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For carbon nanotubes, there is constructed a geometric model of polyhedral type, which allows the ex-

pressing their key structural parameters analytically, as functions of C–C bonds length and nanotube indi-

ces. In general, explicit formulas are obtained for 1D lattice constant and radius. Cylindrical coordinates of 

atomic sites and inter-site distances in carbon nanotubes are additionally found for achiral (zigzag and 

armchair) nanotubes. „Analytic‟ geometric model will be useful for theoretical determination of ground-

state and electronic structure parameters of carbon nanotubular materials, credible analysis of correspond-

ing experimental data, as well as purposeful designing devices based on nanotubular carbon. 
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1. INTRODUCTION 
 

For theoretical determination of ground-state and 

electronic structure parameters of carbon nanotubular 

materials, credible analysis of corresponding experi-

mental data, as well as purposeful designing devices 

based on nanotubular carbon, it is too important to be 

able to predict reliably the geometry of the nanotubes 

with given indices and C–C bonds length. 

Usually, in studies dealing with carbon nanotubes 

these structures are assumed to be constructed by roll-

ing up a plane sheet of graphene, which comprises a 

network of perfect hexagons with carbon atoms at verti-

ces, in the sense that all bond lengths and all bond an-

gles are identical. The rolled-up model [1 – 3] implies 

that the radius
),( mnr  of ),( mn nanotube is given by the 

expression 
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where ( , )n md  denotes the C–C bonds length, while

1,2,3,...n  and 0 m n   are nanotube indices. The 

rolled-up model with almost the same success can be 

applied to nanotubes of other materials with hexagonal 

structure, like the boron nitride (BN) nanotubes [4]. 

But, the conventional rolled-up model of nanotubes 

ignoring curvature effects does not apply to the very 

interesting case of small radii, for which these effects 

become significant. 

Present work aims analytical determination of gen-

eral (1D lattice constants and radii) and detailed (atomic 

sites coordinates and inter-site distances) geometric 

parameters of carbon nanotubes based on a geometric 

model of polyhedral type. 

 

2. METHOD 
 

Any real nanotubular surface is polyhedral, but not 

cylindrical. It was the reason why Cox, Hill and Lee had 

proposed [5, 6] (see also Review [7]) so-called „idealized‟ 

geometric model, which accommodates the mentioned 

deficiency being based on the exact polyhedral-

cylindrical structure. Their model‟s basic assumptions 

give rise to a geometric structure for which all bonds in 

a nanotube play a truly equal role, unlike conventional 

one. In particular, according to the „idealized‟ polyhedral 

model the Eq. (1) gives only the leading term in the 

expression of a nanotube radius which, however, should 

be added by the correction terms. In general, the small-

er the tube radius, the larger these corrections become. 

The main disadvantage of the „idealized‟ model is that 

within its frames, the geometric parameters of a given 

nanotube can be found only as numerical solutions of a 

complex system of transcendental equations. 

For boron nitride nanotubes, Chkhartishvili had 

suggested [8-13] so-called „analytical‟ geometric model – 

a different version of polyhedral model for achiral, i.e. 

zigzag and armchair, nanotubes with equal bond 

lengths and also rolled up from a hexagonal plane sheet, 

but at the same time allowing the explicit expressions of 

geometric parameters. 

To describe a graphitic nanotube as a polyhedron one 

must begin with the tessellation of regular hexagons 

where the vertices of the tessellation represent the C-

atoms and lines of the hexagons represent C–C chemical 

bonds. In their model, Cox, Hill and Lee overlay on this 

a second tessellation of equilateral triangles where the 

vertices of the triangles are the atoms and every second 

triangle also has an atom located at its center. The net 

effect of these two tessellations is a single tessellation of 

equilateral and isosceles triangles and by fixing the 

lengths of the sides, which represent bonds, it is possible 

to construct a truly facetted polyhedron, where all verti-

ces are equidistant from an axis of symmetry and all the 

bond lengths and bond angles are equal for all atoms. 

Chkhartishvili‟s model of BN-nanotubes geometry uses 

different method of tessellation: equilateral hexagons in 

zigzag and armchair sheets are divided into two isosce-

les trapeziums or one rectangle and two isosceles trian-

gles, respectively. It means that all lines of tessellation 

are parallel to the tube axis and, therefore, all the atoms 

are placed on same cylindrical surface. Recently, an 
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analogous approach we have successfully used [14] to 

construct a geometric model for all-boron nanotubes. 

