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The basic theoretical models of electrical conductivity of polymer nanocomposites and their accordance 
to experimental results are analyzed for the systems based on polyethers and carbon nanotubes using the 
methods of mathematical simulation. It is established that models which are based on the effective medium 
approximation do not take into account existence of percolation threshold and cannot be used for exact def-
inition of experimental data. It is discovered that the Fourier model demonstrates a good accordance with 
an experiment, however it is applicable only for the systems in which a large increase of conductivity under 
reaching the percolation threshold is observed, that is the systems with low intrinsic conductivity. It is set 
that the best accordance to experimental data was shown by the Kirkpatrick model and the generalized 
McLachlan model, which, except for the percolation threshold, take into account the structural description 
of clusters formed from carbon nanotubes. 
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1. INTRODUCTION 
 
Polymer composites containing electrically conductive 

nanoscale filler particles are the subject of intense stu-
dy in the last decade due to the unique properties and a 
wide range of applications [1]. Carbon nanotubes (CNT) 
[2, 3] are one of the most promising materials used as 
fillers for polymer nanocomposites. Numerous investi-
gations were devoted to the utilization of nanotubes as 
fillers for preparing various polymer nanocomposites of 
targeted applications. CNT as amplifying components in 
composites modify the polymer matrix and generate new 
properties due to the extraordinary mechanical strength, 
electrical and thermal conductivity, thermal stability [4, 
5]. The use of CNT as filler creates great opportunities 
for developing new multifunctional materials with a wide 
range of applications in industry [6, 7]. 

The formation of an electrically conductive grid in a 
non-conducting matrix depends on both the characteris-
tics of a conductive filler (content, distribution uniformi-
ty, shape, size, aspect ratio, surface treatment, and ori-
entation) and the properties of a polymer matrix (visco-
sity, crystallinity, polarization, and mixing technique). 
All these characteristics of both a polymer matrix and 
electrically conductive fillers significantly influence the 
formation of a continuous conductive grid composed of 
the filler particles, percolation threshold, and electrical 
conductivity of the system. It is established that non-uni-
form distribution of a filler leads to high values of the 
percolation thresholds in the system, while improvement 
of the dispersion level of a filler substantially decreases 
it [8]. It is also important to note that the formation of 
a conductive grid created by aggregates of the filler par-
ticles does not always occur through the direct contacts 
between particles. Therefore, in some cases, interaction 
of two particles, which are located at a distance less than 
10 nm can be considered equivalent to the direct contact 

between them, since this small enough distance can be 
easily overcome by charge carriers (electrons) due to the 
jumping or tunneling mechanisms [9, 10]. The contact 
resistance between the particles is the key factor which 
determines the electrical conductivity of a composite. 

Thus, prediction of electrical conductivity of polymer 
nanocomposites filled with CNT is a very difficult pro-
cess. There are many theoretical models by which one can 
describe the concentration dependence of the electrical 
conductivity of the system, but each of them takes into 
account separate characteristics of the matrix or filler. 
Selection of the optimal model will allow to predict the 
functional properties of polymer nanocomposite materials 
filled with CNT. Therefore, the aim of the present work 
was to analyze the main theoretical models of electrical 
conductivity of polymer nanocomposites and their appli-
cation for the description of the experimental data on an 
example of model systems based on polyethers and CNT. 

 
2. BASIC MODELS OF ELECTRICAL  

CONDUCTIVITY OF POLYMER COMPOSITES 
 

2.1 The modified Bruggeman model 
 
To describe the concentration dependence of electrical 

conductivity of filled heterogeneous composite systems, 
one can use the basic approaches of the effective medium 
theory and symmetrical Bruggeman formula [11] 

 

 (1 ) 0
2 2

DC fDC m

DC m DC f
, (1) 

 
where f, m, and DC are the electrical conductivities of 
the filler, polymer matrix, and composite, respectively. 

This equation can be solved by determining DC, and 
then we obtain [12] 
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4DC m f , (2) 

 
where (3 1) (2 3 )m fp p . 

In fact, due to the nonzero probability of quantum-
mechanical electron tunneling through a non-conducting 
medium between the filler particles [9], the system pass-
es from the non-conducting state into the conducting one 
even under the condition when the filler particles do not 
have direct physical contacts with each other. This means 
that the existence of quantum-mechanical tunneling inc-
reases the effective volume content of the filler particles. 
Xue [13] has suggested the existence of two types of the 
volume content of the filler particles, namely, the real 
( 0) and the effective ( ). The relation between 0 and  
is written as 

 
 0p p , (3) 
 

where  is the increasing factor and at that  > 1. This 
factor depends on the polymer and filler nature, on the 
particles shape and sizes, the volume content and their 
space distribution. 

