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1. INTRODUCTION 
 
Currently, much attention is devoted to the investi-

gation of metal nanowires in connection with broad per-
spectives of their application in nanoelectronics [1-3]. 
In particular, metal 1D systems are used as optical an-
tennas [4-6] in spectroscopy to increase the Raman scat-
tering cross-section [7] and as dedicated probes for near-
field microscopy [8]. 

A characteristic feature of these systems is the ani-
sotropy of their optical properties due to the size quanti-
zation effects. In connection with this, such quantities as 
the optical conductivity or the dielectric function acquire 
a tensor character [9, 10]. 

The purpose of this paper is to calculate the dielectric 
tensor diagonal components of metal nanowires. 

 
2. BASIC RELATIONS 

 
As a result of the anisotropy of the optical properties 

of reduced dimensional metal systems, the connection bet-
ween the electric field induction D and strength E com-
ponents has a nonlocal nature [10] 
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To define the dielectric tensor , we use the results 

of [11] generalized to the case of anisotropic systems 
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Here, i is the imaginary unit ( 1i ); me is  the  free  
electron mass;  is the system volume; 
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is the filling factor of states with energy i; i  and j  
are the vectors of the initial and final state, respectively, 

ij  i – j, T is  the  temperature.  In  what  follows,  we  
assume that T  0. 

In the case when an electromagnetic wave is incident 

perpendicular to the symmetry axis of the wire, in the 
zero approximation of the expansion of  with respect 
to a small parameter 0/   1 ( 0 is the characteristic 
system size,  is the wavelength), expression (2) takes 
the following form: 
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The absorption is taken into consideration by the re-

placement    + i/ , and, as a result, for the dielectric 
tensor diagonal components we obtain 
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where  is the relaxation time. 

To calculate the dielectric tensor diagonal components, 
we use the expressions for the matrix elements of the pro-
jections of the momentum operator obtained in [9] 
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where ij is the Kronecker delta and 
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Im( ) are the m-order Bessel functions; n  1, 2, …; the 
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prime denotes the derivative with respect to ; the num-
bers kmn are the roots of the equation 

 

 0 0m mnI k . (7) 
 
Substituting formulas (6) and (7) into (4), after rather 

cumbersome transformations and separation of the real 
and imaginary parts of the dielectric function, we have 
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where   x, y; 2k   2me / ;  2  2me/ ;; 2
pk   2me p/ ; 

2 2
e4p ne m  is the plasma frequency; 
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fmnp is the step function, 
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To carry out numerical calculations using formulas 

(8)-(11), they should be supplemented by a relation, which 
determines the Fermi level of the metal nanowire [9] 

 

 2 2
F2 2

,0

2
mn

m n
n k k . (12) 

 
Here, summation occurs over all values of m and n, for 
which kmn < kF. 

 

3. RESULTS AND DISCUSSION 
 
The calculations were conducted for the values of 

electron concentrations 
134 / 3sn r ; rs  3.01a0, 2.11a0 

and 2.07a0 for Au, Cu and Al, respectively (a0 is the Bohr 
radius; rs is the average distance between electrons). 

In Fig. 1 we present the size dependence of the Fermi 
energy of Au and Al wires. It has an “oscillating” form. 
However, in contrast to the size dependence of the Fermi 
energy of metal films [12], the change of F in Fig. 1 has 
a chaotic form. 

In the case of the film, the kinks in the size depend-
ence (i.e. jumps of the derivative d F/dl, l is the film 
thickness) are regularly located with an approximately 
constant period 0

Fl k . In the size dependence of the 
Fermi energy of the wire, the kink appears when the in-
creasing radius 0 reaches such a value 0m n , at which 
the condition kmn < kF begins to be fulfilled for one more 
pair of numbers (m , n ), am n   kF 0m n . 

The distance between the neighboring kinks 
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is obtained by overlapping the roots of the different-order 
Bessel functions and varies, at first glance, randomly. 

The oscillation amplitude in the wire and the film at 
d  l are of the same order of magnitude. As in the case 
of the film, with increasing d  , the “period” d and 
the oscillation amplitude tend to zero. 

