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The prospect of application of the multiferroics in devices and spintronics devices is shown.  A compar-

ative analysis of magnetic and dielectric properties of nanostructures based on bismuth ferrite which were 

synthesized by various ways was made. The results of studies of the structure and properties of the 

nanostructured bismuth ferrite powder, synthesized by combustion of nitrate - organic precursors, are pre-

sented. 
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1. INTRODUCTION 
 

Creating the substances - multiferroics, having both 

magnetic and electrical properties [1], opens up new 

opportunities and prospects for their use in spintronics 

- the science   engaged in the processing problems, 

storage and transmission of information using the 

magnetic moment of the electron. The main task of 

spintronics - the transformation of the information pro-

vided in the form of the magnetization in the electric 

voltage and vice versa. The transformation of the mag-

netization in the electric voltage can naturally be at the 

expense of a linear magnetoelectric effect, which can be 

written as two relations M   E and P   H, where M 

– magnetization, E – electric field, P – polarization, H – 

intensity of the magnetic field,  – coefficient charac-

terizing the magneto-electric effect. For the first time 

the interaction of the electronic and magnetic subsys-

tems was observed Astrov DN [2] in the compound 

Cr2O3, and a little later in the GA Smolensky lab was 

created  a whole class of multiferroics with magnetoe-

lectric properties [3]. The value of α in of Cr2O3, as de-

fined in the system CGSM units, was 20 mV/(cm Oe). It 

should be noted that in the bismuth ferrite films thick-

ness 50 nm at room temperature was opened giant 

magnetoelectric effect [4] with the  value equal to 

3B/(cm Oe). It should be noted that the linear  magne-

toelectric effect in BiFeO3 can only occur when the anti-

ferromagnetic spin cycloid (with a period of 62 nm) is 

suppressed. One way to achieve this effect is production 

BiFeO3 (BFO) in nanoscale form (film, nanopowders, 

nanostructured ceramics). Doping with ions of rare 

earths leads to structural transformation of BFO, 

whereby there is a change of magnetoelectric properties 

of the material. In [5] it is shown that the simultaneous 

doping BFO nanocrystalline yttrium and manganese 

increases the magnetic and electrical properties, as 

well as magnetoelectric coefficient compared to pure 

BFO. At the same time, the doping leads to increasing 

of conductivity even at room temperature, which reduc-

es the effect of the spontaneous polarization and dielec-

tric properties. Epitaxial thin films can, in principle, 

may be weak  ferromagnetic, but epitaxial stresses can 

influence on the crystal structure, polarization and 

magnetization. 

 

2. METHODS FOR THE PREPRATION OF BIS-

MUTH FERRITE NANOPOWDERS 
 

High values of , the temperature of the antiferro-

magnetic (TN  370 С) and ferroelectric (the 

TC  827 С) transitions in bismuth ferrite predeter-

mined his prospects of wide application in spintronics, 

sensory and microwave technology, devices for convert-

ing, recording, reading and storing information [6] and 

other. Analysis of the literature shows a certain spread 

of values of the dielectric and magnetic properties, Cu-

rie and Neel temperatures  in nanostructures based on 

bismuth ferrite, what may be due to size effects, differ-

ent regimes of annealing (temperature - time, the sur-

rounding atmosphere), the influence of impurities. 

Among the many ways to obtain bismuth ferrite na-

nopowders can be identified the following methods. 

The sol-gel method [6] with using bismuth nitrate and 

iron nitrate, followed by annealing at a temperature of 

600 oC for 30 minutes. The method does not provide a mo-

nophasic composition and requires additional procedures 

for the purification of the resulting material from 

Bi2Fe4O9, Bi36Fe24O57 and Bi2O3 impurities. The authors 

reported about method of production the nanopowders 

bismuth ferrite with a particle size of 200 nm and the val-

ue of the real part of the permittivity at room temperature 

equal 15 at the frequency 10 kHz. 

Single phase BiFeO3 nanoparticles (nanoparticles 

size - 47 nm) have been prepared [8] by a combustion 

method using metal nitrates and citric acid without any 

solvent. Dielectric constant at room temperature at a 

frequency of 10 kHz equal ε'  60. The magnetization of 

nanoparticles is small, but the dependence not saturat-

ed at H  17,500 Oe, Mössbauer effect indicates the 

presence only of ferric (Fe3+).  

