Development of a Technique of an Analytical Assessment of Crossing of Ellipses of Distribution on Polarizing Raman Ranges at Identification of Nanoparticles of Silver on Polyester Fibers

T.A. Dobrovolskaya*, V.M. Emelyanov, S.A. Danilova, O.V. Emelyanova, K.V. Butov
Southwest state University, 94, 50 let Octyabrya, 305040 Kursk, Russia

(Received 28 September 2015; published online 10 December 2015)

Abstract

Analytical estimates of crossing of ellipses of distribution at recognition of nanoparticles of colloidal silver are given in polyair fibers on multidimensional correlation components of the Raman ranges with control according to polarizing characteristics. Reliability of recognition of nanoparticles was estimated on joint probability of normal distributions of intensivnost of the Raman spectrograms of nanoparticles of silver on polyair fibers depending on longitudinal and cross polarization of laser radiation on all range of a range with the analysis of 9 main peaks.

Keywords: Polyester fiber, Nanoparticles of colloidal silver, The Raman ranges, Polarizing characteristics of the Raman spectroscopy, Mathematical modeling of ranges, Multidimensional correlation components of the Raman ranges, Reliability of recognition.

PACS numbers: $02.60 . \mathrm{Cb}, 02.70 . \mathrm{Rr}$

1. INTRODUCTION

Correlation polarizing characteristics of the Raman spectroscopy allow to increase considerably reliability of recognition of the nanoparticles which are on fibers of fabrics.

In works [1-7] identification of nanoparticles on polyair fibers is estimated. But to define the modes of drawing nanoparticles on fibers and especially their change at operation it is complicated because of their small quantity.

The offered researches allow to increase the accuracy of recognition of the fibers covered with nanoparticles of silver or uncovered nanoparticles according to polarizing characteristics of the Raman ranges with use of methods of an analytical assessment of crossing of ellipses of distribution of intensity of polarizing Raman ranges.

2. DESCRIPTION OF THE SUBJECT AND METHODS OF RESEARCH

2.1 Experimental Procedure

Experiments on measurement of casual values of distribution of intensivnost of ranges of the Raman combinational radiation were previously made, thus correlation matrixes (Fig. 1) and parameters of distributions (1) taking into account polarization of radiation on X -across and on Y - along fibers at the same time for one measurement are revealed:
$\left(\begin{array}{llllllll}0.97773 & 0.96578 & 0.98175 & 0.97934 & 0.98689 & 0.97556 & 0.98801 & 0.6027\end{array} 0.7786\right.$ 0.798650 .763320 .826190 .798720 .805780 .795390 .830440 .245580 .42347 0.964340 .951480 .952140 .967330 .977680 .961590 .969420 .645280 .82663 0.97520 .969190 .964960 .978170 .988740 .972850 .977820 .679260 .85655 rXY1:= $\begin{array}{lllllllllllllllllllllll}0.97342 & 0.98244 & 0.97044 & 0.97551 & 0.98303 & 0.97247 & 0.97035 & 0.74055 & 0.89334\end{array}$ $\begin{array}{llllllllll}0.93736 & 0.91504 & 0.92737 & 0.94071 & 0.954 & 0.93365 & 0.94936 & 0.55032 & 0.74837\end{array}$ $\begin{array}{lllllllll}0.99096 & 0.98829 & 0.98601 & 0.9928 & 0.99868 & 0.98952 & 0.99209 & 0.71 & 0.87045\end{array}$ $\begin{array}{lllllllllllll}0.8729 & 0.88349 & 0.84044 & 0.87375 & 0.8666 & 0.87397 & 0.85002 & 0.88461 & 0.96211\end{array}$ $\left(\begin{array}{lllllllll}0.93204 & 0.93567 & 0.91286 & 0.93657 & 0.95276 & 0.92941 & 0.92861 & 0.7075 & 0.88746\end{array}\right)$

b
Fig. 1 - Correlation matrixes of the Raman polarizing spectrograms of polyester fibers after drying under natural conditions in the range of frequencies $54.3 \div 3110 \mathrm{sm}^{-1}$: a - polarization across and along fibers with silver nanoparticles; b - polarization across and along fibers without silver nanoparticles

In Fig. 1 it is visible that korellyatsionny matrixes have the big range of dispersion of values from 0.99868 till 0.24558 in the presence of nanoparticles of silver (fig. 1a), and for fibers without nanoparticles range from 0.812568 to -0.340895 .

