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In our recent work, three-dimensional modified time-independent Schrédinger equation (MSE) of modified vi-
brational-rotational analysis of supersingular plus quadratic potential (v.r.a.s.q.) potential was solved using
Boopp’s shift method instead to apply star product, in the framework of both noncommutativity three dimensional
real space and phase (NC: 3D-RSP). Furthermore, the exact correction for ground state and first excited state are
found straightforwardly for interactions in one-electron atoms has been solved using standard perturbation theo-

ry. Furthermore, the obtained corrections of energies are depended on infinitesimal parameters (@,;{) and (5,;)
which are induced by position-position and momentum-momentum noncommutativity, respectively, in addition to
the discreet atomic quantum numbers: j=[+1/2s=41/2 and m . Moreover, the usual states in ordinary

quantum mechanics for vibrational-rotational analysis of supersingular plus quadratic potential are canceled and
has been replaced by new degenerated 2(21 +1) sub-states in the extended new quantum symmetries of (NC: 3D-

RSP).
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1. INTRODUCTION

Recently, one of the interesting problems of the non-
relativistic and nonrelativistic quantum mechanics is to
find exact solutions to the Dirac, Klein-Gordon and
Schrodinger equations for certain potentials of the physi-
cal interest. It is known that the nonrelativistic symme-
tries of the Schréodinger equation and Schriédinger-like
equation, for certain shape of potentials, had been dis-
covered many decades ago and the exact solutions of the
wave equation and bound states in the case of ordinary
commutative space with central and non-central poten-
tials are very important for describing atoms, nuclei,
various methods have been applied to solve the ordinary
Schrodinger equation by means of asymptotic iteration
method, improved AIM, Laplace integral transform, fac-
torization method, proper quantization rule and exact
quantization rule, Nikiforov-Uvarov method, supersym-
metry quantum mechanics in two, three and D-
dimensional spaces [1-32]. The ordinary nonrelativistic
quantum mechanics based to the ordinary canonical
commutations relations (CCRs) in both Schrédinger
(time-independent operators) and Heisenberg pictures
(time dependent operators), as (c=#=1):

[xi’pj] = |:xi (t).p; (tﬂ =5
[xi’x]} = [pi’pj} = [xi (t),x]« (t)J = [pi (t)’pj (t)] =0

Where the two operators (xi (t),pi (t)) in Heisenberg

@

picture are related to the corresponding two operators
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(xi, pi) in Schrodinger picture from the two projections

relations:

x; (t) = exp(iH,,q,, (t —t, )x; exp(=iH,, .. (t—1,))

2
p;(t)=exp(iH,,,,, (t—t,))p; exp(—iH,, . (t—t,)) @

Here H

was; denote to the ordinary quantum Hamil-
tonian operator for studied potential which composed
from two terms, the first one is the kinetic energy while
the second is the interaction potential. Recently, much
considerable effort has been expanded to obtain the solu-
tions of Schrodinger, Dirac and Klein-Gordon equations
in the extended quantum mechanics or noncommutative
quantum mechanics, to search an a profound interpreta-
tion in microscopic scales, which based to new noncom-
mutative canonical commutations relations (NNCCRs) in
both Schrodinger and Heisenberg pictures, as follows
[34-66]:

= {&i (t),%; (t)} =i0; 3
and {ﬁi,ﬁj}_ ﬂi(t),ﬁj(t)}—iﬁij
Where the two new operators (&i (t), b (t)) in Heisen-

berg picture are related to the corresponding two new
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operators (&i, f)i) in Schrédinger picture from the two

projections relations:
%;(t) = exp(GH,, (t -ty ) * &, * exp(—iH,, (t —t,))

and p; (t) =exp(iH,, (t —t, )) *p; *exp(—iH,, (t 1 )) @

Here H,  denote to the new quantum Hamiltonian
operator in the (NC: 3D-RSP) symmetries. The very

small two parameters 6 and 9" (compared to the
energy) are elements of two antisymmetric real matrixes
and (*) denote to the new star product, which is general-

ized between two arbitrary functions f (%,p)and g(z,p)
to f(a%,ﬁ)g(a%,f)) =(f*g)(x,p) instead of the usual

product (fg)(x,p) in ordinary three dimensional spaces
[33-65]:

