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1. INTRODUCTION 
 
Studies of metal films on semiconductor or dielectric 

substrates, in addition to the fundamental objectives, set 
the task of creating new nanoscale devices. A compara-
tively small number of experimental works aimed at the 
quantum-size effects ([1-5] and references therein) indi-
cates the complexity of obtaining measurement objects 
and methods necessary for the study. It should be noted 
that metal films are deposited on different substrates, but 
until now, apart from a small number of works [4], the 
methods of self-consistent calculations are developed only 
for hypothetical metal films in vacuum. 

The electron work function is one of the important 
equilibrium characteristics of metal nanostructures. For 
a metal film on a dielectric substrate, it is necessary to 
introduce into the model information not only on its die-
lectric properties (constant ), but also about the conduc-
tion band bottom depth (– e) with respect to the vacuum 
level ( e is the electron affinity). The neglect of the con-
duction band of electrons is one of the approximations. 
This  approach  ( e  0) was used to calculate the work 
function, polarization and surface plasmon resonance in 
nanoclusters and wires located in different dielectric mat-
rices (see, for example, [6, 7] and references therein). 

When the electron escapes from the metal, it is ac-
companied by the exchange-correlation hole, which is lo-
calized and spread over the mirror image surface taking 
the view of the mirror image charge. This representation 
does not correspond to the local density approximation 
(LD), which is the basis of self-consistent calculations of 
the exchange-correlation energy of heterogeneous many-
electron systems. The mirror image potential in this ap-
proximation does not coincide with the expression of clas-
sical electrodynamics. 

Multiple attempts to calculate the mirror image po-
tential within the Kohn-Sham method did not lead to a 
satisfactory result (see, for example, [8]). However, in [9], 
a comparatively simple approach was proposed to over-
come this complexity, staying in the framework of a self-

consistent procedure. This approach is used in this paper. 
Slow positron beams are used to diagnose the struc-

ture of solids, nano-objects, also by applying a positron 
microscope. Electron-positron annihilation gives unique 
information on the bulk and surface electronic structure 
[10-12], point defects of pure materials and their oxides 
[13, 14], as well as ceramics [15] and nanostructures [16]. 
Injected positrons in the near-surface region of metals and 
their oxides [17-19] are capable of forming positronium 
(PS) atoms with the exciton-like spectrum. 

Some interest in the literature is also devoted to the 
determination of the binding energy and lifetime of PS 
atoms near the silica surface [20-23], the study of posi-
tron transport in the metal-oxide-semiconductor systems 
[24, 25] and also of solid inert gases used as moderators 
for positron beams. 

The experimental detection of the PS2 molecule in Si 
nanopores is reported in [26], and in [27] – the formation 
of exciton droplets in cooled GaAs under the action of 
laser pulses that makes attractive the search for condi-
tions and structures for condensation of PS and electron-
positron clusters [28]. 

The aim of this work is to calculate the energy cha-
racteristics of a metal film in contact with dielectrics, as 
well as spectral and annihilation characteristics of posi-
trons injected into metal-dielectric layered structures. 

 
2. ENERGY CHARACTERISTICS OF  

ELECTRONS AND POSITRONS 
 

2.1 Statement of the problem 
 
Let us consider a metal film of thickness L at zero 

temperature and direct the z-axis perpendicular to the 
film plane (see Fig. 1). 

For conduction electrons of the metal film, the thick-
ness L of which is of the order of the Fermi wavelength 
and much smaller than its other dimensions (L  Lx, Ly), 
the variables in the three-dimensional wave equation are 
separated, the electron motion along the x and y axes is 
described by plane waves, and the corresponding compo-
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nents of the wave vectors are continuous. The compo-
nents of one-electron wave functions e

i(z) correspond to 
the motion, which is normal to the surface (with the en-
ergy of the electron “subband” e

i). 
The calculation technique is the following: first, all 

the characteristics of electrons in such a system are cal-
culated in the absence of positrons: electron spatial dist-
ribution profiles, electron potential profiles, electron work 
function and Schottky barriers. Dielectrics on both sides 
of the metal film (see Fig. 1) are modeled by the dialect-
ric constants  and the electron conduction band bottom 
depths (– e) with respect to the vacuum level. 