Present study is based on the „analytical‟ geometric 

model. It is modified for carbon nanotubes and further 

developed to obtain geometric parameters of chiral 

nanotubes, analyze cases of ultra-small (degenerated) or 

ultra-large (asymptotical) radius nanotubes, determine 

atomic sites coordinates in carbon nanotubes, etc. 

 

3. RESULTS AND DISCUSSION  
 

As is known, a simple form for a single-walled car-

bon nanotube is a wrapped closed hexagonal atomic 

surface inscribed in a cylinder. Such nanotubes can be 

found in achiral, i.e. zigzag ( ,0)n  or armchair ( , )n n , 

and also in chiral ( , )n m  forms. Here 1,2,3,n  and 

0,1,2, ,m n are the tube indices. 

Carbon nanotubes contain 4 different types of atomic 

sites. Denote them as C1, C2, C3 and C4, respectively. 

As for the number of atoms in 1D lattice of a nanotube, 

it equals to 4n . 

Below the detailed regular geometries of the zigzag 

and armchair carbon nanotubes are described using 

cylindrical coordinates ( , , )z  . 

 

3.1 Zigzag Nanotubes 
 

3.1.1  General Geometric Parameters 
 

1D lattice constant ( ,0)na  of a zigzag nanotube ( ,0)n  

(Fig.1) and its radius ( ,0)nr  are determined as follows: 
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where ( ,0)nd  is the C–C bond length in such nanotubes. 

 

 
 

Fig. 1 – Lattice constant of a zigzag nanotube 
 

At 1n  , zigzag nanotube degenerates into the flat 

zigzag chain (Fig. 2). Coordination number of constitut-

ing atoms reduces from 3 to 2. Nevertheless Eq. (3) 

“works” providing the true value of the radius of (1,0)  

tube: (1,0) (1,0)/ 3 / 4r d  . 

 

 
 

Fig. 2 – The (1,0)  nanotube – flat zigzag chain 

 

Apparently, free-standing (1,0)  nanotube cannot ex-

ist, but it can exist as inner wall in multi-walled nano-

tubes or among larger nanotubes in nanotubular bun-

dles. 

According to “analytical” model, at 1n  the radius 

of a zigzag nanotube 
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i.e. being proportional to n asymptotically coincides 

with that predicted by conventional rolling-up model. 

 

3.1.2  Atomic Sites Coordinates and Inter-site Dis-

tances 
 

The 1D unit cell of a zigzag nanotube consists of 4 

parallel atomic rings placed in different planes perpen-

dicular to the tube axis. There are 2 pairs of identical 

rings; and each ring consists of n atoms. Positions of 

single representative-atoms of each of these rings are 

shown in Fig. 3. Let‟s introduce the additional indices 

0,1,2,..., 1l n   and 0, 1, 2,...k     numbering atomic 

pairs in given pair of the atomic rings and these rings 

themselves. 
 

 
 

Fig. 3 – Non-equivalent atomic sites in a zigzag nanotube 
 

Evidently, coordinate  for all the atomic sites 

equals to tube radius: 
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As for the coordinates  and z in the first and se-

cond pairs of atomic rings, they equal to 
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respectively. 

Let‟s fix l  and k  at 0l k   to determine the zig-

zag nanotube‟s “central” pair of atomic sites 00
( ,0)C1n  

and 

00
( ,0)C2n : 

 

 00 00
( ,0) C1 ( ,0) C2 0n n   , (12) 
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Now one can find the distances between current 

atomic sites ( ,0)C1
lk

n , ( ,0)C2
lk

n , ( ,0)C3
lk

n  and ( ,0)C4
lk

n , and 

fixed ones called by us as“central”: 
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3.2 Armchair Nanotubes 
 

3.2.1  General Geometric Parameters 
 

1D lattice constant ( , )n na  of an armchair nanotube 

( , )n n  (Fig. 4) and its radius ( , )n nr  are determined as 

follows: 
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where ( , )n nd  is the C–C bond length in such nanotubes. 