7(2,0)&(%,0) = (f *&)(x.p)

i VAX AKX i v
= (fg-50"0,fo5g~0" 0lf o) (x.p) + (5)

(= =)

+O(02,g’2)

where f(a%,j)) and g(%,p) are the new function in (NC:
3D-RSP), the two covariant
(8flf(x,p) ,62}‘ (x,p)) are

0 0
the M,M , respectively, the two following
ox* op”

derivatives

denotes to

terms _éeﬂvaif(x,p)ﬁfg (x,p) and

_ééﬂva‘;f (x,p)d’g(x,p) are induced by (space-space)

and (phase-phase) noncommutativity properties, respec-

tively, and 0(6’2,52) stands for the second and higher

order terms of @ and @, a Boopp’s shift method can be
used, instead of solving any quantum systems by using
directly star product procedure [34-65]:

(2,8, ]=[£(2).;(t)] = i6;

= (6)
and [i)i,f),} = [f?i (), p; (t)} -0

The 6 generalized positions and momentum coordi-
nates in the noncommutative three dimensions quantum

mechanics (92,5/,.2) and (ﬁx,ﬁy,ﬁz) are depended with
corresponding 6 usual generalized positions and momen-
tum coordinates in the usual three dimensions quantum
mechanics (x, y,z) and ( Dy Dy pz) by the following four

relations, respectively, as follows [34-53]:
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’ 912 91‘3
X>X=X—-——=p,——=>p,,
g Py P
6 6,
o_y_21, _’23
e e Y R )
0, 0
31 32
z—>z=z -—==
g P P
and
5 = _512 _5132
px px_ x 2 2 ’
) 0 6
Py by =p, - tx-—tz ®
0 0
5 H =p ——Bly_ 32
p. > b.=p.——, 5 7

The non-vanish 9 commutators in (NC-3D: RSP) can
be determined, as follows:

[&.5.=[3.5,]=[2.5.]=1,
[£,5]=160,,[%,.2]=160,3.] 3.2 =10y 9)
[i)x,ﬁy] = iém,[ﬁy,ﬁz] = i523,|:i)x,f)2:|= i§13

Which allow us to getting the two operators (#
and p?) in (NC-3D: RSP), respectively, as follows [34-53]:

P =r’-LO® and p? = p? + I:é 11)
Where the two couplings L® and Lo are given by,
. 0,
respectively (0, = E] ):
L®=L0O,+L 0O, +L0O; and
L= - _ _ (12)
L6=L 012+ Ly923 +L 63

It is-well known, that, in quantum mechanics, the
three components (L,, L, andL,) are determined, in

Cartesian coordinates:

[ 0
L =- i 13
7 l[zax X@zj (13)

The vibrational-rotational analysis of supersingular
plus quadratic potential is extensively used to describe
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the bound state of the interaction systems, and has been
applied for both classical and modern physics, it plays a
basic role in chemical and molecular physics [31], the
bound state solutions of the non-relativistic Schrédinger
equation, with the modified vibrational-rotational analy-
sis of supersingular plus quadratic potential has not been
obtained yet. This is the priority for this work. The modi-
fied vibrational-rotational analysis of supersingular plus

quadratic potential V (r,A,Z,@,é) used in this

nc—vrasq

frame work takes the form:

24
7‘6

Vm,mq(r,A,Z,@,e):é4+r2+ Lo +(1— jI:C:) (14)
r 2m,

We wish to discuss a model describing a Hydrogen at-
om or a Hydrogen-like ion interacted with modified vi-
brational-rotational analysis of supersingular plus quad-
ratic potential in the extended quantum mechanics, we
want to calculate of energy levels of above potential in
(NC: 3D-RSP) symmetries using the generalization
Boopp’s shift method based on mentioned formalisms on
above equations to discover the new symmetries and a
possibility to obtain another applications to this potential
in different fields. It is worth to mention that, the non-
commutative idea was introduced firstly by H. Snyder
[33]. In the recent years, the problem of finding exact
solutions of the non-relativistic modified Schrodinger
equation in noncommutative spaces and phases for a
number of special potential has been a line of great in-
terest [34-66]. This paper has been divided into six sec-
tions: In next section, we briefly review the Schrédinger
equation with vibrational-rotational analysis of su-
persingular plus quadratic potential on based to ref. [31].
The Section 3, devoted to studying the three deformed
Schrodinger equation by applying both Boopp's shift
method to the vibrational-rotational analysis of su-
persingular plus quadratic potential. In the fourth sec-
tion, by applying standard perturbation theory we find
the quantum spectrum of the lowest excited states in
(NC-3D: RSP) for spin-orbital interaction corresponding
the ground state and first excited state. In the next sec-
tion, we derive the magnetic spectrum for studied poten-
tial. In the fifth section, we resume the global spectrum
and corresponding noncommutative Hamiltonian for vi-
brational-rotational analysis of supersingular plus quad-
ratic potential. The concluding remarks are given in sec-
tion 6.

2. REVIEW THE EIGNENFUNCTIONS AND THE
ENERGY EIGENVALUES FOR VIBRATIONAL-
ROTATIONAL ANALYSIS OF SUPERSINGU-
LAR PLUS QUADRATIC POTENTIAL IN OR-
DINARY THREE DIMENSIONAL SPACES

Here we will firstly present the shortcuts, which give
the solutions of time independent Schrodinger equation
for a fermionic particle like electron of rest mass m, and

its energy E moving in (v.r.a.s.q.) potential [31]:
V(r):éﬂd2 (15)

where A play the role of positive constant coefficient.
The (v.r.a.s.q.) potential plays a basic role in chemical
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and molecular physics since it can be used to calculate
the molecular vibration-rotation energy spectrum of line-
ar and non-linear systems. The above potential is the

sum of quadratic (rQ) and vibrational-rotational struc-

. . AY . . .
ture of supersingular potent1a1(4J, if we insert this
r

potential into the non-relativistic Schrédinger equation;
we obtain the following equation in three dimensional
spaces as follows [32]:

e e R (T RLTACLE
r

——|r
P2dr\" dr r

here g¢,, (r) is the radial function. As it is montionated in

ref. [31], the solution of above second order differential
equation in the coordinate basis turns out that there is a
family of solutions;

P (1) = Nyye ™ "M (-n, 2 +3/ 20r*)  (17)

Where n=n,+1+1 is the principal quantum number, 1

is the centrifugal parameter which defined from the rela-
tionA(A+1)=1I(I+1)+ A, the harmonic variational pa-

| 122248141

w= while
\y8ﬂz+4/1+4l(l+1)+1

rameter

M (—n,/1+3/2; a)rz) is the confluent hypergeometric

functions reducing to a polynomial of degree n=0,1,2,...
respectively. The normalized generalized eigenfunctions

‘P(r, 0,¢) expressed in terms of the radial functions and

spherical harmonic functions read as [31]:
¥(r,0,¢)= ane"“’zlzr‘M(—n,}t +3/2; wrz)y§(9,¢) (18)

here N,, is a normalized constant and the correspond-

ing eigenvalues Eg , 1s determined from relation [31]:
E), =(4n+21+3)w (19)

3. THEORETICAL FRAMEWORK

This section is devoted to review the main formalism
of non relativistic (MSE) for modified (v.r.a.s.q.) potential
in (NC-3D: RSP) symmetries; to achieve this subject, we
apply the essentials following steps [34-55]:

1. Ordinary three dimensional Hamiltonian operator

H,. prasq ( pri) will be replace by new three dimensional

Hamiltonian operator H ( j)i,fci) , in (NC-3D: RSP),

ne-vraq

2. Ordinary complex wave function ‘{’(;) will be re-

placing by new complex wave function ¥ (; ) s

3. Ordinary energies ESA , in three dimensional spaces

will be replace by new values E in (NC-3D: RSP)

ne—uvrasq ?

symmetries.
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4. And the last step corresponds to replace the ordi-
nary old product by new star product (*) , which allow us

to constructing the modified three dimensional Schro-
dinger equation in (NC-3D: RSP) symmetries for modi-
fied (v.r.a.s.q.) potential:

A

& S (i)i’fci ) * (’:") = Enc—uraq@(;) (20)

The Boopp’s shift method allow us to rewrite the
Schrodinger equation in the following form for modified
(v.r.a.s.q.) potential in (NC-3D: RSP) symmetries

an—vmq (i)i’gei ) ‘{I(r) = En/c—vra/qu(r) (2 1)
Where the new operator of Hamiltonian
H,. 1asq (D;»%;) can be expressed in three general varie-

ties: both noncommutative space and noncommutative
phase (NC-3D: RSP), only noncommutative space (NC-
3D: RS) and only noncommutative phase (NC: 3D-RP) as,
respectively:

N « 1-— N 1
an—urasq (pi’xi) = H(pi =D; _Egijxj;xi =X _50L'jpjj

for NC-3D: RSP

(22)

A A N N 1
an—vrasq (pi’xi) = H[pi =D XX =X _Egijpjj (23)
for NC-3D: RS
A . 1- R
an—vmsq (pi’xi) = H(pz =Dp; _Eeijxj;xi = xij (24)
for NC-3D: RP

In our recent work, we are interest with the first va-
riety which presented by eq. (22), after straightforward
calculations, we can obtain the five important terms,
which will be use to determine the (v.r.a.s.q.) potential in
(NC: 3D-RSP), as:

7 ~9 2 Tn
A_A 2410 a2 _P 9 g
7 r r 2m0 2m0 2m0

Which allow us to obtaining the global potential oper-
ator  H,,_, 4. (0% )(P;,%;) for modified (v.r.a.s.q) po-
tential in (NC: 3D-RSP), as:

A AN[A A A
an—vrasq (pi’xi)(pi’xi) :F+r2 +

, =
P, L8 +(1—%jf_é
2m, 2m,

(26)

r

It’s clearly, that the three first terms are given the
ordinary inverse-square potential and kinetic energy in
three dimensional spaces, while the rest terms are pro-

portional’s with infinitesimals parameter (@,5), thus,

we can considered as a perturbations terms, we noted by
4 (r,A,Z,G),é) for (NC: 3D-RSP) symmetries

vrasq—so—pert

as:
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r,A,Z,@,é) =

vrasq—so—pert (

_ Lo +(1—2‘3JE(?)
2m,, r

@7

4. THE EXACT SPIN-ORBITAL HAMILTONIAN
AND THE CORRESPONDING SPECTRUM FOR
MODIFIED (V.R.A.S.Q.) POTENTIAL FOR EX-
CITED n'" STATES FOR ONE-ELECTRON AT-
OMS IN (NC: 3D- RSP) SYMMETRIES:

4.1 The exact spin-orbital Hamiltonian for
modified (v.r.a.s.q.) potential for one-electron at-
oms in (NC: 3D- RSP) symmetries:

In this article, we consider a fermionic particle of
mass m, , charge e and spin S =1/2 that moves in mod-
ified (v.r.a.s.q.) potential presented by eq. (26), the per-

turbative terms H (r,A,Z,@,é) can be rewrit-

vrasq—so—pert

ten to the equivalent physical form:

A

| o 24| g+
HUrasqfsofpert (T,A,Z, ®a 9) = {2 + ®(1 - ,«Gj} SL (28)

my

We have choses the infinitesimal two vector ((:),6)

parallel to spin operator S, which allow us to replace
L® by spin —orbital couplingSL, however, the local

equivalent potentialﬁ r,A,Z,@,é) can be re-

vrasq—so—pert (

written to the following new equivalent form for modified
(v.r.a.s.q.) potential:

big (r,A,Z,@,é) =

vrasq—so—pert

3 29
:1{9+@(1_2Aj}(32_z2_§2) 9
2 |2m, ré

To the best of our knowledge, we just replace the cou-
pling spin-orbital SL by the expression%(j2 - Z2 - §2) s
mechanics. The set
(%) (D;»%;),J%, 17, S*and J,) forms a com-

plete of conserved physics quantities and the eigenvalues
of the spin orbital coupling operator are:

in quantum
(H

nc-vrasq
p.(j=1+1/21s=1/2)=

1 1 3
(l+§j(l+§+l)+l(l+l)_2

=p, for j= l+% = polarization —up (30)

Do =

1 1 3
(l-g}(l—§+1)+l(l+1)—z

=p for j= l+% = polarization —down

Which allows us to form a diagonal (3><3) matrixes,

elements are
[(ﬁsowmsq)n,(ﬂsowmsq)m,(ﬁso_vraq)33] for (v.r.a.s.q.) po-

with non null
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tential in (NC: 3D-RSP) symmetries, as:

(Ho-sras )H =p, {2:10 + @[1 —Zr—‘: —J}

ifj=1+5 = spinup

; 0 24
(Booarisa),, = P { o —@(1 —ﬁj} (31)

ifj =1-1 = spin down

Substituting eq. (28) into eq. (21) and then, the radial
part of the (MSE), satisfying the following important
equation:

1 d[ ZiJ+l(l+1)_é+r2

F@ " dr r? r

0 oaller [T @
L7 o 24

2m,, r

= Enc—vrasq(pnl (7’)

It is clearly that the above equation including eq. (28)
which represent the perturbative terms of Hamiltonian
operator and in order to find the eigenvalues for modified
(v.r.a.s.q.) potential, in (NC: 3D-RSP), we must solve the
modified time independent radial equation (32) by apply-
ing standard perturbation theory in next sub-section.

4.2 The exact spin-orbital spectrum for modi-
fied (v.r.a.s.q.) potential for ground state and first
excited state for one-electron atoms in (NC: 3D-
RSP) symmetries:

The main goal of this sub section, is to study the mod-
ifications to the energy levels

( Enc—per:u (I’l, 0, 5), Enc—per:D(naG),g)

down, respectively, at first order of parameters (® , 0 ),

) for spin up and spin

for excited states nth, obtained by applying the standard
perturbation theory, using wave function which present-
ed by eq. (19) and the perturbative terms of Hamiltonian
operator which presented by eq. (31) in (NC-3D: RSP)
symmetries, as:

[N,

ph[e*’”rzrz;~ [M(—n,i +3/2; corzﬂ2 {220-# [1 - 2;;1)} r’dr
.,

p e [ Mnarsrzor)| {QZO +( _2;64]} re

As it is montionated in ref. [31] and in order to have
a better understanding of the effects of the presence of
the supersingular components of the potential in such
systems, it is necessary to investigate the ground state

(33)
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and first excited states in (NC-3D: RSP) symmetries, to
achieve this goal we search the modifications to the en-

(n=0,®,§) ,Encfper:D(n=O,®,§))
(n =1, @,5)) corre-

sponding the ground state and first excited state, eq. (33)
leads to obtain the following modifications:

ergy levels (E

nc—per:u
and (E,_,,.,(n=1,6,0) E

nc—per:D

Enc—per:u (n = 0’6’5)

2
[Noa|

2 0
D, [@Z T _4(n=0)+—T,_,(n= 0)]
i 2mo

_ (34)
Enc—per:D (n = 0’6’9) _
[No |
p. [@i T ,(n=0)+-2-T, (n= o)j
1=1 2m0
and
Enc—per:u (n = 1’6’5) _
[N,
2 6
p. {@Z T, (n = 1) + TTncfp (n = 1)}
- mo (35)