Taking the Bruggeman equation as the basis, Xue 
has suggested that electrical conductivities of the filler 
and matrix depend on the filler content. Assuming that 
all particles in a composite have a spherical shape, based 
on the Maxwell-Garnett theory, and correlation between 
two distinct topological structures (the symmetrical and 
asymmetrical) [14], electrical conductivities of the filler 
and matrix can be represented as [13] 

 

 2
3

b
f f

p
p

, 2(1 )
2

b
m m

p
p

. (4) 
 
Substituting (3) and (4) into (1), Xue has obtained the 

equation for the calculation of the effective electrical 
conductivity of composite systems 

 

 0 0(1 ) 0
2 2

b b
DC m DC f

b b
DC m DC f

. (5) 

 
Equation (5) allows to describe the percolation prop-

erties of the conductor-dielectric composites, such as the 
electrical conductivity, thermal conductivity, dielectric 
permittivity, etc. 
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Fig. 1 – Dependence of the electrical conductivity of the poly-
ether-CNT systems on the content of nanotubes. Solid line is the 
Bruggeman model 
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Fig. 2 – The experimental data simulated using equation (5) 
for nanofilled systems based on PEG-400 (a), PPG-400 (b), and 
PEG-10000 (c). Solid lines are the modified Bruggeman model 

 
2.2 The Fourier model 

 
In [15], Fourier, et al. have proposed the analytical 

model, which is based on the Fermi-Dirac distribution 
and describes the dielectric-conductor transition. 

The basic equation of this model is written as 
 

 
log( ) log( )

log( ) log( )
1 exp

m f
DC f

cb p p
, (6) 

 
where DC, f, m are the electrical conductivities of the 
composite, filler, and polymer matrix, respectively, p is 
the filler content, b is the empirical parameter, which 
leads to the change in the electrical conductivity of the 
system when reaching the percolation threshold pc. 

In general, the Fourier model is very similar to the 
sigmoidal model [16] by both the “S”-like shape, which 
qualitatively corresponds to a typical percolation curve, 
and the influence of most parameters on the value of  
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Fig. 3 – The experimental data simulated using equation (6) 
for nanofilled systems based on PEG-400 (a), PPG-400 (b), and 
PEG-10000 (c). Solid lines are the Fourier model 

 
the total electrical conductivity of the system. The main 
variable parameter of the Fourier model is the parame-
ter b, which changes the shape of the curve. 

 
2.3 The Kirkpatrick model (scaling approach) 

 
The Kirkpatrick model assumes that the appearance 

of high electrical conductivity is explained by the prob-
ability of formation of the contact between the filler par-
ticles within the composite [17, 18]. The basic equation 
of this model is the power law, which is written as 

 

 ( )tDC cp p , (7) 
 

where DC is the electrical conductivity of the nanocom-
posite,  is the filler volume fraction,  is the percola-
tion threshold, i.e. the minimum filler content, at which 
a continuous cluster of particles is formed, t is the power, 
the critical electrical conductivity index, which mainly 
depends on the topological dimension of the system and 
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Fig. 4 – The experimental data simulated using equation (6) 
for nanofilled systems based on PEG-400 (a), PPG-400 (b), and 
PEG-10000 (c). Shaded area is the percolation threshold region 
and lines are the Kirkpatrick model 

 
does not depend on the structure of particles, which form 
clusters, and their interaction (the theoretical value of t 
for a three-dimensional system belongs to the range from 
1.6 to 2.06 [19, 20]) 

However, the Kirkpatrick model allows to define the 
electrical conductivity only after the percolation thresh-
old. To expand the application range of this model, Efros 
and Shklovskii have proposed to use not one Kirkpatrick 
equation, but the system of equations of the type [21] 
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where DC, m, f are the electrical conductivities of the 
composite, matrix, and filler, respectively, s is the critical 
electrical conductivity index characterizing the number 
of particles, which form the percolation cluster (the theo-
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retical value of s for a three-dimensional system is about 
 0.73 [20]). This system of equations is a universal one 

and allows to describe the electrical conductivity of the 
filled polymer systems in the vicinity of the percolation 
transition with a high degree of accuracy. 

