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In the work, the approach to accounting low-amplitude irregularities of the nanofilm surface has been 

proposed in the free-electron model and the finite depth potential well model. The electron energy spectrum 
and the size oscillations of the Fermi energy of metal films with a rough surface have been calculated within 
the boundary shape perturbation method. The relationship between the nature of the surface relief, amplitude 
of irregularities, material parameters and the behavior of the relative Fermi energy has been established. 
The calculations have been carried out for Al, Cu, and Au nanofilms. 
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1. INTRODUCTION 
 
Metal 2D systems are the subject of intense theoret-

ical and experimental studies in recent years due to the 
improvement of technologies for producing continuous 
nanometer layers [1-7]. In these structures, the energy 
characteristics (Fermi energy, work function, surface en-
ergy) depend on the film thickness and have an oscilla-
ting behavior. 

In the vast majority of cases, the study of metal 2D 
structures is based on the assumption of homogeneity of 
nanofilms in thickness. However, in practice, production 
of perfectly smooth layers is impossible. The thickness 
variations occur due to the granular structure of a real 
film and have sizes  from a few tenths  of  a  nanometer  
and more. The electron mean free path is the same in 
magnitude. Moreover, it is shown in the experimental 
work [8] that the presence of a rough surface leads to a 
nonmonotonic behavior of the differential voltage-current 
characteristics near the Fermi energy and to changes in 
tunneling conductance. The importance of taking into 
account the features of the size dependence of the Fermi 
energy is also caused by the fact that it gives the main 
contribution to the optical absorption [9]. 

Thus, the theoretical calculations, which describe the 
phenomena associated with the size quantization effects, 
require correction. 

To take into consideration the nanofilm inhomoge-
neity in thickness, the choice of approach depends on the 
type of inhomogeneity. The adiabatic approximation and 
the Namba model are used for smooth inhomogeneities 
[10]. However, these methods cannot be applied to films 
with a stochastic surface relief. The method based on the 
transition in the Schrödinger equation to a new coordi-
nate system, in which the film surface is smooth, is most 
often used for such systems [11]. The advantage of this 
approach is the ability to isolate the perturbation caused 
by the film inhomogeneity in thickness, in explicit form, 
not be limited to adiabatic approximation; but the obtai-
ned Hamiltonian is not Hermitian. 

To describe a rough surface, the authors of [12, 13] 
have used the fractal approach, the peculiarity of which 
is that the fractal surface assumes self-similarity on all 

scales. However, physical objects, in particular, nanofilms, 
due to the presence of the minimal characteristic scale, 
are not mathematically fractal. Therefore, as shown in 
[8], the use of the fractal description of a rough surface 
leads to non-physical results. Moreover, the authors of 
[8, 14] consider an approach where a random film boun-
dary is described by a Gaussian function. However, the 
use of this approach greatly complicates the calculations 
of the energy spectrum and the density of states. There-
fore, in this paper, for the calculation of the spectrum, we 
propose the use of a simpler “boundary shape variation” 
method, known in nuclear physics, continuum mechanics 
and physics of low-dimensional systems (see [15, 16] and 
references therein). The advantage of this approach is 
that the random inhomogeneity of the nanofilm surface 
in the first order of the perturbation theory can be taken 
into account by modifying the boundary conditions for the 
zero-approximation wave function, since the correction 
to the Hamiltonian (by analogy with [16]) is proportional 
to the square of the relative amplitude of the inhomoge-
neity, and, thus, it cannot be taken into account. 

The aim of this work is to investigate the influence 
of  surface  roughness  of  nanometer  metal  films  on  the  
Fermi energy oscillations in the boundary shape pertur-
bation method. 

 
2. STATEMENT OF THE PROBLEM AND  

BASIC RELATIONS 
 
We suppose that the conduction electrons of a thin 

metal film of thickness L are in a rectangular potential 
box of depth U0 < 0, whose shape repeats the shape of a 
film with smooth surfaces. The longitudinal film sizes are 
much larger than the film thickness (a, b  L). In this 
case, quantization of the transverse component of the 
momentum manifests itself that leads to the formation 
of subbands. 