Enc—per:D (n = 1’®’ 5)
[V,

p_ (®22: T, (n’ = 1) + iTnc’m (n = I)J
i 2myo

Where, the 6- terms: (T,_;(n=0), T, 3(n=1) i=12),
T, ,(n=0) and T,

ne—p ne—p

(n = 1) are given by:
Ty (n=0)=-24] 2o ™ dr

. (36)
T, 3(n=0)=T, ,(n=0)=[,24+2""dr
and
T 4(n=1)=T _4(n=0)-
—AA[ 223" dr—2A[ 2324 " dr -

T, (n = 1) =T,., (n = 1)

=T, (n=0)+2] 2443, " dr+ [ 2244 dr

~ Thne-p

Moreover, we use the following form of special inte-
gral [67]:

» l“(m+1 ,,an)
m n n
gx exp(—ﬂx )dx: T (38)
npg "
where l"[m+1, ﬂx”}is incomplete Gamma function,
n

after straightforward calculations, we can obtain the ex-
plicitly results:
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F[%,wrﬂ
’_]11_3(7120):—2AW
o 214+3 (39)
F( 2+ ,wrzj
E—B(nzo):Tncfp(nzo):W
20 2
and
Ti5(n, =1) =T 5(n=0)-
21-1
F(ifl,wrz) r(72 ,a)rzj
4A e -2A P
20 2
40
212—‘% (nr - 1) = Tnc—p (nr _1) ( )
21+5
F(ﬂ+2,a)r2) F( 9 ,r2j
T, ,(n=0)+2 gt s
2w 2

Substituting eqgs. (39) and (40) into egs. (34) and (35),
respectively, lead us to the following relations:

E n=0,0,0)=|N,,["

ne—per:u (

b, {GTncs (n = 0) + iTrqu (n’ = O)}
2mo

_ , (41)

Enc—per:D (n = 07@’9) = ‘NO;L‘
P (@Tm (n=0)+ 2iT (n= o)J

mo

and

Enc—per:u (n = 1’®’§) = ‘Nl/l‘z
p. [@Tm (n=1)+ ZLTWP (n= 1))

i (42)

Enc—per:D (n = 1’6’5) = ‘Nll‘z

P (@Tm (n=1)+-2-1, (n= 1)}
2mao
Where, the two factors T, _ (n=0) and 7T, _ (n=1)

are given by, respectively:
T, s (n = 0) =T, (n = 0) +T, 4 (n = 0)

T, (n=1)=T_35(n=1)+T, ;(n=1)

nc—s

(43)

4.3 The exact magnetic spectrum for modified
(v.r.a.s.q.) potential for ground state and first ex-
cited state for one-electron atoms in (NC: 3D-
RSP) symmetries:

Having obtained the exact modifications to the energy
levels (E,. .. (n =0,0, 5) B (n =0,0, 5) ) and

(E (n =10, 5) , Encfper:D(n = 1,@,5) ) corresponding

nc—per:u

nc—per:D

the ground states and first excited states, produced with
spin-orbital induced Hamiltonians operator

J. NANO- ELECTRON. PHYS. 8, 04076 (2016)

A

(r,A,Z ,®,5), we now consider another inter-

vrsaq—so—pert

ested physically meaningful phenomena, which produced
from the perturbative terms of inverse-square potential
related to the influence of an external uniform magnetic
field, it’s sufficient to apply the following three replace-
ments to describing these phenomena:

L6 +[1—2fj|“_é—>{ Z +Z(1—2fj}§i (44)
2m,, r 2m, r

and
6 —> yB,® > yB and 6 —oB (45)