 
2.4 The generalized McLachlan model 

 
Using the above mentioned effective medium theory, 

it is possible to describe the electrical conductivity of sys-
tems for the whole range of filler concentrations, but it 
does not take into account the probabilistic effects, such 
as, for example, the formation of the percolation micro-
structure. Percolation models describe with high accuracy 
the change in the electrical conductivity only in the vici-
nity of the percolation transition. Further attempts in the 
modeling of the electrical conductivity of nanocomposites 
are aimed at combining these two approaches. 

For a more complete and correct description of the 
percolation transition in the nanofilled polymer systems, 
the following McLachlan equation is used [22]: 

 

 
1 11 1

1 1 1 11 0
t ts s

f DCm DC
s s t t

m DC f DCA A
. (9) 

 
This equation is the phenomenological relationship 

between f, m, and DC, which are the conductivities of 
the nanofiller, polymer matrix, and nanocomposite, res-
pectively. We should note that equation (9) can contain 
both the complex values of DC, f, and m and their real 
parts. The value of the volume fraction p is in the range 
from 0 to 1; the medium is non-conducting ( DC  m) at 
p  0 and it becomes conducting ( DC  f) at p  1. The 
critical volume fraction pc or the percolation threshold 
characterizes the transition from the non-conducting 
state into the conducting one and defines the coefficient 
A  (1 – pc)/pc. At s  t  1 this equation is transformed 
into the Bruggeman equation (1) for the symmetrical me-
dium. Equation (9) has two solutions, namely 

 

 f : 
( )

s
c

DC m
c

, c , (10) 

 0m : 
(1 )

t

DC f
c

, c , (11) 

 
where s and t are the critical indexes. Equations (10) 
and (11) are the reduced percolation equations. 

 
3. MODELING RESULTS 

 
The experimental results of the concentration depen-

dence of the electrical conductivity for PEG-400–CNT 
[10], PPG-400–CNT [23], PEG-10000–CNT [24] systems 
were used to establish the correspondence between the 
theoretical models and the experiment. 

In Fig. 1 we present a general view of the function of 
the Bruggeman model, which is seemingly similar to the 
typical percolation curve. As seen from the analysis of 
the Bruggeman model and Fig. 1, although the self-con-
sistent field approximation describes almost the entire 
range of filler concentrations, providing a good coinci-
dence of the numerical calculations and the experiment 
at very large filler concentrations, but it does not entirely 
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Fig. 5 – The experimental data simulated using equation (9) 
for nanofilled systems based on PEG-400 (a), PPG-400 (b), and 
PEG-10000 (c). Shaded area is the percolation threshold region 
and lines are the generalized McLachlan model 

 
describe the change in the electrical conductivity near the 
percolation transition in the polyether-CNT systems. The 
Bruggeman model provides a sharp change in electrical 
conductivity when certain filler content is reached, but 
the value of this concentration is fixed and equal to 1/3 
of the volume fraction. This model gives only a qualita-
tive description of the behavior of electrical conductivity 
for such transitions. 

The main disadvantages of the Bruggeman model 
were eliminated in the work of Xue, which has proposed 
the modified Bruggeman model. As seen from the anal-
ysis of the results of simulation of the electrical conduc-
tivity for the polyether-CNT systems using the modified 
Bruggeman model represented in Fig. 2, the modified 
Bruggeman model provides a good match between the 
numerical calculations and the experiment at low filler 
concentrations. Introduction to the model of the increa-
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sing factor  gives the possibility to shift the region of a 
sharp change in the electrical conductivity towards lo-
wer concentrations (much less than 1/3 for the original 
Bruggeman model). This, in fact, allows to compensate 
the absence of the percolation threshold in this model. 
However, the modified Bruggeman model describes poorly 
the change in the electrical conductivity at concentrations 
higher than the percolation threshold. 

In Fig. 3 we show the modeling of the experimental 
data for the polyether-CNT system by using the Fourier 
model. The shape of the Fourier model curve depends sig-
nificantly on its parameters. Thus, by gradually varying 
the percolation threshold, the electrical conductivity is 
changed at lower filler concentrations, and the maximum 
value of the system electrical conductivity can be achie-
ved for any value of pc. Therefore, the value of pc subs-
tantially influences the maximum electrical conductivity 
of the nanocomposite. The value of the filler electrical 
conductivity also impacts the maximum electrical condu-
ctivity of the system. The system conductivity increases 
with increasing filler conductivity. 

