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A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for po-
tential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard
perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has
been observed that the exact corrections for the ground states spectrum of studied potential was depended

on two infinitesimals parameters 6 and 0 which plays an opposite rolls, and we have also constructed
the corresponding noncommutative anisotropic Hamiltonian.
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1. INTRODUCTION

It is well known that the exact energy spectrum,
Hamiltonian operators obtained by analytic solutions of
the wave equations and corresponding of three funda-
mental dynamical equations of Schrédinger (SE), Klein-
Gordon and Dirac in the case of (nonrelativistic and rela-
tivistic), in commutative and noncommutative spaces-
phases at two and three dimensional spaces and phases,
are possible for some central and non-central potentials
[1-45]. Recently new mathematical formulations known
by general star product between two arbitrary functions
f(x) and g(x) in the first order of two antisymmetric

parameters (6 ,éij) can modified the original postulates
of quantum mechanics and gives the new commuta-

tors [xﬂ,xvl and [py, pvl, which are playing funda-

mental rolls’ in the non-commutativity geometry of space
and phase (¢ =7 =1) [28-45]:

f(x)*g(x)=f(x)g(x)-
_égwa;f(x)a:g(x)—éé”va;;f(x)afg(x) 1)
[geﬂ,aevl =i0; and [b,.,] =i0j

Here, the two parameters (6,0) are equal(@”,ém),

respectively. In present work, a Boopp's shift method
can be used, instead of solving any quantum systems
by using directly star product procedure:

[xﬂx} —i6,and [p,.5,]=i0s @)

The new four operators®, y, p, and p, are deter-
mined from the relations in (NC-2D: RSP) [28-45]:
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0 ) 0
X=x-—-p,, Yy=y+_-p,

2 2

- 3)
p, =D, + 9 and p,=p, - 9 x
By =Pty by=p:—

We can prove, that the new two uncertainties AxAy
and Ap Ap, for noncommutative two dimensional spac-

es and phases are given by, respectively:
AxAy~60 and Ap Ap, ~ 0 4)

The motivation of present search is to present and
study the deformed (SE) with potential containing cou-
lomb and quadratic terms in (NC-2D RSP) to discover
the new symmetries and a possibility to obtain another
application to this potential in different fields and to
complete our study in our work [37], we want to obtain
new expressions for modified energy levels. Our work
based on the provirus work [30-41]. The rest of this
work is organized as follows. In next section, we briefly
review the (SE) with potential containing coulomb and
quadratic terms in two dimensional spaces. The Section
3, reserved to derive the deformed Hamiltonians of the
(SE) with potential containing coulomb and quadratic
terms and by applying both Boopp's shift method and
standard perturbation theory we find the quantum
spectrum of ground states in (NC-2D: RSP) for studied
potential. In next section we resume the global ob-
tained spectrum and corresponding deformed Hamilto-
nian. Finally, the important found results and the con-
clusions are discussed in last section.

2. REVIEW OF POTENTIAL CONTAINING
COULOMB AND QUADRATIC TERMS IN
ORDINARY TWO DIMENSIONAL SPACE

The two-dimensional stationary (SE) with potential

V(r) =ar? b describing potential containing coulomb
r

and quadratic terms, depending only on the distance r
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from the origin:

(—A + ar2 —bj an’l’m(r7 ¢) = En,l\Pn,l,m(r’¢) (5)
2u r

Where # and E, ; denotes to the reduced mass and

the energy respectively, the coefficients a and b are
both constants. The Laplacian operator takes the val-
ues in polar coordinates:

2
a=tof, 00, 1o ©)
ror\ or) r*og¢
The wave function can be written as [1]:
Y, (e =R, (r) exp(+img) @)

The eigenstate R, ,(r) for coulomb and quadratic
terms potential satisfied the reduced radial differential
function [1]:

d2Rnyl(r) 1an,z('") 2

@ 1 ar il

+2y[Enl—ar2 +bjRn,(r) =0
: .

