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1. INTRODUCTION 
 

Global conformation cluster will assume the geo-

metric configuration of the spatial arrangement of at-

oms (or centers of mass of molecules) of a cluster corre-

sponding to the global minimum of the total energy of 

the interaction between all the particles and will corre-

spond to the conformation of the solid (crystalline or 

quasi-crystalline) cluster. In the approximation of pair 

interactions between particles that make up the clus-

ter, when the energy of interaction between two parti-

cles can be set pairwise interaction potential as a func-

tion of one argument - the distance between the parti-

cles, the interaction energy of a cluster of particles is 

defined as the sum of the energy of the pair interac-

tions of N particles contained in it: 
 

    
1

1 1

N N

ij ij
i j i

E r V r


  

    (1) 

 

To find the minimum of the function (1) apply vari-

ous mathematical methods and using different interac-

tion potentials. The model [2-5] Mie potentials and 

Lennard-Jones most clusters are icosahedral structure. 

The study of clusters using Morse potential [6] showed 

that the minima may correspond to different types of 

arrays, however, geometrical structures tend to be sym-

metrical spherical shape. Often, more sophisticated 

modeling applied potentials Dzyugutov [2, 3] Kratzer [7, 

8] and others. Currently, the most accurate empirical 

interaction potentials of rare gas atoms is considered to 

be the potential of Aziz and his various options [9-11] 

with a sufficiently large set of adjustable parameters to 

be determined by a wide range of experimental thermo-

dynamic properties of gaseous and liquid inert gas. 

To describe the interaction between the molecules 

in the disordered condensed media is not enough to 

choose the parameter values of m and n, in the interac-

tion potentials, we must assume that the depth of the 

potential well in the potentials depends on the number 

of particles in the cluster system and the parameters of 

state of the environment. In this case, the potential 

well depth is called the effective depth and is a function 

of the number of particles in the system, the density 

and temperature. In [12] used a modified Lennard-

Jones potential with an effective potential well, which 

depends on the density of the depth 
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where ,m c   – the density of the liquid at the melting 

temperature and the critical point, md  – the average 

distance between the molecules, 0  – constant disper-

sion forces. 

The effective depth of the potential well eff  in this 

work is determined by the formula  
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it is a function of characteristics of the reference fluid, 

but does not depend on the state parameters substance. 

In [13] it is assumed dependence of the effective 

depth of the potential well eff  and the effective diame-

ter eff  of particles interacting by the law of tempera-

ture: 
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Liquid argon at near the melting point 86T K  of 

the formula (4) gives the following values of:
 

126.7 ; 3.413eff effK A   . 

 

2. THE EFFECTIVE DEPTH OF THE POTEN-

TIAL WELL IN THE PAIR INTERACTION 

POTENTIAL 
 

The effective depth of the potential well in the pair 

interaction potential, in general, we have defined the 

formula [14] 
 

 0eff      (5) 
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where 0  – the depth of the potential well of the pair 

interaction potential,   – effective supplement to it, 

due to the interaction with nearest neighbors. The cal-

culation of the value   is the main objective when 

describing the intermolecular interaction of the parti-

cles within the effective field. 

Within the framework of the cluster model when 

looking at the interaction of clusters with a freely mov-

ing particle with a kinetic energy that is proportional 

to absolute temperature T , for the value   of the 

ratio obtained by the authors [15-17], which allowed us 

to describe features of the IR spectra of liquids and 

minerals: 
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where Z  – the number of particles at a temperature 

T  in the. 

The effective depth of the potential well of the in-

teraction potential in accordance with the formulas (5) 

and (6) defined by the expression 
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The depth of the potential well of the pair interac-

tion potential is determined by the critical temperature 

of the transition liquid-vapor substance. For inert gases 

and liquids with a simple Lennard-Jones potential 

0 0,769 cT  , with the potential (6-exp) – Buckingham 

0 0,82 cT  , for Morse potential 0 0,947 cT   At low 

temperatures 0T   according to the formula (7), the 

depth of the effective potential well becomes equal to 

the energy of pair interaction between particles 

0eff  . 