This model describes well enough the experimental 
data on the electrical conductivity of the polyether-CNT 
systems (see Fig. 3). However, to fit the function (6), the 
values of the parameters f and m were substantially 
lower compared with the intrinsic electrical conductivi-
ties of the CNT and polyether matrix. This significantly 
decreases the accuracy of the model and limits its appli-
cation. Such a discrepancy is explained by a small jump 
of the electrical conductivity when passing through the 
percolation threshold in the polyether-CNT systems. The 
authors of the given model described the results of the 
electrical conductivity for the systems, in which the leap 
of the electrical conductivity, equal to 10-11 orders of 
magnitude, was observed [15]. 

In Fig. 4 we illustrate the simulation of the experi-
mental data for the polyether-CNT system by using the 
Kirkpatrick model. As seen from the analysis of func-
tions (8) (see Fig. 4), the electrical conductivity of the 
system increases with decreasing critical index t, and a 
decrease in the critical index s leads to the decrease in 
the system electrical conductivity. After analyzing the 
system of equations (8), we can say that change in the 
value of the critical index t does not lead to the change 
in the maximum electrical conductivity of the polymer 
composite, which is specified only by the filler electrical 
conductivity. The change in the percolation threshold of 
the filler in the composite does not result in the change 
of the system electrical conductivity. 

The Kirkpatrick model demonstrates good correspon-
dence with the experimental data of the electrical condu-
ctivity for the polyether-CNT systems (Fig. 4). This model 
assumes that the electrical conductivity critical indexes 
are universe for the systems with the same dimensions. 
However, the critical indexes differ from the theoretical 
values for the studied polyether-CNT systems. This fact 
does not indicate the decrease in the system dimension, 
and, probably, is the consequence of a large degree of 

aggregation of nanotubes in the system [8]. 
In Fig. 5 we present the modeling of the experimen-

tal data for the polyether-CNT system using the gener-
alized McLachlan model. As seen from the analysis of 
function (9) (see Fig. 5), the electrical conductivity of the 
system decreases with increasing critical index t, and a 
decrease in the critical index s leads to the decrease in 
the system electrical conductivity. After analyzing the 
function (9), we can say that the change in the critical 
index t leads to the change in the maximum electrical 
conductivity of the polymer composite. The value of the 
percolation threshold also influences the maximum ele-
ctrical conductivity of the system and with increasing pc 
the maximum electrical conductivity decreases. 

In general, the McLachlan model describes well enough 
the experimental data. The values of the critical indexes 
t and s determined within the McLachlan approach were 
found to be higher than within the scaling approach and 
closer to the theoretical values. Due to the fact that the 
McLachlan model combines elements of the effective me-
dium theory and percolation theory, it is more universal 
and can be used for the description of the experimental 
results of the electrical conductivity of nanocomposites 
based on polymer matrixes with different intrinsic elec-
trical conductivity. 

 
4. CONCLUSIONS 

 
As a result of this work, we have analyzed the basic 

theoretical models of electrical conductivity of polymer 
nanocomposites and their application for the description 
of the experimental data on an example of model systems 
on the basis of polyethers and CNT. It is established that 
the models based on the provisions of the effective me-
dium theory describe poorly the experimental data. This 
is explained by the fact that these models (Bruggeman 
and Xue) do not take into account the presence of the per-
colation threshold. It is revealed that the Fourier model, 
whose graph is the classical logistic sigmoidal function, 
describes well enough the experimental data of electrical 
conductivity of the polyether-CNT systems. However, this 
model is not suitable for describing systems on the basis 
of polymer matrixes with high intrinsic electrical con-
ductivity because of a low (1-2 orders) jump of electrical 
conductivity in the percolation transition. It is shown 
that the Kirkpatrick model, which is based on the scaling 
approach for describing properties of the structurally 
nonuniform systems, demonstrates a good correspondence 
with the experimental data. This model accounts the pre-
sence of the percolation threshold, at which the functions 
have discontinuity at infinity. The advantage of this mo-
del is the accounting of the structural features of the per-
colation cluster formation which are expressed through 
the universal critical indexes t and s. However, the criti-
cal indexes defined using the Kirkpatrick model for the 
polyether-CNT systems were found to be lower than the 
theoretical ones that is associated with a high degree of 
aggregation of CNT. 
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