Then, a positron is placed in such a system. The ele-
ctron spatial distribution profiles, which have been alre-
ady calculated (in the absence of the positron), are used 
to determine the electron-positron contribution to the 
functional, and then – for the effective potential contai-
ning positron. Now, the dielectrics on both sides of the 
metal film are modeled for the positron not only by the 
dielectric constants , but also the positron conduction 
band bottom depths (–  p) with respect to the vacuum 
level. As a result of the solution of the Schrödinger wave 
equation, the wave functions e

i(z), positron spatial dist-
ributions and p

j (the energy of the j-th surface positron 
subband) are determined. 

 
2.2 Calculation of the effective potential, surface 

energy, electron work function and Schottky 
barrier 

 
The distribution of a positive (ionic) charge is modeled 

by the following step function: 
 

 =
2
Lz n z . (1) 

 

The one-electron wave functions e
i(z) corresponding 

to the motion normal to the surface (with the “subband” 
energy e

i) are found by the self-consistent solution of the 
system of the Kohn-Sham equations with the effective 
potential 

 

 eff xc W, =
2

e e
S

Lv z n z z v z v z  (2) 

 
and the Poisson equation 
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in which the step function is used 
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Here l and r are the dielectric constants of the die-

lectrics to the left and to the right of the film, respecti-
vely. The exchange-correlation potential ve

xc (z) is used in 
the LD approximation. 

Applying to the metal-dielectric sandwiches (Fig. 1) 
the approach with taking into account the mirror image 
forces [9], we can write 

 
 

Fig. 1 – Geometric film scheme in the dielectric environment 
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the image planes ( ,
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For example, expression (6) at z   has the asymp-

totics 
1

4r r
e r z Z  – the image potential (here 

e    m  1). 
Under the condition of continuity of the potential (4) 

and its derivatives in the points z  Zl, Zr, we obtain the 
following relationships: 
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The expression (8) is used as the equation for finding 

,
0
l rz . The values of ,

0
l rz  to the left and to the right of the 

film are calculated at each iteration by the solution of the 
Kohn-Sham equations. It should be reminded that ve

xc (z), 
as well as the electrostatic potential (z), are the compo-
nents of the effective (Coulomb) potential ve

eff (z). Thus, 
the effective potential is self-consistently crosslinked with 
the mirror image potential, which is accurate at large 
distances from the metal film surface, on both sides of 
the metal nanofilm. 

The electron density profile ne(z) is expressed by the 
wave functions e

i(z) 
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where the coefficients 
22 = e

i iC dz z ; 
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 2
F( ) F2 e

i ik ; (10) 
 

iF is the number of the last occupied or partially occu-
pied electron subband. The values of iF and F are deter-
mined by the solution of the equation 

 

 
F

F F F FF=1
= ; ; = 1,2, , ,

i
e

e i i
i

i Ln i i  (11) 
 

which follows from the definition for the Fermi energy 
and the normalization conditions. 

Friedel oscillations in the nanofilms are significant 
throughout the bulk, therefore, the energies are counted 
from the vacuum level (this is the electron rest energy 
in the range of z   L/2). For the coupled states, the 
energies are negative for F, etc. 

We apply this approach for three samples with “per-
fect” interfaces: Al films on SiO2 and Al2O3, as well as 
SiO2/Al/Al2O3 sandwich. They are designated in [29] as 
{1 Al r} and {1 Al l}. For them, we use the following 
values of e

l,r from Table 1 for the metal/vacuum inter-
face: e

l  0 and l  1. 
 

Table 1 – Examples of materials of the simplest coatings or sub-
strates [30] 

 

Materials He Ne Ar Kr Xe SiO2 Al2O3 
 1.10 1.20 1.50 1.65 1.90 4 9 

e, eV – 1.0 0.10 0.20 0.45 0.68 1.1 1.35 
 
Accounting of the dielectric conduction band requires 

correction of the electron work function of the film: un-
like the work function for the film in vacuum 

 

 F=W , (12) 
 

the work function for the film in dielectric environment 
 

 , ,
F= .l r l r

d eW  (13) 
 
The value of Wd characterizes the Schottky barrier 

(i.e. the potential barrier height at the metal/dielectric 
interface), the measurement techniques of which are well-
known [2, 30]. The possible cases of contacts of different 
materials: F  > e

l,r and  e
l,r. It should be noted that 

in formulas (12), (13), the values of F differ from each 
other if they are calculated for one film, but in different 
environments. 

