods of graphene-based superlat-

tice construction were proposed and realized. For ex-

ample, in graphene superlattices consisting of mono-

layer or bilayer graphene the transport properties of 

charge carriers were studied in Ref. [4]. The conduct-

ance of disordered graphene superlattices was investi-

gated in [5]. In this case, the superlattice was consisted 

of different type-doped graphene of various thicknesses.  

A number of electronic properties of gra-

phene/hexagonal boron nitride (h-BN) superlattices 

were explored in [6, 7]. 

Graphene superlattice can be realized by putting a 

series of magnetic insulator bars on top of a graphene 

sheet [8]. Also graphene properties can be modulated 

by magnetic field [9]. 

In Ref. [10] it was proposed the two-dimensional 

superlattice made with partial hydrogenation of gra-

phene. 

In this article we study energy spectrum and cur-

rent-voltage characteristics of the graphene superlat-

tice with substrate consists of alternate in a checker-

board pattern areas of SiO2/SiC or SiO2/h-BN (Fig. 1). 

As it was shown [11] the substrate SiO2/h-BN is 

more perspective for using with the graphene sheet. 

This is due to the fact that graphene and h-BN have a 

similar hexagonal structure. And sizes of their lattices 

differ just for 2 %. 

 
 

Fig. 1 – Geometry of the substrate location relative to the 

graphene sheet 
 

These alternate regions create in the graphene 

sheet periodic structure with a period of d1 along one 

axis (the x-axis, in this case) and the period of d2 along 

the y-axis. 

 

2. ENERGY SPECTRUM OF TWO-DIMENSIONAL 

GRAPHENE-BASED SUPERLATTICE 
 

In this case the wave function for the electron is the 

spinor function 
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where functions  1 r  and  2 r  describe electron 

states in different graphene sublattices. 
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Function  nm r  is a spinor function that is not de-
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pend on the shifting along the x-axis on the vector 1d  

and along the y-axis on the vector 2d . Then we have 
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To describe the electron state in the superlattice the 

Dirac equation can be written as 
 

    ˆ ˆˆ ˆ ˆ .F x x y y zp p U r          (4) 

 

Here ˆx , ˆx , ˆx  are the Pauli matrices, F  is the 

Fermi velocity,  U r  is two-dimensional periodic po-

tential, and the momentum operator p̂ i    (in terms 

of 1 ). 

Equation (4) in a matrix form 
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Multiplying Eq. (5) by M̂  on the left (using the pro-

cedure [12]), we obtain 
 

 2ˆ ˆM M    
 

or 
 

 2 2ˆ .M     (6) 
 

2M̂  is a diagonal matrix. This allows us to form 

equations for the spinor (1) components. The equation 

for the first component 
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As a result of multiplication by the complex conju-

gate function, we have 
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To find the value of the second item we consider the 

electron state in the well with numbers (n, m). For the 

electron state in the internal region of the well the Di-

rac equation can be written as 
 

   0
ˆ ˆˆ ˆ .F x x y y nm nmp p        (9) 

 

Here 0  is the energy of the electron motion as if it 

was located in this well. Following the same procedure 

we obtain the expression 
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After integration and substitution into the Eq. (8) 

we have 
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Some transformations lead us to the electron energy 

spectrum in approximation of nearest neighbors 
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Here 
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Simplifying Eq. (12) we obtain the energy spectrum 

in the following form 
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This spectrum is non-additive. This fact means that 

any connected with spectrum impact applied along the 

one of axis should influence the process along another 

axis.  

 

3. CURRENT-VOLTAGE CHARACTERISTICS 
 

Now we consider the effect of the constant electric 

field  , ,0x yE E E  on the graphene superlattice, sup-

posing that electric current flows in the x-axis direction 

(see Fig. 1). 

The current density in the two-dimensional gra-

phene sheet is given by 
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where the electron velocity is the momentum derivative 

of the energy (13) (in the Eq. (13) we can substitute 

x xk p  and y yk p  because earlier we putted 1 ) 

and the distribution function  ,f p t  is the solution of 

the Boltzmann equation 
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The right part of this equation is taken in approxi-

mation of the constant frequency of interactions .  

 f p  and  0f p  are nonequilibrium and equilibrium 

distribution functions respectively. The solution of (15) 

can be written as 
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with initial conditions 'p p , 't t , and equilibrium 

distribution function is determined as 
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Here C is a normalization constant that has the 

value 
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where 0a  is the graphene sheet width, 0n  is the sur-

face concentration of the charge carries, 

2 2 2
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We obtain an expression for the velocity of the elec-

tron motion along the x-axis. Then this expression and 

Eq. (17) and (18) are substituted to the Eq. (14). The 

current density can be written using dimensionless 

parameters in the integral as follows 
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Fig. 2 – Graphs of the current density depending on the value of x  for different values of y : a) 0,y   b) 3,y   c) 4,y   

d) 5.y   
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frequencies, and 
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The expression (20) can be studied analytically and 

numerically. 

Results of the numerical analysis are presented on 

the Fig. 2. Numerical analysis of Eq. (20) shows that in 

the presence of the transverse electric field component, 

an additional maximum appears on the current-voltage 

characteristic slightly shifted from the value of y  in 
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the direction of a strong field.  

Presented by Eq. (20) function can’t be integrated 

exactly. Using conditions 1 / 1D   and 2 / 1D   al-

lows us to approximate exponent function in (20) as a 

polynomial of degree two: 
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The same degree of the root representation and in-

tegration leads to the following expression for current 

density:  
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Fig. 3 – 3-d graph of current density constructed according to (21) 

with the range of values: x  from 0 to 8 and y  from – 6 to 6 

 

It is easy to notice from the Fig. 3 that the appear-

ance of even a small field along the y-axis leads to the 

decrease in the main current density maximum. Fur-

ther increase of the Ey leads to the stabilization of the 

current density value. 

4. CONCLUSION 
 

Energy spectrum of the graphene-based superlat-

tice was studied in the framework of nearest neighbors. 

It was shown that the superlattice spectrum keeps the 

basic features of graphene spectrum but depends on 

the superlattice parameters. Its non-additive character 

shows possibility of mutual effect of processes proceed-

ing in the perpendicular directions. 

Using obtained spectrum the expression for the cur-

rent density was found. Analytical and numerical anal-

ysis shows the effect of the crosscurrent constant elec-

tric field leads to the appearance of the additional max-

imum of the current density and decrease of the maxi-

mal value of the current. 
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