Here y and o are infinitesimal real proportional’s

constants, and we choose the uniform magnetic field par-
allel to the (Oz) axes, which allow us to introduce the
modified new magnetic Hamiltonians

rAZ, ;(,E) in (NC: 3D-RSP) symmetries,

vrsaq—m-—pert (

as:

r,A,Z,;(,g):

p—
:(;%w(l_zrg‘n(ﬁy_gﬁ)

Here (Ej—gﬁ) is the new modified Hamiltonian of

(46)

Zeeman Effect and (—gﬁ) denote to the ordinary Hamil-

tonian of Zeeman Effect in commutative space. To obtain
the exact noncommutative magnetic modifications of en-

(n:0,®,§) and E (nzl,@,é) corre-

nc—per:m

ergy E

nc—per:m

sponding the ground states and first excited states, pro-
duced with spin-orbital induced Hamiltonians operator

) r,A,Z,@,é) for modified (v.r.a.s.q.) potential,

vrsaq—m-—pert (
we make the following three simultaneously replace-
ments, this to avoid repetition in the previous calcula-
tions:

p.(p) >m,(0,0)>(r.z) and 6B (47)

Into two egs. (41) and (42) to obtain the new modifica-

values E

tlons nc—per:m (

n=0, 1,5) and

E. . perm (n = 1,;(,;) , respectively, as:
Encfper:m (n = O’ Z’g) = ‘Nol‘2

m[;{Tm_s (n=0)+ 2Lmon_p (n= O)J
(48)

Enc—per:m (n = 1,,{’,5) = ‘Nll‘z

p{ﬂm(n:m;Tmp(n=1)]

mo

It is known that the angular momentum quantum
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number » can be takes (2/+1) values and satisfy-
Ing-1<ms<+.

5. RESULTS OF EXACT MODIFIED GLOBAL
SPECTRUM OF THE LOWEST EXCITATIONS
STATES FOR MODIFIED (V.R.A.S.Q.) POTEN-
TIAL FOR ONE-ELECTRON ATOMS IN
(NC:3D- RSP) SYMMETRIES:

useful to resume the
nzO,@,é,g,a),E

nc—vrasq:D (

It is energies levels

(E n=0,0,0,7,0))

nc—vrasq:u (
and ( Enc—vrasq:u (n = 1’ ®’ é’ ){a O—) ’

n=1,0,0,y,0 )) of the (MSE) of a fermionic

Enc—vrasq:D (

particle with spin up and spin down for the ground state
and first excited state, respectively, for modified
(v.r.a.s.q.) potential on based to the obtained new results
(41), (42) and (48), in addition to the original results (19)
of energies corresponding ordinary commutative space,
we obtain the detailed energy behaviours of the system
as:

E n:O,@,é,;(,cr):Egl+

nc—vrasq:u (

(p+® +my)T,.,(n=0)+ (49)

‘N“‘ (9p+®+a;()T ,(n=0)

mo

0 5 ~ 0
Enc—vrasq:D (n = O,®707}{,U) ZEO/1 +

(p ©+my)T,. ,(n=0) (50)

+No,

2m0 (Hp o+ O-Z)T"C-P (n=0)

Enc—vrasq:u (I’L = 17®, g, ,l’,g) = E?/l +
(p+®+mz)Tm,_s (n=1) 51

+|V.
‘ 1/1‘ (0p+®+UZ)T (n:l)

mo

Enc—vrasq:D (n =1, ®7§,Z,g) = E?/l +
(p ©+my)T,.  (n=1) 52)

ANl (ap ©+0x|T,,(n=1)

2m0
Where Eg , and Ef , are given by, respectively:

Eg, =(24+3)w

(563)
E), =(24+7)o

In this way, one can obtain the complete energy spec-
tra for (v.r.a.s.q.) potential in (NC: 3D-RSP) symmetries.
Know the following accompanying constraint relations:

1. The original spectrum contain two possible val-
ues of energies 1in ordinary two—three dimensional space
which presented by eq. (19),

2.  The quantum number m satisfied the interval:
-1<m<+l, thus we have (2/+1) values for this quantum
number,

J. NANO- ELECTRON. PHYS. 8, 04076 (2016)

3. It is known that for a fermionic particle with
spin s=1/2 we have also two values for global momen-

tum j:l+% and j:l—% corresponding spin up and

spin down, respectively.