Parameters of distributions (1), and, population means considerably differ on intensity of peaks of ranges with polarization across fibers X and along fibers Y . Along fibers intensity is much higher even several times both for fibers without nanoparticles, and for fibers with nanoparticles.

Characteristic is that at polarization along fibers intensity of the central peaks $4,5,6$ and 7 is much higher than extreme peaks $1,2,3,8$ and 9 almost by 20 times. It specifies that maximum efficiency of measurements of the Raman ranges at polarization along fibers is found. However there is a task about check of informational content at measurement of peaks of polarizing ranges of the Raman radiation.

MENX $^{\text {T }}=\left(\begin{array}{llll}698.207 & 266.156 & 384.805 & 659.824\end{array}\right.$
661.551852 .41849 .92412 .99 796.091),
$\sigma \Delta \mathrm{X}^{\mathrm{T}}=(84.48750 .52747 .17473 .69377 .89189 .624$
87.34316 .679 31.712),

MENY $^{\mathrm{T}}=\left(\begin{array}{llll}745.167 & 457.096 & 1196.862 & 4023.730\end{array}\right.$

[^0]4073.1401775 .2261780 .878182 .674196 .222), $\sigma \Delta \mathrm{Y}^{\mathrm{T}}=\left(\begin{array}{lllll}115.383 & 74.971 & 626.399 & 571.34 & 270.561\end{array}\right.$
255.40229 .143 15.207),

MENXAg9 $9^{\mathrm{T}}=\left(\begin{array}{llll}395.233 & 140.846 & 213.373 & 332.365\end{array}\right.$
344.734478 .977510 .665270 .979539 .491), $\sigma \Delta \mathrm{YAg} 9^{\mathrm{T}}=\left(\begin{array}{lllll}60.722 & 35.107 & 27.743 & 40.744 & 55.448\end{array}\right.$
46.83665 .42324 .641 50.471), MENYAg9 ${ }^{\mathrm{T}}=\left(\begin{array}{llll}599.064 & 365.357 & 968.096 & 3224.61\end{array}\right.$
2929.7661431 .4121342 .996 136.366 150.694), $\sigma \Delta \mathrm{YAg}^{\mathrm{T}}=\left(\begin{array}{llll}120.429 & 74.806 & 195.827 & 612.321\end{array}\right.$
706.978273 .100321 .01632 .87029 .676).

2.2 The Processing of the Experimental Data

We will carry out modeling of statistical data for identification of crossings of ellipses of distributions of values of intensivnost of peaks of spectrograms. We will create the general correlation matrix for full generation of data on the basis of initial matrixes of Fig. 1 and we will receive a correlation matrix of RXY1 with a general size of 38×38.

Generation of the set amount of casual values is carried out in normal way to the law and a matrix of RXY1 for what the built-in MathCad Edition 14 [4-6] function is used. Further we define a vector of own numbers from the general correlation matrix of RXY1.

As the generated casual values possess some correlation which is negatively affecting modeling accuracy, it is necessary to lead them to an uncorrelated look for what the special program developed in the environment of MathCad Enterprise Edition 11 is used. The values of data of modeling received by such transformation possess the correlation aspiring to zero.

Further we will transform uncorrelated values through a fundamental matrix of UR of a correlation matrix of RXY1 to the correlated.

For automatic identification of crossing of ellipses of distribution it is necessary to solve system of the analytical equations and it will give coordinates of a point of intersection. In this work the system only of two equations is considered.

The analytical assessment of crossing of ellipses of distributions is made according to the decision of system of the equations with finding of coordinates of a point of intersection:

$$
\text { rXY1 } 3:=0.97817 ; \quad \text { rXYAg9_0_83: }=0.453528 ;
$$

$\mathrm{f}(\mathrm{x}, \mathrm{y}):=((\mathrm{x}-\mathrm{MENXAg} 93) / \sigma \Delta \mathrm{XAg} 93)^{2}-2 \cdot \mathrm{rXYAg} 9 _0 _8 \cdot \cdot((\mathrm{x}-$ MENXAg93 $\left.) / \sigma \Delta \mathrm{XAg}_{3}\right) \cdot\left(\left(\mathrm{y}-\mathrm{MENYAg} 9_{3}\right) /\left(\sigma \Delta \mathrm{YAg} 9_{3}\right)+((\mathrm{y}-\right.$ MENYAg93)/ $\left.\sigma \Delta \mathrm{YAg}_{3}\right)^{2}-4 \cdot 3.201055 \cdot\left[1-\left(\mathrm{rXYAg} 9 _0 _83\right)^{2}\right]$; $\mathrm{g}(\mathrm{x}, \mathrm{y}):\left(\left(\mathrm{x}-\mathrm{MENX}_{3}\right) / \sigma \Delta \mathrm{X}_{3}\right)^{2}-2 \cdot \mathrm{rXY} 1_{3} \cdot\left(\left(\mathrm{x}-\mathrm{MENX}_{3}\right) / \sigma \Delta \mathrm{X}_{3}\right)$. $\left(\left(\mathrm{y}-\mathrm{MENY}_{3}\right) / \sigma \Delta \mathrm{Y}_{3}\right)+\left(\left(\mathrm{y}-\mathrm{MENY}_{3}\right) / \sigma \Delta \mathrm{Y}_{3}\right)^{2}-4 \cdot 3.201055$. [1- $\left.\left(\mathrm{rXY} 1_{3}\right)^{2}\right]$;

$$
\begin{align*}
& \mathrm{x}:=400 \quad \mathrm{y}:=2000 \quad \mathrm{f}(\mathrm{x}, \mathrm{y})=0 \quad \mathrm{~g}(\mathrm{x}, \mathrm{y})=0 \\
& \mathrm{v}:=\operatorname{Find}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{v}=(405.701697,2036.720505) \\
& \mathrm{f}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)=7.127 \cdot 10^{-5} \\
& \mathrm{~g}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)=9.997 \cdot 10^{-4} . \tag{2}
\end{align*}
$$

The decision of system of the analytical equations (2) is made by criterion of crossing of ellipses not in two points, and in one for coordinates of limit values $\mathrm{X} 0(1)=485.948874$ and $\mathrm{X} 0(2)=485.948889 \quad$ for

Ro2 $=4 \cdot 1.7321043$. For double crossing of ellipses of distribution the transition point from one crossing is revealed (only contact) $\mathrm{R}_{0}{ }^{2}=4 \cdot 1.733 \mathrm{X}_{0}=486.01424$.

For coordinate $\quad \mathrm{Y}_{0(1)}=481.103016 \quad$ and $\mathrm{Y}_{0(2)}=481.103048$ for $\mathrm{R}_{0}{ }^{2}=4 \cdot 1.7321043$ limit value of crossing is revealed. At the beginning of double crossing the transition point from one point of intersection is revealed $\mathrm{R}_{0}{ }^{2}=4 \cdot 1.733 \mathrm{Y}_{0}=481.16753$.

Coordinates of limit values $\mathrm{X}_{3(1)}=485.948874$ and $\mathrm{X}_{3(2)}=485.948889$ for $\mathrm{R}_{3}{ }^{2}=4 \cdot 1.7321043$. For double crossing of ellipses of distribution the transition point from one crossing is revealed (only contact) $R_{3}{ }^{2}=4 \cdot 3.2027 \mathrm{X}_{3}=405.766908$.

For coordinate $\quad Y_{3(1)}=2036.720524$ and $\mathrm{Y}_{3(2)}=2036.720505$ for $\mathrm{R}_{3}{ }^{2}=4 \cdot 3.201055$ limit value of crossing is revealed. At the beginning of double crossing the transition point from one point of intersection is revealed $\mathrm{R}_{3}{ }^{2}=4 \cdot 3.2027 \mathrm{Y}_{3}=2037.098168$.