Unperturbed states in the film are described by the 
following wave functions: 
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where n  1, 2, …; p  1, 2, …; m  1, 2, …; and 
 (x) is equal to 
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Here 2 2
0m xmk ki ; 2 2

0 02 ek mU ; me is the electron mass. 
Considering the film is rough and the inhomogeneity 

is small (   h/L 1, where h the maximum roughness 
amplitude), one can use the boundary shape perturbation 
method. Expanding the wave function  (x) and its deri-
vative on the boundaries x   L/2 into a Taylor series, 
it is possible to write 
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After substitution of (2) into (3) and subsequent sim-

plification, we obtain in the linear in  approximation (see 
Appendix A) the following equation for determining the 
energy spectrum: 
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The size dependence of the Fermi energy is determi-

ned by the solution of the transcendental equation [17] 
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where m is the energy of the m-th electron subband, to 
which the wave function m(x) corresponds; mF is the nu-
mber of the last occupied or partially occupied subband; 
n is the conduction electron concentration in 3D metal. 

 
3. RESULTS AND DISCUSSION 

 
The calculations were performed for Al, Cu, and Au 

nanofilms with convex (h > 0) and concave (h < 0) relief, 
electron concentration 33 / 4 sn r  with the average dis-
tance between electrons rs  2.07a0, 2.11a0, and 3.01a0, 
respectively (a0 is the Bohr radius). 

The calculation results of the size dependences of the 
Fermi energy for the Cu film are illustrated in Fig. 1. 

 

 
 

Fig. 1 – Size dependence of the Fermi energy of the Cu films 
for different values of the inhomogeneity amplitude: 1 – h  0; 
2 – h  0.05 nm; 3 – h  0.1 nm; 4 – h  – 0.05 nm 

 

 
 

Fig. 2 – Size dependence of the Fermi energy for the films of 
different metals at h  0.05 nm 

 
As seen from the figure, the qualitative behavior of the 
size dependence remains. Thus, the maxima are achieved 
in all cases for the same values of L, and with increasing 
L the oscillation amplitudes decrease. Quantitatively, the 
values of 0

F F/  for the case of rough films are 2-4 % lo-
wer compared with a perfectly smooth film. It also turns 
out that for the Cu films, 0

F F/ 1 at h  0.05, 0.1 nm. 
Fig. 2 shows the size dependences of the Fermi energy 

of different metals at the fixed value of the inhomoge-
neity amplitude h  0.05 nm. As seen from Fig. 2, for Al 
and Cu films, the greater the magnitude of the inhomo-
geneity is, the smaller the Fermi energy is. The quanti-
tative difference in the results for these cases is that the 
oscillation amplitudes in the case of Au are much larger 
than those for the case of Cu and Al. This is due to the 
fact that the oscillation amplitude is determined by the 
value of 0

F/ k , which is the least for Al. A decrease in 
the Fermi energy of rough films of various metals with 
convex relief is explained by an increase in the “average” 
width of the potential well and, correspondingly, by the 
depression of energy levels. 

  

L, nm 
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4. CONCLUSIONS 
 
The influence of surface roughness of metal 2D sys-

tems on the size oscillations of the Fermi energy has been 
studied in this work. In the framework of the boundary 
shape perturbation method, the electron energy spectrum 
in rough films of a nanometer thickness has been calcu-
lated. A comparison with the case of a film with a per-
fectly smooth surface has been performed. 

It is established that regardless of the nanofilm ma-
terial, the Fermi energy decreases with increasing in-
homogeneity amplitude. This is associated with an in-
crease in the “average” width of the potential well and 
the depression of energy levels. In the case of concave 
surface relief, a reverse effect is observed: an increase in 
the relative Fermi energy. 

It is shown that for Cu films with convex surface re-
lief, the Fermi energy values are lower than for the case 
of a bulk metal. 

Moreover, the Fermi energy oscillation amplitudes for 
Al films are much higher than those for Cu films that is 
explained by a higher value of 0

F  for the case of Al. 
 
APPENDIX A 
DERIVATION OF THE EQUATION FOR  
DETERMINING ENERGY SPECTRUM 
 
We present a procedure for obtaining equation (4). 

Substituting the values of the functions and their deri-
vatives in the points x   L/2 into the boundary condi-
tions (3), we derive the following homogeneous system of 
linear algebraic equations: 
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 (A.1) 

 
The system (A.1) will have a solution under the con-

dition that its determinant is equal to zero. Therefore, 
we can write 
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After dropping the terms proportional to 2 in the ex- pression (A.2), we come to the equation (4). 
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