 
2.3 Binding energy and lifetime of positrons 

 
We place in this structure a positron, whose state is 

described by the effective potential 
 

 eff 0 cor= ,
2

p p eLv z e z E z v z  (14) 

 
where the distributions ne(z) and (z), which are not de-
formed by this positron, are used; that is, (z) in the ex-
pressions (2) and (14) are the same. Competition of the 
terms in (14) leads to the fact that the potential wells for 
the positron are realized at the contact boundaries. 

Positron-electron correlation interaction is defined as 
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where Zl  – L/2 – z0
l, Zr  L/2 + z0

r are the positions of 
the image planes (z0

l,r > 0), cor,LD
p ev z  is the potential cal-

culated in the LD approximation [31]. The expressions 
for the truncation radii have the form 
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where the signs + and – relate to cut
lZ  and cut

rZ , respec-
tively. The image forces for the electron and positron, in 
accordance with the classical electrodynamics, should be 
the same. Therefore, we assume that the positions of their 
image planes will also be the same. As a result, the va-
lues of z0

l,r for cor ( )p ev z  are identical to those calculated 
for ve

xc (z). 
The positron intrinsic energy is written as 
 

 
2 2

=
2

p p
jk j

p

k
m

||

||
,  2 2 2= x yk k k|| , (16) 

 

where j
p is the energy of the j-th surface positron sub-

band, to which the wave function j
p(z) corresponds. 

For the positron, the Schrödinger equation is solved 
using the transfer T-matrix [32], which couples the wa-
ves incident on the barrier right-to-left and left-to-right. 
To this end, the range of heterogeneity of the potential 
profile vp

eff (z) was divided into N  103 parts, in each of 
which the potential was considered constant. 

The positron annihilation rate  is determined by the 
sum of the annihilation rates in a metal plate Al and in 
dielectrics d ( Al  d) due to the absence of intrinsic 
free electrons in the dielectric. Therefore, the positron 
lifetime in nanosandwiches   –1 is determined only by 
one-dimensional distributions of conduction electrons of 
a metal film ne(z) and a localized positron 

2
( ) = ( )p p

j jn z z  
 

 1 2
0= p

j e j er c dzn z n z n z , (17) 
 

where r0 is the classical electron radius, c is the light 
speed,  is the extension factor for the positron in quasi-
homogeneous electron gas of concentration ne(z). 

 
2.4 Influence of effective masses on positron states 

in metal/dielectric nanosandwiches 
 
Let us evaluate the influence of effective masses on 

the calculated characteristics, for example, for the system 
vacuum/Al/SiO2. For such a system, l  1, e

l  p
l 0. 
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Accounting of the effective mass will be carried out 
by analogy with that as usual in heterostructures [33]. 

In the vacuum range (z < – L/2), p em m m , m is 
the free electron mass. 

In [34], the values of the effective mass 1.15pm m  
are calculated for metals with a cubic lattice, and in [35], 
the values 1.5pm m  are used for all solids. In the case 

of metal nanofilms, the use of the value pm m (if we 
are talking about single positrons) is justified for the 
calculation of the ground state energy. The reasons for 
this choice are the following. To calculate the surface 
subband energies j

p, a one-dimensional wave equation 
along the z-axis with the corresponding component of the 
effective mass tensor should be solved. Due to the fact 
that the greatest interest is in the films with a thickness 
of several monolayers (ML), i.e. with a thickness much 
smaller than the positron mean free path, in the range 
of – L/2 < z < L/2 we choose p em m m . In the x and y 
directions, the mass tensor components, different from m, 
influence only the positron density of states, but not on 
the subband energies. 

The effective mass of the positron pm  in  SiO2 was 
defined by the effective mass of the positronium atom 

S

*
P = e pM m m . Based on the empirical data in [36] and 

estimates in [37], 
S

*
P = 2.84M m . In the range of z < L/2, 

using the value 0.42em m  recommended in [38], we 
have 0.42pm m . In order to test these values, we can 
define the binding energy of PS in the volume of SiO2 

 

 
* *

2 * *
R= , R = 13.6 eV.e p

B
e p

m myE y
m m

  

 
The obtained value EB  0.304 eV is approximately 

2 times larger than the experimental one [20] calculated 
in [23] for PS on the surface of SiO2. 