Allow us to deduce the important original results:
every state in usually three dimensional space will be
replace by 2(2/+1) sub-states and then the degenerated

n-1
state can be take 23 (2/+1)=2n"values in (NC: 3D-
i=0

RSP) symmetries . It's clearly, that the obtained eigen-
values of energies are real and then the noncommutative

diagonal Hamiltonian operators
I;Tncfwmq (nr,A,Z,®, 0,7, o—) are Hermitian, furthermore
it’s possible to writing the elements(lflncfmacq) ,

11

(ﬁncfvrsacq)m and (lflrw_wmq)33 as follows:

R A A2
(an—vmm ) == L li r2£ + 1 i sin gi + ! 3 ¢ 5 |+
“hi - 2my| 2or or) r2sing o6 00) ,¥(sing)’ o¢"

1(the kinetic -energy )

+ %+r‘2 + p+[i—®(1—%ﬂ +{Z —1(1—%j BL
r 2mo r 2m,, r

2((v.rsa.q) potential ) g(sperturbative spin-orbital terms )

4(modified Zeeman Effect )

for j=/+1/2 = spinup

(54)
1 a( ]+ 1 a( 97J
(FI ) B 1 |r 2 or or r2sin@ 00 00
ne-vrscaq Joo - 2m0 . 1 a2

. 2 2
r*(sin@) 04
1(the kinetic -energy )

+ £4+r2 p{g—(a[l—&?ﬂ
r 2mo r )]

N
2((v.r.s.a.q) potential ) 3(

Perturbative spin-orbital terms )

+{o-—;((1—2AJ}BL for j=/¢-1/2 = spin down
2m,, r

4(modified Zeeman Effect )

(55)
10 ( 5 aj
e Ll
R 1 | reor or
(an—vrscaq )33 = _T 1 1 2
m, . 0
r°siné 00 00 r2(sin¢9) o
1(the kinetic -energy ) ’
A o
+ 4y
r4

-
2((V.rAs.c) potential )

(56)

The first term in the modified Hamiltonian operator

H (nr,A,Z,®, 5,;{,5) represents the kinetic energy

nc—vursaq

H oursag ©f the fermionic particle or the free Hamiltonian,

the second term represents the potential energy

H, . . il In ordinary quantum mechanics, the third

vrsaq—-1int
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term ﬁ

vrasq—so—pert

(r,A,Z,@,g') represents the induced

spin-orbital parts and the last tem

A

H (r,A,Z, Z,;) is induced automatically by

vrasq—m-—pert

external uniform magnetic field, the last two terms have
been produced automatically from the position-position
and momentum-momentum noncommutativity proper-
ties. On the other hand, the above obtain results allow us
to constructing the diagonal anisotropic matrixes

[(ﬁn&macq )11 # (I-Alncfmacq )22} # (ﬁncfvrsacq )22 of the Hamil-

tonian operator H (nr,A,Z,®, o, ;(,g) for modified

nc—ursaq

(v.r.a.s.q.) potential in (NC: 3D-RSP) symmetries is given
below:

an—ursaq (nr ’ A’ Z’ ®’ 0 » As O') = HOUUrsaq]3*3 + Hvrasq—intIS*S
+HU'“SGQ*SO*P€V1 (I", A’ Z’ ®’ 0) + Hvrsaqu—pert (I", A7 Z9 Xs 0)

(57)
Which allows us to obtain the original results for this

investigation: the obtained Hamiltonian operator
b2 (nr,A,Z,®, 0,7, a) which determined by eq

. (67 Can be describing atom which has two perma-
nent dipoles: the first is electric dipole moment and the
second 1s magnetic moment in external stationary elec-
tromagnetic field.
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