 Method of combustion of organic nitrate precursors 

with the addition of ethylene glycol and simultaneous 

doping In and Mn is given in [5]. Such doping reduces 

the average grain size of 15 nm, and thus affects on 

their magnetic and electrical properties. For example, 
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the saturation magnetization increased significantly 

from 0,20 emu / g for the BFO to 3,50 emu /g for In and 

Mn co-doped sample. The disadvantage of the method 

can be considered the use of toxic ethylene glycol. 

Solid phase synthesis of samples Bi1 – xBaxFeO3 c 

x  0,15; 0.25, 0.35 it was used in [9]. Received a signifi-

cant increase of the saturation magnetization of the 

samples M  6.0 emu/g, the value of ε' is equal to 380 at 

10 kHz at room temperature. For the first time, in the 

doped bismuth ferrite it was measured magnetic field 

effect on the value of ε'. The effect is to increase the ε' 

by 1.7 % in the field of 8 kOe. 

In [10-12] is described the role of size effects, de-

termining the effect of the size of the bismuth ferrite 

nanoparticles on the saturation magnetization and 

Neel temperature. In particular, in [14] reported the 

Neel temperature shift to 60 at changing nanoparticle 

size in the range 23-54 nm. 

 

3. EXPERIMENTAL MEASUREMENTS OF  

MGNETIC AND DIELECTRIC PROPERTIES 

OF BISMUTH FERRITE NANOPOWDERS 
 

BiFeO3 nanopowder was synthesized [13] by method 

of burning equimolar precursors from aqueous solu-

tions of nitrates iron Fe(NO3)3 and bismuth Bi(NO3)3 

with the addition of nitric acid and glycine. The result-

ing solution evaporated with stirring to the density 

1,14-1,16 g/cm, the heating rate up to the flash point 

was 10-30 K /min. On the X-ray source of nanopowder 

(diffractometer PANalytical Empyrean-2) are not ob-

served crystals of other stoichiometry, except the 

BiFeO3 (1a). The average particle size of the powder 

determined from the Debye-Scherrer formula was 50 

nm. After heat treatment for 1 hour at 600, 700 and 

800 °C (Fig. 1b, 1c, 1d) in the nanopowder appear and 

recrystallized sillenite Bi25FeO39 and mullite Bi2Fe4O9 

phases.  

The magnetization of nanopowders [14] was studied 

at room temperature under field 15 kOe. Already since 

4 kOe dependence M-H reaches saturation. 

The maximum value of the initial powder magnetiza-

tion at 15 kOe (6 emu /g) significantly exceeds the val-

ue of M, presented in [5,10], and after calcination, 

starting with the 700 °C, the magnetization approaches 

to characteristic for BiFeO3 values. High values of the 

initial magnetization nanopowder may be associated 

with the presence there of amorphous incidental phase, 

such as, for example, maghemite (-Fe2O3). For ma-

ghemite above 400 °C is observed [15] transition  

-Fe2O3 → -Fe2O3 (hematite-antiferromagnetic), which 

completes at 600 °C [15]. The samples heat treated  at 

600 °C and above, practically not contained maghemite. 

The magnetization of nanopowders, after heat treat-

ment at 700 °C and 800 °C corresponds to the values 

characteristic of the BiFeO3, as part of the nanopowder 

retains the dimensions below 62 nm. 

 

 
 

Fig. 1 – Diffraction patterns of the initial and the heat-treated nanopowders 
 

 
 

Fig. 2 – The dependence χ (T) of nanopowder bismuth ferrite: Δ – not heat-treated; Ο – after heat treatment at 600 °C 
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Measurements of the magnetic susceptibility χ per-

formed using complex to study the physical properties 

of materials in a wide range of temperatures and mag-

netic fields of PPMS-9 + EverCool-II in the temperature 

range 4-350 K in  the alternating magnetic field with 

frequencies from 10 Hz to 10 kHz and intensities of 

0.01 Oe-10 Oe. 

The dispersion of χ vaiue in the specified frequency 

range is not detected, and nonlinear effects when 

changing the intensity of the alternating magnetic field 

H is not manifested, so we present the results of meas-

urements χ obtained at a frequency of 1 kHz and in a 

field H  1Oe. Figure 2 shows the temperature depend-

ence of the magnetic susceptibility χ (T) of two samples 

of the nanocrystalline powder of bismuth ferrite:  not 

heat treated and after heat treatment at 600 С for 

2 hours. 