It should be noted that as a result of the introduction 
of the effective electron mass, the “electronic” part of the 
problem, i.e. the potentials (2) and (14), is recalculated. 

 
3. RESULTS AND DISCUSSION 

 
3.1 Calculation results of the sandwich characte-

ristics in the absence of the positron 
 
In the model, the following parameters are specified: 

rs is the average distance between the conduction elect-
rons of the metal, the values  and e of the dielectric. 
The values  and z0 are calculated self-consistently in the 
framework of the Kohn-Sham procedure. Therefore, for 
a particular metal, all its electronic characteristics are 
the functions of  and e. 

The Kohn-Sham equations (with taking into account 
the formulas (4)-(7)), together with the Poisson equation, 
were solved by numerical methods for the stable jelly mo-
del of the metal film in the dielectric environment [29]. 
As an illustration, in Fig. 2 we present the calculation 
results of the potential profiles. 

 
 

Fig. 2 – Electrostatic, exchange-correlation and effective pote-
ntial profiles for vacuum/Al(111)/Al2O3 and SiO2/Al(111)/Al2O3 
sandwich. Film thickness L  3 ML. The circles indicate the coor-
dinates of crosslinked nonlocal and local potentials 

 

To answer the question, if the values of e
l,r are the 

variation parameters, the calculations are performed at 
e
l,r  0 for all three structures. It is found that neither 

the behavior of the potential ve
xc inside the film, nor the 

position of F do not actually depend on the modernization 
of ve

xc. Only the parameters z0
l,r,  l,r and the well wings 

depend significantly on such manipulations. In general, 
the behavior of ve

eff (z) out of the well is caused not only by 
the presence of the conduction band ( e  0) in the diele-
ctric, but also by the non-locality of ve

xc. 
It was also revealed that the use of the nonlocal ex-

change-correlation potential in the iterative procedure 
leads to a significant suppression left in vacuum of the 
potential hump in the effective (but not in the electro-
static) potential (Fig. 2). The presence of such a hump 
was detected in [20]. 

In Table 2 we present the calculation results for three 
samples from Al(111) nanofilm (with thickness L in ML; 
1ML  4.4 a0 for Al(111)). The calculations are also per-
formed  for  unbounded  systems  (L  ): Wd

r  1.84 and 
1.29 eV for Al/SiO2 and Al/Al2O3, respectively. However, 
these calculations do not take into account the presence 
to the left of the metal-vacuum interface. Therefore, the 
comparison of these values with the data of Table 2 is 
incorrect, since the result depends on the average value 
of the dielectric constant   ( l + r)/2, and not only on 
the value of r [29]. 

The obtained results indicate the possibility of cont-
rolling the Schottky barrier, variation of the metal film 
thickness (in technologies, the oxide thickness is a tool 
to control the effects in the channel). 

vacuum 
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Table 2 – Calculation results for Al films on SiO2 (the upper value), for Al films on Al2O3 (the middle value) and for the sandwich 
SiO2/Al(111)/Al2O3 (the lower value) 

 

L, ML 0
lz , 0a  0

rz , 0a  l , 0a  r , 0a  l
dW , eV r

dW , eV , erg/cm2 

1 
1.05 3.35 0.977 0.706 3.43 2.33 821 
1.00 4.25 0.962 0.518 3.01 1.66 760 
3.30 4.15 0.707 0.519 1.79 1.54 607 

2 
0.95 2.85 0.946 0.643 3.26 2.16 755 
0.95 3.60 0.945 0.474 2.84 1.49 704 
2.85 3.60 0.640 0.479 1.62 1.37 548 

3 
0.85 2.60 0.921 0.606 2.94 1.84 734 
0.85 3.50 0.919 0.476 2.63 1.28 696 
2.95 3.80 0.672 0.512 1.56 1.31 562 

4 
0.90 3.05 0.933 0.683 3.23 2.13 779 
0.95 4.05 0.948 0.531 2.86 1.51 735 
3.10 4.05 0.688 0.535 1.69 1.44 578 

5 
0.90 2.95 0.932 0.661 3.23 2.13 764 
0.95 3.85 0.948 0.507 2.84 1.49 716 
3.00 3.85 0.671 0.512 1.65 1.40 556 

6 
0.90 2.85 0.934 0.651 3.13 2.03 751 
0.90 3.65 0.933 0.489 2.73 1.38 705 
2.85 3.65 0.645 0.491 1.54 1.29 550 

7 
0.90 2.95 0.934 0.669 3.17 2.07 770 
0.90 3.90 0.933 0.520 2.80 1.45 726 
3.05 3.95 0.684 0.527 1.65 1.40 569 

 

For the auto-field emission current, as in the Fowler-
Nordheim model, the spatial profile of the effective poten-
tial, which is added to the external electrostatic potential 

ext(z) starting from the points z  Zl,r, is a determining 
factor. 