®

The eq. (7) accepts a solution for a radial func-
tion R, ,(r), as follows [1]:

2
B, (r)=N,, epof; ;an,xr) ©

Where N, , the normalization factor, g and f, ,(r) are

determined from two equations, respectively [1]:
L =2ua

£ =1t i o (10)
n=0

The factors a, determined from the following relations

[1]:

a, =0
2uba,
= 11.1
“ 20+1 (1.1
Zﬁ(nr +1-1)a, , —2uba,
a. =
" (nl-kl)z—l2

In two dimensional spaces, the energy En,,z depended

by the factors a, from the following projection [1]:

a
E, - fga(n,+l—1)—b = (12)
" H an,—Z

The radial part and the energy of (ordinary Hydrogen
atom) counting quadratic term potential for the ground
state, respectively [1]:
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R(r)=N,, exp(—\/ﬁg)rl (1 —ﬁr) (13.1)
and
By =Za(l+1)+ gt (13.2)

where N. 21 denote to the normalization constant.

3. TWO DIMENSIONAL NONCOMMUTATIVE
SPACE AND PHASE FOR POTENTIAL CON-
TAINING COULOMB AND QUADRATIC
TERMS

Know, we present some fundamental principles of
modified Schrédinger equation in (NC-2D: RSP); apply-
ing the important 4-steps on the ordinary quantum
(SE) [31-42]:

— we replace ordinary two dimensional Hamiltonian

operators H ( pi,xi) by noncommutative new Hamilto-
nianI:I(f)i,fci) ,
— we replace ordinary complex wave function ‘1—’(;) by

new complex wave function ¥ (;”7) s

— we replace ordinary energy E, ; by noncommutative
energy K.,
— the last steps correspond to replace the ordinary old
product by new star product.

Which allow us to construct the modified Schro-
dinger equitation in both (NC-2D: RSP) as:

ne—qc

ﬁ[(ﬁi,xi)*@(i)=E @(i) (14)

Now, we apply the Boopp’s shift method on the
above equation to obtain, the reduced Schrodinger
equation (without star products):

H(ﬁl’ﬁl)w(?) = Enc—qel//(?) (15)

This is a translation of a Schrédinger equation for p,

and ®; with the same complex wave function w(? ) .As a

direct result of the eq. (3), the two operators # and p? in
(NC-2D RSP) can be written as follows [30-41]

{f‘2 =r?- 0L,

Y y = (16)
p =p +6L,

Here Lz =Xp, — YD, It’s important to notice that

the rolls of #and 6 are inversed(é’zfé). After a

straightforward calculation, we can obtain the three
important terms:

afzzarz—aHLZ
b_b b,
2r

P _p 0
2m, 2m, 2m,

@am
For

z
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Which will be use to determine the deformed potential
containing coulomb and quadratic terms V' (#) and the

"2
new deformed kinetic term p

, in (NC-2D: RSP), re-

m
spectively:
V(f)=ai*-2
r
o 5 (18)
p__ (l;i(r:i)+%02)+—L
2my  2my \T TN w) g ) gm Tz

It is well known, that the angular momentum is
perpendicular to area of motion in two dimensional
spaces, then the obtained result is naturally, which
allow us to obtaining the global potential operator
H (#) for potential containing coulomb and quadratic

terms in both (NC-2D: RSP) as:

H(f“)—arz—b+[6’(b—aj+ 0 }LZ (19)

r or® 2m;

It’s clearly, that the two first terms are given the ordi-
nary potential containing coulomb and quadratic terms
in two dimensional space while the rest terms are pro-
portional’s with two infinitesimals parameters (@

and @ ) and then gives the terms of perturbation H(r)

for potential containing coulomb and quadratic terms
in (NC-2D RSP) as:

H(r):(&(zbrg—a}t 0 JLZ (20)

2m,,

This can be writing to the equivalent form:

H(r):(@(b—a)+ o J@Z (21)

2r? 2m,

We orient the spin to the (0Oz) which appear parallel
with L, , which allow us to write, the perturbative term

H(r) as follows:
H(r)= [e[b—aj+9j(32 - —§2j (22)

— —2 -2 =2

We have replaced (SL) by%(:]z -L -S ) , this opera-
tor traduce the coupling between spin and orbital mo-
mentum. After profound straightforward calculation,

one can show that, the radial function R, (r) and the
angular function @(qﬁ) are satisfied the following two

equations, in (NC-2D: RSP), respectively for potential
containing coulomb and quadratic terms:

d°R, (r) +1 dR,,(r) _ﬁ

R
dr? r dr r? n’l(r)Jr
+2y[EW —ar’+ Q]Rn /(r) (23.1)
o,
b 0
—2y[9(2ﬁ,—aj+2%j LR, (r)=0
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and

e, (4)

M@, (¢)=0

(23.2)