3. DESCRIPTION AND ANALYSIS OF RESULTS

At an analytical assessment of crossing of ellipses of distribution with the decision of system of the equations coordinates on 9 peaks are received:
for cross polarization of X
$X \mathrm{Xn}^{\mathrm{T}}=\left(\begin{array}{llll}485.949 & 192.204 & 267.401 & 405.702 \\ 474.262\end{array}\right.$
$566.027 \quad 653.626 \quad 349.531 \quad 695.899)$
for longitudinal polarization of Y
$\mathrm{YAn}^{\mathrm{T}}=\left(\begin{array}{llll}481.103 & 373.014 & 771.483 & 2036.72\end{array} 2729.72\right.$
$1061.131212 .73105 .587153 .743)$
and the equivalent radius of curvature of ellipses when crossing

\[

\]

$\frac{l^{\frac{1}{\left(1-\mathrm{pX}_{\mathrm{i}}\right)}}}{\left.\frac{1}{(1-\mathrm{pXY}} \mathrm{Y}_{\mathrm{i}}\right)}$

Fig. 2 - Increase of informational content of reliability when using two-dimensional measurement in cross X and longitudinal At the directions taking into account correlation coefficients: _ measurements at cross polarization of X; ... measurements in cross X and longitudinal At the directions taking into account correlation coefficients

In comparison with experimental data when modeling with use of generation of multidimensional correlation dependences of coordinate of crossing of ellipses of distribution following:
for cross polarization of X
$\mathrm{X} \mathrm{n}^{\mathrm{T}}=\left(\begin{array}{lllll}508.31 & 187.17 & 269.05 & 401.42 & 477.04\end{array}\right.$
$551.12 \quad 670.90 \quad 334.39 \quad 712.03)$
for longitudinal polarization of Y

```
    YЭn'}=(\begin{array}{lllll}{590.97}&{558.13}&{827.27}&{2005.9}&{2945.7}
1138.8 1318.1 133.93 166.18)

At a choice of points of intersection of the ellipses of distribution constructed on population means, average quadratic deviations and correlation coefficients with selection of equivalent radius of ellipses of distribution crossing coordinates are received:
for cross polarization of X
\(\mathrm{XPn}^{\mathrm{T}}=\left(\begin{array}{lllll}488.20 & 192.22 & 267.37 & 409.82 & 474.45\end{array}\right.\)
\(\begin{array}{llll}565.68 & 654.19 & 349.52 & 697.07)\end{array}\)
for longitudinal polarization of Y
\(\mathrm{YPn}^{\mathrm{T}}=\left(\begin{array}{lllll}486.00 & 373.44 & 770.96 & 2095.7 & 2731.2\end{array}\right.\)

\section*{REFERENCES}
1. V.M. Emelyanov, T.A. Dobrovolskaya, V.V. Emelyanov, E.J. Orlov, Nanotechnics 2, 81 (2013).
2. V.M. Emeljanov, T. Dobrovol'skaja, S. Danilova, V. Emeljanov, E. Orlov, Open J. Metal 3 No 3, 29 (2013).
3. V.M. Emelyanov, T.A. Dobrovolskaya, S.A. Danilova, V.V. Emelyanov, K.V. Butov, E.J. Orlov, J. Nano- Electron. Phys. 5 No 4, 04001 (2013).
4. V.M. Emelyanov, T.A. Dobrovolskaya, V.V. Emelyanov, E.J. Orlov, Modern Problems of Science and Education 6
\(1059.1 \quad 1214.3 \quad 105.60 \quad 154.13)\)
and the equivalent radius of curvature of ellipses when crossing
\begin{tabular}{lllll}
\(\mathrm{RPn}^{\mathrm{T}}=\) & \(\left(\begin{array}{llll}2.636 & 1.463 & 2.538 & 3.584 \\
2.403\end{array}\right.\)
\end{tabular}
\(3.335 \quad 2.241 \quad 3.255 \quad 3.122\) ).

\section*{4. CONCLUSIONS}

The method giving substantial increase estimates reliability of definition of the modes of drawing nanoparticles of silver on fibers that illustrates Fig. 2 was as a result offered.
5. V.M. Emelyanov, T.A. Dobrovolskaya, V.V. Emelyanov, E.J. Orlov, Fundamental Res. 10, 3310 (2013).
6. V.M. Emelyanov, T.A. Dobrovolskaya, S.A. Danilova, V.V. Emelyanov, Natural and Eng. Sci. 6, 415 (2013).
7. V.M. Emelyanov, T.A. Dobrovolskaya, S.A. Danilova, V.V. Emelyanov, K.V. Butov, E.J. Orlov, Science of Science 6 (2013).```


[^0]:    * emelianov@nm.ru