Let us compare with the experimental data. The cal-
culated value of the work function of the Al(111)/vacuum 
face is equal to 4.12 eV, experimental ones for Al(111) – 
from 3.11  0.10 to 4.26  0.03 eV, and for polycrystal-
line Al – 4.28 eV [39]. 

The Schottky barrier for Au/Al2O3 measured in [40] 
is 3.5  0.1 eV. We note that the experimental values of 
the work function of Au and Al in [39] are identical. 

On the other hand, the Schottky barrier measured 
in  [41]  for  Al,  Ag,  Cu on a  thin (of  35  nm thick)  Al2O3 
film is equal to 1.66; 1.72; 1.80 eV. This is in agreement 
with the value 1.5 eV for Al/Al2O3 in [30]. Wd  3.19 eV 
is also recommended for Al/SiO2 in [30]. 

The value of Wd  0.5…0.8 eV for 15 metals deposit-
ed on Si should be referred to the mode F   e

l,r [30]. 
In [41], the measured barrier height varied from 0.6 to 
0.49 eV with increasing Ti/Si film thickness from 50 to 
90 nm. As seen, the measurement data are ambiguous. 

Note that the introduction of the nonlocal potential 
does not significantly influence the position of the Fermi 
level in a metal film contacting with the dielectric. 

Accounting of the conduction band in the dielectric 
and the self-consistence of the well shape for the film 
electrons changes the spectrum (number of subbands) 
and the density of states, and, thus, the magnitude of the 
optical transition matrix elements and the optical absor-
ption coefficient [42]. The equilibrium profile of electrons 
and electrostatic potential is necessary to calculate the 
auto-field emission of electrons and annihilation charac-
teristics of positrons in nanostructures. 

 

3.2 Calculation results of the positron states 
 

r, e
r and p

r are the initial parameters for the cal-
culations: the values of r and e

r for the dielectrics uti-
lized are given in Table 1 and p

r  (0.6; 1.55; 2; 2.3) eV 
for Ne, Ar, Kr, Xe, respectively, are taken from [19]. 

Since the experimental value of p for SiO2 is  not  
known, we evaluated it using the Born cycle 

 

 Ps 0
2e p

Ry ,  
 

where Ps is the positronium atom work function of SiO2 
into vacuum. As an assumption here it is suggested that 
the electron in SiO2 is  at  the  conduction band bottom.  
Using for SiO2 the experimental values of the work fun-
ctions Ps  – 3.27 eV [23] and e  1.1 eV, we obtain 

p
r  2.43 eV. 

In Fig. 3 we illustrate the spatial distributions of the 
positron potential components for Al films of a thickness 
of L  1 and 3 ML. The solid lines correspond to the self-
consistent calculations done under the assumption that 
me  mp  m, the dotted lines – 0.42em m , 2.42pm m  
in the SiO2 range. 

Due to the fact that the potential distribution (z) in 
the vacuum region (z < L/2) has a maximum (potential 
hump [29]), the dependence – (z), respectively, should 
have a minimum, as observed in Fig. 3. Its depth increa-
ses with increasing difference between the values of l 
and r and with increasing film thickness L. 

It is interesting to compare the obtained values with 
the calculation results for the aluminum/vacuum contact 
( 1  334 ps). The difference is tens of picoseconds at an 
experimental measurement accuracy of 1 ps. 
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Fig. 3 – Self-consistent profiles of the electrostatic (with the opposite sign), correlation and effective potentials of the positron, as 

well as its spatial distribution 
2

( )p
j z  for vacuum/Al(111)/SiO2 film. j is the subband number. Al film thickness is 1 and 3 ML. 