The set (H ,J*, I, S>and oJ,) forms a complete

of conserved physics quantities and the eigen-values of
the spin orbital coupling operator are

k, = ;{[1 + %J I+ é +D)+I(+1)— i} corresponding:

j= l+% (spin up) and j = l—% (spin down), respectively
[30-41], then, one can form a diagonal (2><2) matrix,
with non null elements are (H,, )11 and (Hso)22 for po-

tential containing coulomb and quadratic terms in (NC-
2D RSP) as:

b g
(H,,), =k, [9(§ 7a)+ 5

my
b 0
(Hso)zz =k (e(ﬁ - CLJJr 2m0

jifj:l+% = spin up

24)

Jifj:l—% = spin down

4. THE NONCOMMUTATIVE SPECTRA FOR
(ORDINARY HYDROGEN ATOM) COUNTING
QUADRATIC TERM POTENTIAL IN TWO
DIMENSIONAL NONCOMMUTATIVE SPACE
AND PHASE

The exact values for energies states ENU_CQ and

ENchQ of an electron with spin up and spin down,

corresponding the two operators (Hy ), and (Hp),,
are determined to be, respectively
Envy-cq=Eo+Ey_cq (25.1)
END—CQ =K, +ED—CQ (25.2)

where E; ., and Ej o, are the modifications to the

energy levels, associated with spin up and spin down at
first order of two infinitesimals parameters (6 and@ )
and by applying the perturbation theory, E; o, and

E}, oo became, respectively

By cq _
2 'L(l,j=1+1,
Ma'L(Lj=1+1,s) . 6.0
_ g b O Ly (;
=¥ (r){@[zrgaj+2mo}‘}’p(r)rdr
ED—CQ —
2 'L'(l,j=1-1,
Ma'L'(L.] %) (26.2)

:I‘{’(p)* (;){0[;3 - aj + ;:10 }‘I’(p) (;) rdr '

The non-commutative modifications of the energy
levels, associated with spin up and spin down, in the
first order of corresponding (E,; and E,;) are deter-

mined using Esq. (11), (22) and (29) to obtain
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U ~U-CcQ _ 20+1
=|eXx 7‘ X
atin = e (VA )

b
j 0(?—(1) @7)
r r

Ep Ep-cq jexp( ﬁrz)rzmx

21k
9(%760 (28)
2 9 r
(1+(2M) rz—Tilr] 5 dr
2my,

A direct simplification gives:

Ey_cq =211k, HZT +—ZT (29.1)
i=1 2m01 =7
6 g 9

Ep oo =211k | 0> T,+—>'T, (29.2)
i1 2my i

Where the notations 7, are given by:
:Z+'([wexp(_\/ﬁr2)r2l2dr
L +jzo exp(fﬁrz)rw“dr
b
T, == (2l+2] ;[ ( -Jpr’ ) 2y
S (30.1)
T, =-a (ﬁj _([ exp (—\fﬁr2)r2“3dr
( fr ) gy
ex p( \Fr) riidr

b
570 221+1I

and

j exp f Br ) r2gr (30.2)
j exp(~JBr? ) rt
We use the following form of special integral [46]
fxm exp(-ax")dx = —F(”;;ax) (31)

Where 1"(”‘—+1 ax ) is the incomplete gamma func-

tion, then we obtains the following results
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r(tpr)

711:_7#,
2 26"
(22 pr?
T2:a(27%2) (32.1)
28+
21+
r_ b 7 SR
2 2l20+2 25"
and
b (21++ ﬂr )
T7*7 zliz ’
2
2l+4
[ ] fr) (32.2)
2y r(%’ rz)
97~ a1 2ﬂ¥
and,
2T 21+4,ﬁr2
T4:a 7 ( 2 21+4 )
20+2 26"
2
b 2}/ Fll?ﬂr
5:77(2727[) (32.3)
22l+1  9ps
201+3
, pr
6:0’ 27/ ( 2043 )
21+1 9p+

Which allow us to obtaining the exact energy of
ground state in (NC-2D: RSP) spaces and phases for
potential of (ordinary Hydrogen atom) counting quad-
ratic term associated with spin up and spin down in the

first order perturbation of # and 6 as follows

E; cq =211k, [HTzs + ;:%Tb] (33.1)
Ep g =211k (HT%_+6T2PJ (33.2)
2m,
Where
ZT and T, = ZT (34)

i=1

We conclude, from Egs. (13.2), (33.1) and (33.2) the
total energy of electron with two polarizations spin up
and down E.; ¢, and Ey;, oo for potential containing
coulomb and quadratic terms in (NC-2D: RSP) produced
by the effect of spin-orbital interaction as:

Ey. _cq = ( l+1 +ﬁ+

i (35.1)
+2[1k, [HTZS +2mOT2pj
Eyp_cq = \ﬁa (l + 1) + 2zb+1 +
(35.2)

7
+2[1%_| 0T, + —T.
[ 2s 2m0 Zp]

On another hand it’s possible to writing the corre-
sponding non-commutative Hamiltonian H,., as fol-

01021-4
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lows:

Hy,=H+H,_ (36)

Where H and H_, are determined from, the following

relation, respectively:
A o2 1 0
H=|-1 (l%(r§)+%‘/—g)+ar2 b
2mg \" N S o r)\o 1
o (k. O
H, =0 i,g —a |+ 0 N
2r° 2my )\ 0 —k_
Furthermore, if we apply the three-following steps:

B(L—aJ+ 4 L — Z(L—a]-r 9 |BL
2r® 2m, ) © 2r® 2m, (38)

and 6 —>oB

(37)

60— yB

And we ordinate the magnetic field ‘B=BFE to (oz)
axis, y and o are two infinitesimal real proportional’s
constants, the magnetic momentpz% and (—§§)

denote to the ordinary Hamiltonian of Zeeman Effect,
we obtains the modified new modified Hamiltonian

H, for potential containing coulomb and quadratic
terms in (NC-2D:RSP) as:
H, = o[ L -a)e 2 |(B7-58) @9
" 2r° 2

m

The above operator represents modified fundamen-
tals interactions between spin and external uniform
magnetic field (containing ordinary Zeeman Effect).To
obtain the exact non-commutative magnetic modifica-
tions of energy E_ ., for potential containing coulomb
and quadratic terms corresponding ground state in
(NC-2D: RSP), its sufficient to replace the three pa-

rameters: k,, @ and 6 in the eq.(35.1) by the follow-

ing new parameters: m, y and o, respectively:

c
Emag-O = 2HmB [ZTZS + 7121)} (40)
2m,,

With -1 < m < +1, which allow us to fixing (2/+1) val-
ues for discreet number m .

5. DISCUSSIONS THE OBTAINED RESULTS

We want to construct the complete NC Hamiltonian
from Eqgs. (37) and (39), which allow us to deduce the
following diagonal matrix Hyc 409 for the coulomb

and quadratic terms potential in (NC-2D: RSP) as

(H NC-2CQ )11 0
0 (H NC-20Q )22

Where the two elements (HNC_CQ)11 and (HNC%VQ)22

H NC-20Q = (41)

are determined by the two explicitly physical form
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1 2
(e sce)y == () 555)
0
vart =2k |0 Z-aleC 42.1)
r 2r 2m,,
+ Z[%—a}- ° \BL
2r 2m0
and
(HNC 20 ) —i(li(ri)+i s )
-20Q )99 2m0 ror or 2 of
(42.2)

Finally, the modified spectrum for ground states
Eny geg and Eyp gop corresponding fermionic parti-
cle with spin up and down produced by modified poten-

tial containing coulomb and quadratic terms can be
deduced from the partial results (35.1), (35.2) and (40):

2 b
Env_coq =3¢ ((+1)+505+

0
+2[1k, [9T23+2mT2p]+ (43.1)
0
o
+2nt[ZT2S +2’n]12pj
0
and
Enp_ceq = xl%a (I+1)+ 55+
0
+2]1k_ [HTZS +2mT2p]+ (43.2)
0

o
+2HmB(;{TZS +2mT2pJ
0

If we consider the limits (9,5) — (0,0) , the above spec-

trum reduces to the ordinary spectrum in two dimen-
sional spaces which obtained from the reference [1].

6. CONCLUSIONS

In this work, we have applied both Boopp's shift
method and standard perturbation theory to obtain the
exact energy spectrum for ground state with coulomb
and quadratic terms potential in noncommutative two
dimensional real spaces and phase’s spaces. We shown
that the ordinary ground state in two dimensional
spaces changed and replaced by degenerated new
states, corresponding two polarized states spin up and
spin down as it’s observed in ordinary Dirac equation
at high energy, thus our study replaced the ordinary
nonrelativistic spectrum by a new relativistic spectrum
valid at height energies.
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