 

 

 
 

Fig. 4 – Lattice constant of anarmchair nanotube 

 

Even the smallest ( 1n  ) armchair nanotube does 

not degenerate: coordination number of atoms constitut-

ing (1,1)  tube remains 3, as normally. This tube is fac-

eted by 2 pairs of planes (Fig. 5). Its radius is deter-

mined by the Eq. (24): (1,1) (1,1)/ 5 / 4r d  . 

 

   
 

Fig. 5 – Facets of the (1,1)  nanotube 
 

Because of strong curvature effects, forming of a 

free-standing (1,1)  nanotube seems to be too doubtful. 

However, it can exist as inner wall in multi-walled 

nanotubes or among larger nanotubes in nanotubular 

bundles. 

According to the“analytical” model, at 1n   the ra-

dius of an armchair nanotube 
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i.e. asymptotically is proportional to n  and coincides 

with that predicted by conventional model. 

 

3.2.2 Atomic Sites Coordinates and Inter-site Dis-

tances 
 

The 1D unit cell of an armchair nanotube consists of 

2 parallel atomic rings in planes perpendicular to the 

tube axis. From its part, each ring consists of n pairs of 

carbon atoms. Positions of pairs of representative atoms 

of each of these rings are shown in Fig. 6. Now indices 

0,1,2,..., 1l n 
 

and 0, 1, 2,...k     number atomic 

pairs in atomic rings and these rings. 
 

 
 

Fig. 6 – Non-equivalent atomic sites in an armchair nanotube 
 

The coordinate  for all the atomic sites should 

equal to the tube radius: 
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while the rest cylindrical coordinates in the first and 

second atomic rings equal to 
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Let‟s fix l  and k  at 0l k   to determine the arm-

chair nanotube‟s “central” pair of atomic sites 00
( , )C1n n

and  00
( , )C2n n : 
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2
00 2

( , ) ( , ) 2

2
2( , )

5 4cos sin
( C1 C1) 2

3 ,

4sin
2

lm
n n n n

n n

l

n n
k

d

n

 



 
     (38) 

2

00 2
( , ) ( , ) 2

2
2( , )

1
2sin sin

( C2 C1) 2
3

4sin
2

lm
n n n n

n n

l
l

n n
k

d

n

 



  
        ,  (39) 

 

00 2
( , ) ( , )

2
( , )

2
2

2

( C3 C1)

1
5 4cos sin

12 2
3 ,

2
4sin

2

lm
n n n n

n nd

l
n n

k

n

 






   
    

       
 

 (40) 

 

00 2
( , ) ( , )

2
( , )

2

2

2

( C4 C1)

1
sin 2sin

2 1
3

2
4sin

2

lm
n n n n

n nd

l
l

n n
k

n

 






  
   

      
 

, (41) 

2

00 2
( , ) ( , ) 2

2
2( , )

1
2sin sin

( C1 C2) 2
3 ,

4sin
2

lm
n n n n

n n

l
l

n n
k

d

n

 



  
        (42) 

2
00 2

( , ) ( , ) 2

2
2( , )

5 4cos sin
( C2 C2) 2

3 ,

4sin
2

lm
n n n n

n n

l

n n
k

d

n

 



 
     (43) 

 

00 2
( , ) ( , )

2
( , )

2

2

2

( C3 C2)

1
sin 2sin

2 1
3 ,

2
4sin

2

lm
n n n n

n nd

l
l

n n
k

n

 






  
   

      
 

 (44) 

 

00 2
( , ) ( , )

2
( , )

2
2

2

( C4 C2)

1
5 4cos sin

12 2
3 .

2
4sin

2

lm
n n n n

n nd

l
n n

k

n

 






   
    

       
 

 (45) 



 

POLYHEDRAL MODEL OF CARBON NANOTUBES ANALYTICALLY… J. NANO- ELECTRON. PHYS. 9, 01005 (2017) 
 

 

01005-5 

3.3 Chiral Nanotubes 
 

From above obtained expressions of achiral nano-

tubes‟ 1D lattice constants and radii, it is easy to con-

struct extrapolation formulas for a chiral nanotube 

( , )n m  lattice constant ( , )n ma  and radius ( , )n mr : 
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where ( , )n md  is the C–C bond length in this nanotube. 

Thus, according to the “analytical” model at 1n   

the radius of a chiral nanotube 
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 , (48) 

 

i.e. asymptotically approximates that predicted by con-

ventional rolling-up model. 