 

3. THE TEMPERATURE OF MELTING OF 

CLUSTER SYSTEMS 
 

For macroscopic crystals set a rule of thumb, ac-

cording to which the crystalline melting temperature is 

proportional to the depth of the potential well of the 

pair interaction potential. As a first approximation, 

this rule holds for cluster systems and nanoparticles 

[18]. The influence of the surrounding particles of en-

ergy pair interaction leads to a dependence of the melt-

ing temperature of the cluster system by its quantita-

tive composition, or the geometric dimensions. The 

depth of the effective potential well can be estimated by 

the formula (7), then it is possible to put a cluster sys-

tem ,m effT c c const  , taking into account the for-

mula (7), the melting point is determined as 
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The empirical constant c in equation (8) is deter-

mined by the limiting process. For a macroscopic sam-

ple at  ,  m mT T  , i.e. an infinite number of 

particles in the cluster, the cluster system becomes 

equal to the melting point of the melting point of the 

macroscopic sample, so using well-proven data for the 

noble gases and the formula (8) for the empirical con-

stant derived from the value of 
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Considering the value obtained empirical constant, 

the ratio of (8) can be presented in a convenient form 

and written as 
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where Ф  1.6180339 ... - factor "gold" section, 

which defines the Lindemann criterion L  on melting 

cluster systems. 

For clustered systems with a finite number of parti-

cles reduced to the pair interaction energy of the melt-

ing temperature of clusters of different nature is a uni-

versal function of the number of particles in their 

structure. The number of particles in the cluster sys-

tem can be expressed by any and any positive integer, 

but according to one of the theorems E. Zeckendorf 

(1939): Every positive integer has a unique representa-

tion as a sum of Fibonacci numbers, in which the two 

adjacent Fibonacci numbers are never used . Edward 

Zeckendorf proved that this result is general and valid 

for any positive integer, the result is used to solve Hil-

bert's 10-th problem [19]. In the formula (10) under the 

value of Z should be understood the sum of Fibonacci 

numbers corresponding to the number of particles in 

the cluster. 

The depth of the potential well of the pair interac-

tion potential in the formula (10) depends on the type 

of the selected potential, so the prediction cluster sys-

tems melting point of this formula has some uncertain-

ty [20]. Formula (10) is conveniently written as 
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where ( )mT   – the melting temperature of the respec-

tive sample volume, which can be experimentally de-

termined with good accuracy. 

The resulting ratio calculation melting temperature 

cluster systems (11) does not contain any empirical 

constants, and corresponds to the passage to the limit 

is consistent with the experimental data obtained by 

different methods. 

Fig. 1 is a plot of the reduced temperature melting 

quasicrystalline clusters of noble gases according to 

their numerical composition according to formula (11) 

(a) and similar graphs obtained by calculation using 

molecular dynamics (MD) for argon (b) [21]. For organ-

ic nanocrystals according to the theoretical model pro-

posed in [22] cluster melting temperature dependence 

of their size qualitatively repeat our calculations and 

simulation MD results in [21].  
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In [22] studied the size effect the melting point for 

the organic nanocrystals obtained by filling the appro-

priate organic liquids and porous materials show that 

the dependence of the melting temperature of such ob-

jects by their dimensions can be described by the for-

mula 
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where r  – the radius of the crystal,  mT   – melting 

temperature of the bulk crystal, 0r  –  the critical radius 

at which all the atoms are on the surface of the nano-

particles,  2 r  – the mean square displacement 

(MSD) of the atoms of a particle with a radius r , 

 2   – is MSD atoms to the corresponding bulk crys-

tals,   –  the ratio of surface MSD atoms and internal 

atoms of the crystal. 

In a series of studies [23-25] have shown that the 

dependence of the melting temperature of metal clus-

ters on their radius can be described by the simple ex-

pression 
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where   – constant, is approximately the same for the 

metal in the fcc structure. 

The relations (13), (12) and the proposed formula 

(11) give the dependence of the melting temperature of 
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Fig. 1 –  the melting temperature of the noble gas clusters (a), 

the crystallization temperature and the melting temperature of 

the argon cluster system at the triple point T  83.3 K [21] (b) 
 

the cluster systems the number of particles in such 

systems is qualitatively consistent with each other (the 

difference in the calculations in the range of 10-15 %) 

and the joint solution of these equations allows us to 

establish a relationship between the radius of the clus-

ter system and the number of particles in the system. 

 

4. CONCLUSIONS 
 

The melting temperature of clusters and nanoparti-

cles is determined by the depth of the potential well of 

the pair interaction potential, the number of particles 

in the cluster system and the method of packing of par-

ticles in the cluster structure. The cluster is in solid 

(crystalline or quasi-crystalline) state, if the potential 

energy of the interaction of its constituent particles 

corresponds to the global minimum, with the geometric 

configuration in the spatial arrangement of the parti-

cles is considered to be a solid structure of the cluster 

At a certain value of energy reported a cluster system 

destroys the original order in the arrangement of the par-

ticles corresponding to the global minimum, a new config-

uration of the particles, which can be interpreted as the 

configuration of the onset of melting, and the end of melt-

ing occurs at a total loss of initial global configuration of 

particles in the cluster. Melting cluster system process 

occurs at a constant number of particles in the system, 

unlike the particles from evaporation from the surface of 

the volume or cluster or nanoparticles. 
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