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In this paper, we investigated the influence of deep impurity in graphene on the tunneling current in 

the contact with a metal. A ballistic current in graphene was calculated. The dependence of current-voltage 

characteristic of the contact on transition energy between the impurity and the graphene was analyzed. 
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1. INTORDUCTION 
 

In this paper, we study the tunneling current in the 

contact of the graphene with deep impurities and 

metal. The term ―deep impurity‖ used here refers to the 

impurity whose levels are lied above Fermi level and 

separated from the Fermi level on the value more kT 

[1]. The study of the materials with deep impurities is 

very important because such impurities have a great 

influence on the electronic structure — and thus the 

properties of semiconductors [2, 3]. 

The tunneling current of carbon nanotube with a 

metal without taking into account transitions between 

impurity levels was calculated in [4]. In this study, we 

take into account the transition to assess its degree of 

influence on the tunnel and an electric current, and do 

it in the framework of the semiholographic approach. 

Recently there are many researches in which ideas 

from both superstring theory and quantum gravitation 

find a use in condensed matter physics [5, 6]. So-called 

semiholographic approach was proposed recently as 

generalization of AdS/CFT correspondence ideas and 

holographic approach [7]. The main idea of the 

approach lies in the fact that graphene is described by 

dispersion law taken from the AdS/CFT 

correspondence, and interacting system is described by 

common way, for example, Green's function method. In 

this approach specific dispersion law of elementary 

excitations used in seed Green’s functions remains in 

holographic description of graphene. From this point of 

view, the approach is advanced enough since the 

holographic description of fermions is applied in 

different fields of solid state physics. 

Initially, this approach proved to be very promising 

in the physics of systems with strongly correlated 

fermions [8, 9]. This method allows us to describe many 

of the observed dependence, in particular, the 

dependence of specific conductivity. At first glance, it 

seems that in graphene is irrelevant, since it is 

commonly used approximation of free fermions. 

However, in recent years there are many modifications 

of graphene, which can not be considered free fermions 

(even the discovery of the superconductivity effect in 

graphene). In this way, we have proposed approach 

looks promising. A case of common graphene we can 

obtain from this method if we annihilate the 

corresponding parameter in the proposed Green`s 

function. 

Also, it should be noted that in recent years there are 

many works about practical application of carbon 

nanomaterials (nanotubes, graphene), including as a 

component of various types of devices [10-11], which 

action is based on the tunnel effect. In addition to the 

carbon nanostructure devices used as light sources [12], 

there are various kinds of devices based on the tunnel 

contact of nanotubes with different conductivity type [13]. 

 

2. STATEMENT OF THE PROBLEM AND BASIC 

EQUATIONS 
 

We consider the graphene with double level 

impurity. Hamiltonian operator for this media can be 

written in matrix form as follows: 
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ε1, ε2 are impurity levels, W1, W2 are constants of 

electron transition from impurity levels to condition in 

graphene, ε(k) is the electron dispersion law for 

graphene, in particular for doped graphene.  

Here, the Hamiltonian is defined in the wave 

function space 1
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 , where ψfl describes the electron 

wave function in graphene, ψ1 corresponds to the wave 

function of the electron localized on the first level, ψ2 

corresponds to the wave function of the electron 

localized on the second level.   

An exitatiob spectrum can be found with standart 

method, from condition det|H – ωI|  0. Then we 

obtain the equation for eigenvalues:  
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Using the following replacement: 
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we have three roots of the equation: 
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Further, we should take into account that the 

dispersion law for stimulation close to Fermi level in 

the framework of holographic approach is given by 

formula [7, 14]: 

 

 

  2 2

,

,

2 1

F x y

k

k r

k k k

  

 



  

 

  

  

 

where kx, ky are the pulse components, Δk is the 

conformal dimension, r  const [15, 16]. The case of the 

common graphene corresponds to r  0. 

In the case   2 we can obtain the dispersion law 

for doped graphene explicitly from ADS/CFT 

correspondence: 
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Further, we choose positive sign. 

 

 
 

Fig. 1 – Electron density of states for graphene with deep impurity: (a) ε1  0.5 eV, ε2  0.6 eV; (b) ε1  0.7 eV, ε2  0.8 eV 
 

The peaks correspond to the impurity levels. 
 

3. TUNNELING AND BALLISTIC CURRENT 
 

In the framework of Kubo theory, formula for the 

current density of the contact can be written in the 

following form [17]: 
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where ( )x  is the Dirac delta function, ( )( )A B E is the 

tunneling density of states; ( )fn E is the equilibrium 

number of fermions with energy E. The approximation 

of a "rough" contact is hereinafter used, so that 

pqT T  (this imposes certain restrictions on the 

contact geometry, that is for the case discussed below 

means that graphene plane should be perpendicular to 

the contact material surface). For definiteness we 

choose the dispersion law for the graphene with deep 

impurities , and the dispersion law for the metal as 

the contact material being: 
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After calculating the integrals in (5), it is easy to 

obtain tunneling current in the contact (Fig. 2).  

As can be seen from Fig.4 increasing of the impurity 

energy result in an increasing of the electric current. 

The influence of the transition parameter between the 

impurity and graphene levels in the following ways: a 

closer transition energy for two levels to each other 

causes a reduction in the electric current. Thus, such 

current is also very suitable for the determination of 

the impurity and its concentration. As can be seen from 

the graphs, we have a noticeable impact of the impurity 

energy on the tunneling current in the system. 

Increasing of the impurity energy leads to increasing of 

the tunneling current, wherein the section with a 

negative differential conductance (NDC) does not 

change. 
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Fig. 2 – Dependence of tunneling current on voltage for the 

graphene-metal contact for the different values of impurity 

energy: (a) ε1  0.5 eV, ε2  0.6 eV; (b) ε1  0.7 eV, ε2  0.8 eV 

Early we observed similar behavior in the study of 

the tunneling current in contact of a metal with 

graphene nanoribbons with multi-level impurities. 

Thus, it becomes possible to determine what kind of 

impurity adsorbed on graphene. 

Ballistic current in graphene can be found by the 

formula [18] (Fig. 3): 
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here T  sc/(sc + L), sc is the scattering length, L is 

the sample length. The number of modes M is 

determined by the density of states, f(E) is the Fermi 

distribution.  

 

 
 

Fig. 3 – Dependence of ballistic current on voltage for graphene with deep impurity: A – for the different values of impurity 

energy: (a) ε1  0.5 eV, ε2  0.6 eV; (b) ε1  0.7 eV, ε2  0.8 eV; B – for the different values of transition energy: (a) W1  0.7 eV, 

W2  0.3 eV; (b) W1  0.6 eV, W2  0.4 eV 
 

4. CONCLUSION 
 

1. In the framework of semiholographic 

approach, the influence of impurity on the tunneling 

characteristic of the graphene-metal contact was 

studied.  

2. The influence of impurity levels energy and 

transition energy from impurity levels to graphene on 

the current-voltage characteristic was shown. 

It was revealed, that tunneling current as well as a 

common electrical current is sensitive to impurity. In 

the case when impurity levels energy increases, the 

tunneling current is also increases, as well as ballistic 

current. This fact can be associated with the changing 

of the state density of the sample. 
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