The dotted lines indicate the profile obtained taking into account the effective masses 
 

 
Fig. 4 – Size dependences of the positron subband energies and lifetimes for vacuum/Al(111)/SiO2 film. The dotted lines indicate 
the profile obtained taking into account the effective masses 

 

Fig. 5 contains information for vacuum/Al(111)/solid 
inert gases structures similar to that presented in Fig. 4 
for j  1and 2 under the condition me  mp  m. 

The doublet of states for these dielectrics is less pro-
nounced; however, the size dependence of the lifetimes is 
more significant than that in Fig. 4. For film thicknesses 
L > 1 ML and at a contact with Ne, Ar, Kr and Xe, the 
values of j differ by about 10 ps. 

If the film is placed between two dielectrics, then the 
calculation results will be determined by the competition 
between characteristics of dielectrics and Al, and hardly 
undergo fundamental changes. The barrier height bet-
ween two wells depends on the metal type. If substitute 
Al, for example, by Na, the barrier actually disappears, 
and the wells are united. 
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Fig. 5 – Size dependences of the positron subband energies and lifetimes for Al(111)film in contact with solid inert gases 
 
We also note that when a current flows in imperfect 

metal-dielectric contacts, a part of external electrons is 
trapped near the metal surface. The potential generated 
by them will further facilitate localization of positrons. 

The calculations of the work function of the positro-
nium atom into vacuum WPs were also performed, for ex-
ample, for vacuum/Al(111)/SiO2 system, using the Born 
cycle: WPs(L)  We(L) – l

p(L) – Ry/2. Here, We(L)  is  the  
electron work function for the same system in the ab-
sence of the positron. Taking into consideration Table 1, 
we obtain We(L)  3.43; 3.26; 2.94; 3.17 eV for L  1, 2, 
3, 7 ML, respectively. The calculated values of the posi-
tron ground state energies l

p(L) are illustrated in Fig. 4. 
After the substitution, we have WPs(L)  + 0.25; –0.08; 
– 0.45; – 0.16 eV for L  1, 2, 3, and 7 ML, respectively. 
It should be recalled that if WPs(L) > 0, then the PS atom 
is localized in the system, as for the case when L  1. 
The comparison of the value of WPs for L  1 ML with the 
experimental value of the work function Ps  – 3.27 eV 
[20] for vacuum/SiO2 indicates that the positronium is 
locked from the side of SiO2. These estimates are made 
under the assumption p em m m . The introduction of 

effective masses em m  and pm m  makes possible loca-
lization for any values of L. 

Thus, it is possible to make an optimistic conclusion 
about the ability of metal-dielectric nanosandwiches to 
condense the positronium atoms. 

The localization effect of positrons and positronium 

atoms in the surface potential can also be expected for 
thee clusters of metals embedded in dielectric matrices 
by analogy with quantum dots [43]. 

 
4. CONCLUSIONS 

 
The method of self-consistent calculations of the cha-

racteristics of a metal film in dielectrics is proposed in 
the paper. The case of asymmetric metal-dielectric sand-
wiches – different dielectrics on both sides of the film – is 
considered in the framework of the modified Kohn-Sham 
method and the stable jelly model. Taking into account 
the image forces and conduction band of the dielectric, 
the potential, electron work function and Schottky barrier 
profiles are found for aluminum nanofilms with perfect 
vacuum/Al(111)/SiO2, vacuum/Al(111)/Al2O3 interfaces 
and SiO2/Al(111)/Al2O3 sandwich. The dielectric environ-
ment in general leads to a decrease in the electron work 
function and surface energy. In addition to size oscilla-
tions, the change in the electron work function is deter-
mined by the arithmetic mean value of the dielectric con-
stants on either side of the metal film. 

The self-consistent calculations of the potential, wave 
function, surface subband energy and lifetime profiles of 
positrons are performed for Al nanofilms, which are in 
contact with dielectrics (solid inert gases, SiO2). The size 
effects, the influence of effective masses of electrons and 
positrons on energy and annihilation characteristics in 
systems with double potential wells caused by the image 
potentials are investigated. The possibility of localizing 
the positronium atom in nanosandwiches is discussed. 