 

3.4 Example of Geometric Model Based Struc-

tural Analysis 
 

It has been reported [15] an on-chip Rayleigh imag-

ing technique using wide-field laser illumination to 

measure optical scattering from individual single-walled 

carbon nanotubes with high spatial and spectral resolu-

tion. This method in conjunction with calibrated atomic 

force microscopy accurately measures the diameters 

( , )2 n mr  for a large number of tubes in parallel. The tech-

nique was applied for fast mapping of key structural 

parameters, including the chiral indices ( , )n m  for indi-

vidual single-walled carbon nanotubes. The values of 

diameters and indices experimentally determined are 

listed in Table 1. 
 

Table 1 – Experimental and theoretical diameters of single-walled carbon nanotubes  
 

No Chiral indices Experimental diameter, nm Theoretical diameter, nm Relative deviation 

1 (13, 1) [(11, 3)] 1.07 

 

1.10 [1.07]  2.7 % [0.0 %] 

2 (15, 0) 1.19 1.18 0.8 % 

3 (12, 11) 1.58 1.58 0.0 % 

4 (20, 4) [(19, 4)] 1.77 1.85 [1.77] 4.3 % [0.0 %] 

5 (22, 2) [(20, 4)] 1.83 1.87 [1.85] 2.1 % [1.1 %] 

6 (15, 14) 1.99 1.99 0.0 % 

7 (20, 9) [(18, 10)] 2.04 2.16 [2.05] 5.6 % [0.4 %] 

8 (23, 5)[(21, 6)] 2.05 2.16 [2.06] 5.1 % [0.5 %] 

9 (16, 15) 2.13 2.13 0.0 % 

10 (25, 10) [(24, 9)] 2.48 2.62 [2.49] 5.3 % [0.4 %] 
 

In the present work, we have calculated same nano-

tubular diameters based on the „analytical‟ polyhedral 

model for given indices and C–C bonds length of 0.142 

nm, the bond length value in graphene. These theoreti-

cal results also are shown in Table 1. One can see that 

for all these species relative deviations from theory do 

not exceed 5.6 %. Agreement with experiment can be 

radically improved – made all deviations less than 

1.1 % – if slightly, not more than in ±2, change chiral 

indices of some nanotubes. Refined values of chiral 

indices, radii and corresponding deviations are shown 

in brackets. Note that, within the frames of experi-

mental errors, the refined theoretical diameters of a 

half of examined species are indistinguishable (with 

relative deviation 0.0 %) from that of measured ones. 

The possibility of refinement in nanotube‟s chiral 

indices based on its geometric model reveals the exper-

imentally obtained fact that frequent chirality-

changing structural defects accompanied with only 

slight diameter-changes are characteristic for single-

walled carbon nanotubes. Consequently, it is not im-

probable that measured values of diameter, on the one 

hand, and chiral indices, on the other hand, are at-

tributed to different parts of the same nanotube. 

Such a possibility seems to be very important be-

cause electronic and other physical properties of single-

walled nanotubes depend on their structure, which 

may be characterized by the diameter and the chirality 

encoded by two integers – nanotube indices. Usually, 

for the synthesis of carbon nanotubes one may achieve 

some control over their diameters but little control over 

their chiralities. As such tubes may be either metallic 

or semiconducting this poor structural control implies a 

rather poor control over their electronic properties. 

This is a basic problem of carbon nanotechnology. It 

was stated and clearly explained elsewhere [16]. 

 

4. CONCLUSION 
 

In conclusion, we have introduced the „analytic‟ ge-

ometric model of polyhedral type for single-wall carbon 

nanotubes. The model provides with expressions of 

nanotubes 1D lattice constant and radius, and cylindri-

cal coordinates of constituent C-atoms and correspond-

ing inter-atomic distances as explicit functions of C–C 

bond length and chiral indices. Radii of carbon nano-

tubes calculated on the basis of this model are in excel-

lent agreement with measured ones. Besides, the model 

is able to refine the chiral indices of these nanotubes.  

 „Analytic‟ geometric model will be useful in calcula-

tions of electronic structure and key physical properties 

of carbon nanotubular materials, as well as designing 

novel nanodevices based on nanotubular carbon. 
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