It should be noted the following. In – the first, at 

350 K, the magnetic susceptibility of the calcined sam-

ple is at 30 % lower compare to the non-calcined  sam-

ple [8]. The difference in the magnetic susceptibility of 

these samples decreases with decreasing temperature, 

and at 4K they are the same. It is known that the mag-

netic susceptibility (χ) of antiferromagnetics near 0 K is 

small, because the strong exchange interaction pre-

vents the spin orientation by an external magnetic 

field. With increasing temperature, spin ordering is 

disturbed and magnetic susceptibility of AF, in contrast 

to the paramagnetic materials, increases to the Neel 

temperature TN.  

Second, for the non heat-treated sample near the 

temperature 120 K there is a bend in the behavior of 

χ(T). This behavior χ(T) can be explained by the pres-

ence in the sample a small amount of magnetite, for 

which at this temperature is intense recharging of fer-

rous ions and ferric iron, and the corresponding change 

in the magnetization, which is confirmed by Mossbauer 

spectroscopy [16]. The technical capabilities of the ex-

perimental setup does not allow to reach the Neel tem-

perature of the bismuth ferrite (TN  643 K), however, 

the linear extrapolation of the χ (T) dependence for the 

heat-treated sample to the value TN shows that the 

value of χ at TN nearly twice higher than χ at 4 K, 

which agrees well with earlier measurements by Smo-

lenskiy and other [17] for polycrystalline bismuth fer-

rite samples. 

Dielectric properties of cold pressed (pressure 

 1 GPa) and the heat treated powders were measured 

using the dielectric NOVOCONTROL BDS spectrome-

ter in the temperature range from 123 to 723 K in the 

frequency range from 10 Hz to 40 MHz. Contacts to the 

samples with a diameter of 4 mm, 2 mm thick were 

made using silver paste brand SP-40 + Water Based 

Silver Ink. Fig. 3 in a semi-logarithmic scale shows the  

 

 
 

Fig. 3 – The dependence of ε'(f) (T  30 °C, Δ – not heat-treated; Ο – after heat treatment at 600 °C 
 

 
Fig. 4 – The ε-T dependence at different frequencies (sample calcined at 600 C) 
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dependence of the real part of the dielectric constant ε' 

on the frequency f at temperature T  300 °C both for 

the unannealed sample and heat treated sample (an-

nealing temperature of 600 oC).  

The Figure 3 shows significant variance of ε', espe-

cially for the initial sample and that as a result of an-

nealing, character of dependence ε' changes considera-

bly, especially at low frequencies. 

Figure 4 shows the temperature-frequency depend-

ence of ε at high temperatures (100-450 C for a sample 

annealed at 600 C. Near Neel temperature (370 °C) on 

the ε'(T) curves is clearly observed anomalies associat-

ed with an antiferromagnetic phase transition. 

The results of studies of the magnetic and dielectric 

properties of nanocrystalline bismuth ferrite obtained 

by different methods, are summarized in Table 1, 

which gives the values of ε'at 300 C at the frequency of 

10 kHz; the nanocrystals size d; the magnitude of satu-

ration magnetization Ms (emu/g) and values saturation 

fields Hs. 
 

Table 1 – Results of studies of the magnetic and dielectric characteristics BiFeO3 powder 
 

Method Annealingre

nealingre-

gime 

d, nm 𝜀 Ms Hs 

Sol-gel [7] 600 С, N2 200 15 – – 

Citrate combus-

tion method [8] 
600 С, 2 h 47 60 0,2 15 kOe 

Citrate combus-

tion method [5] 
600 С, 1 h 15  In    +Мn – 3,5 2 kOe 

Solid phase syn-

thesis doped with 

Ba [10] 

– – 380 6.0 15kOe 

Combustonofprecu

rsor [11] 

600 С-

800 С 
50 180-120 6.0-0,15 4 kOe 

 

4. CONCLUSION 
 

A review of the experimental measurements and 

own researches by the authors of this article clearly 

demonstrate the presence of magnetoelectric coupling 

and significant dependence of magnetic and dielectric 

properties of bismuth ferrite from the frequency of the 

alternating electric field, temperature, conditions for 

synthesis and heat treatment, the magnitude of the 

magnetic field, the nanocrystal size and the degree of 

doping by impurity ions. 
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cially supported by the Russian Department of Science 
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