 
 
REFERENCES 
 

1. M. Liu, Y. Han, L. Tang, J.-F. Jia, Q.-K. Xue, F. Liu, Phys. 
Rev. B 86 No 12, 125427 (2012). 

2. R.T. Tung, Appl. Phys. Rev. 1 No 1, 011304 (2014). 
3. R.-Y. Liu, A. Huang, C.-C. Huang, C.-Y. Lee, C.-H. Lin, C.-

M. Cheng, K.-D. Tsuei, H.-T. Jeng, I. Matsuda, S.-J. Tang, 
Phys. Rev. B 92, 115415 (2015). 

4. V.V. Pogosov, A.V. Babich, P.V. Vakula, Phys. Solid State 55 
 10, 2120 (2013). 

5. .V. Korotun, Phys. Solid State 57 No 2, 391 (2015). 
6. A. Rubio, L. Serra, Phys. Rev. B 48 No 24, 18222 (1993). 

7. P.M. Dinh, P.-G. Reinhard, E. Suraud, Phys. Rep. 485 No 2-3, 
43 (2010). 

8. L.A. Constantin, J.M. Pitarke, Phys. Rev. B 83 No 7, 075116 
(2011). 

9. P.A. Serena, J.M. Soler, N. Garcia, Phys. Rev. B 34 No 10, 
6767 (1986). 

10. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994). 
11. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013). 
12. S. Mukherjee, M.P. Nadesalingam, P. Guagliardo, A.D. Sergeant, 

B. Barbiellini, J.F. Williams, N.G. Fazleev, A.H. Weiss, Phys. 

L, ML L, ML 

j, 
eV

   

j, 
ps

  

https://doi.org/10.1103/PhysRevB.86.125427
https://doi.org/10.1103/PhysRevB.86.125427
https://doi.org/10.1103/PhysRevB.92.115415
http://dx.doi.org/10.1134/S1063783413100259
http://dx.doi.org/10.1134/S1063783413100259
http://dx.doi.org/10.1134/S1063783415020213
https://doi.org/10.1103/PhysRevB.48.18222
http://dx.doi.org/10.1016/j.physrep.2009.07.006
http://dx.doi.org/10.1016/j.physrep.2009.07.006
https://doi.org/10.1103/PhysRevB.83.075116
https://doi.org/10.1103/PhysRevB.34.6767
https://doi.org/10.1103/PhysRevB.34.6767
https://doi.org/10.1103/RevModPhys.66.841
https://doi.org/10.1103/RevModPhys.85.1583
https://doi.org/10.1103/PhysRevLett.104.247403


 
.V. BABICH, P.V. VAKULA, .V. KOROTUN, ET AL. J. NANO- ELECTRON. PHYS. 8, 04050 (2016) 

 

 
04050-8 

Rev. Lett. 104, 247403 (2010). 
13. Z. Wang, S. Su, F.C.-C. Ling, W. Anwand, A. Wagner, J. Appl. 

Phys. 116, 033508 (2014). 
14. S. Hagiwara, C. Hu, K. Watanabe, Phys. Rev. B 91, 115409 

(2015). 
15. F.A. Selim, D. Solodovnikov, V.Y. Weber, K.G. Lynn, Appl. 

Phys. Lett. 91, 104105 (2007). 
16. S.W.H. Eijt, A. van Veen, H. Schut, P.E. Mijnarends, A.B. Denison, 

B. Barbiellini, A. Bansil, Nat. Mat. 5, 23 (2006). 
17. R. Paulin, G. Ambrosino, J. Phys. (Paris) 29, 263 (1968). 
18. S.M. Curry, A.L. Schawlow, Phys. Lett. A 37, 5 (1971). 
19. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 3 (1988). 
20. P. Sferlazzo, S. Berko, K.F. Canter, Phys. Rev. B 35, 5315 

(1987). 
21. Y. Nagashima, Y. Morinaka, T. Kurihara, Y. Nagai, T. Hyodo, 

T. Shidara, K. Nakahara, Phys. Rev. B 58, 12676 (1998). 
22. H. Saito, T. Hyodo, Phys. Rev. Lett. 90, 193401 (2003). 
23. R. Saniz, B. Barbiellini, P.M. Platzman, Phys. Rev. Let. 99 

No 9, 096101 (2007). 
24. M. Clement, J.M.M. de Nijs, P. Balk, H. Schut, A. van Veen, 

J. Appl. Phys. 81, 1943 (1997). 
25. M.P. Petkov, K.G. Lynn, A. van Veen, Phys.  Rev.  B 66, 

045322 (2002). 
26. D.B. Cassidy, S.H.M. Deng, R.G. Greaves, T. Maruo, 

N. Nishiyama, J.B. Snyder, H.K.M. Tanaka, A.P. Mills Jr., 
Phys. Rev. Lett. 95, 195006 (2005). 

27. A.E. Almand-Hunter, H. Li, S.T. Cundiff, M. Mootz, M. Kira, 
S.W. Koch, Nature 506, 471 (2014). 

28. .N. Ipatov, V.K. Ivanov, R.G. Polozkov, JETP 117 No 4, 
631 (2013). 