The features of the size dependence of the Fermi ene-
rgy of various metal nanowires are exclusively explained 
by different values of 0

Fk . For Al wire, in comparison with 
Au wire, the oscillation scale d is  smaller  (since  the  
root density 0

F 0mna k  is larger), the amplitude and the 
smoothed value 0

F F  are smaller. 
Let us use the results of numerical calculations shown 

in Fig. 1 to check the smoothed size dependence [8] 

 

 
 

Fig. 1 – Size dependence of the Fermi energy of metal nanowires (d  2 0) and films [10] 
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Fig. 2 – Frequency dependence of the dielectric tensor diagonal component of Au nanowires of different diameter 
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where A2  1.10, AB  1.22. 
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According to Fig. 1, for d  1 nm 
 

F
0
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1
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If take into consideration a sufficiently large error in 

reading data Fig. 1, the agreement between the calcu-
lation results by formula (13) and the numerical calcu-
lation can be considered satisfactory. 

Then we check the inverse relationship F
0
F

11.1
d

. 

The check results are given in Table 1 and show quite 
good agreement. 

In Fig. 2 we illustrate the frequency dependences of 
the real and imaginary parts of the dielectric tensor dia-
gonal component xx of Au nanowires with a diameter of 

 

Table 1 – F
0
F

11.1
d

 inverse relationship check results 

 

No d, nm 
F
0
F

11.1
d

  

by Fig. 1 for Au 

F
0
F

11.1
d

  

by formula (13) 
1 1 1 1 
2 1.5 0.64 0.67 
3 2 0.47 0.50 
4 3 0.31 0.33 
5 4 0.23 0.25 
6 5 0.18 0.20 

d  1.6, 2, 3, 4 nm (curves 1-4, respectively). For Re xx, 
oscillations take place only for wires of 1.6 nm diameter 
and disappear with increasing diameter. The oscillation 
amplitude reaches the maximum value at   1.5 eV. 
While the values of Im xx( ) shift to lower frequencies 
with increasing diameter, the oscillation amplitude inc-
reases, the distance between the peaks decreases, and the 
oscillations are smoothed for d  4 nm. This is due to the 
fact that with increasing d, the number of levels of size 
quantization increases and, thus, the number of possible 
transitions between them. 

In Fig. 3 we illustrate the frequency dependences of 
Im xx for various metal wires of d  4 nm diameter. For 
Al, the dielectric function has one maximum and oscilla-
tions are absent. With increasing frequency, the oscilla-
tions are damped for both Cu and Au. Such a behavior of 
the dielectric function is explained by the small value of 
the relaxation time of Al electrons   0.8 10 – 14 s [13], 
so that the peak width is approximately /   0.082 eV 
compared with the other two metals. 

Let us compare the calculation results of the dielec-
tric function of metal nanowires with similar results for 
thin films [14]. The starting point, which can be formula 
(4) at   x, is the same for both cases (the film is orien-
ted perpendicular to the x axis). 

For a film of thickness l and longitudinal dimensions 
a and b (l  a, b), the expression for the dielectric func-
tion has the form of [14] 

 

 
 

Fig. 3 – Frequency dependence of the imaginary part of the die-
lectric function for different metal wires 
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The square brackets in (17) denote the integer part of the 
number. Since the calculation in [14] was performed for 
a well of finite depth U0, then the quantities kxm are the 
roots of equation 

 

0
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where 0 02 ek m U ; 2 2
0m xmk k . 

 

 
 

Fig. 4 – Frequency dependence of the imaginary part of the die-
lectric function of Al wire (1) and film (2) 

 

In Fig. 4 we present the dependences Im xx( ) for Al 
wire of d  2 nm diameter and Al film of l  2 nm thick 
[14]. As seen from Fig. 4, oscillations occur in different 
frequency ranges: for the wire at  > 1.8 eV and for the 
film – at  < 1.8 eV. This is explained by the fact that 
the distances between the levels of size quantization are 
larger in the wire than in the film. 

 
4. CONCLUSIONS 

 
In this paper, the dielectric tensor diagonal compo-

nents of metal nanowires have been calculated taking in-
to account the size dependence of the Fermi energy. The 
comparison of the smoothed size dependence with the re-
sults of numerical calculations from the exact procedure 
has shown good agreement. 

The evolution of the frequency dependences of the re-
al and imaginary parts of the dielectric function through 
variation of the diameter has been studied. It has been 
established that with increasing wire diameter, the peaks 
shift to the left, the distance between them decreases and 
they overlap. 

The behavior of the imaginary parts of the dielectric 
function for various metals is qualitatively similar, but 
is quantitatively different in that the values of ( )min, 
from which the oscillations begin, are different, because 
of the difference in the values of electron concentrations 
and relaxation times. 

It has been shown that the frequency ranges, in which 
oscillations occur, are different for wires and films that is 
explained by the differences in the system dimensionality 
and the appearance of an additional restriction to the ele-
ctron motion with decreasing system dimensionality. 
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