29. A.V. Babich, V.V. Pogosov, Phys. Solid State 55 No 1, 196 
(2013). 

30. E.Kh. Roderik, Kontakty metall – poluprovodnik (Moskva: 
Radio i svyaz': 1982). 

31. N.D. Drummond, P. Lopez Rios, R.J. Needs, C.J. Pickard, 
Phys. Rev. Lett. 107, 207402 (2011). 

32. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997). 
33. .V. Korotun, .V. Babich, Ya.V. Karandas, Phys. etal. 

etalography 117 No 5, 426 (2016). 
34. P. Kubica, M.J. Stott, J. Phys. F: Metal Phys. 4 No 11, 1969 

(1974). 
35. O.V. Boev, M.J. Puska, R.M. Nieminen, Phys. Rev. B 36 No 15, 

7786 (1987). 
36. H. Ikari, K. Fujiwara, J. Phys. Soc. Jpn. 46 No 1, 92 (1979). 
37. I.V. Bondarev, Phys. Solid State 41 No 6, 909 (1996). 
38. M.I. Veksler, S.E. Tyaginov, Yu.Yu. Illarionov, Semiconduc-

tors No 5, 675 (2013). 
39. V.S. Fomenko, Emissionnyye svoystva khimicheskikh elemen-

tov i ikh soyedineniy (Kiyev: Naukova dumka: 1980). 
40. J.C. Brewer, R.J. Walters, L.D. Bell, D.B. Farmer, R.G. Gordon, 

H.A. Atwater, Appl. Phys. Lett. 85 No 18, 4133 (2004). 
41. K. Singh, S.N.A. Hammond, Tr. J. Phys. 22 No 4, 315 (1998). 
42. V.P. Kurbatsky, A.V. Korotun, V.V. Pogosov, Ukr. J. Phys. 53 

No 6, 569 (2008). 
43. A.P. Shpak, S.I. Pokutniy, V.N. Uvarov, Dop. NANU No 6, 

85 (2011). 
 

https://doi.org/10.1103/PhysRevLett.104.247403
http://dx.doi.org/10.1063/1.4890460
http://dx.doi.org/10.1063/1.4890460
https://doi.org/10.1103/PhysRevB.91.115409
http://dx.doi.org/10.1063/1.2780119
http://dx.doi.org/10.1063/1.2780119
http://dx.doi.org/10.1038/nmat1550
https://doi.org/10.1103/PhysRevB.35.5315
https://doi.org/10.1103/PhysRevB.58.12676
https://doi.org/10.1103/PhysRevLett.90.193401
https://doi.org/10.1103/PhysRevLett.99.096101
https://doi.org/10.1103/PhysRevLett.99.096101
http://dx.doi.org/10.1063/1.364050
https://doi.org/10.1103/PhysRevB.66.045322
https://doi.org/10.1103/PhysRevB.66.045322
https://doi.org/10.1103/PhysRevLett.95.195006
http://dx.doi.org/10.1038/nature12994
http://dx.doi.org/10.7868/S0044451013100040
http://dx.doi.org/10.7868/S0044451013100040
http://dx.doi.org/10.1134/S1063783413010071
https://doi.org/10.1103/PhysRevLett.107.207402
https://doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1134/S0031918X16050112
http://dx.doi.org/10.1134/S0031918X16050112
http://dx.doi.org/10.1088/0305-4608/4/11/022
https://doi.org/10.1103/PhysRevB.36.7786
https://doi.org/10.1103/PhysRevB.36.7786
http://dx.doi.org/10.1143/JPSJ.46.92
http://dx.doi.org/10.1134/1.1130902
http://dx.doi.org/10.1063/1.1812831
http://journals.tubitak.gov.tr/physics/abstract.htm?id=2293
http://ujp.bitp.kiev.ua/files/journals/53/6/530608p.pdf
http://ujp.bitp.kiev.ua/files/journals/53/6/530608p.pdf

