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The processes of the electron scattering by the short-range potential caused by the interaction with polar 

and nonpolar optical phonons, piezoelectric and acoustic phonons, static strain centers, ionized and neutral 

impurities in CdS crystals with impurity concentration of  5.6  1016÷8.7  1017 cm – 3 are considered. The 

temperature dependences of the electron mobility and the Hall factor in the temperature range of 10÷400 K 

are calculated. 
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1. INTRODUCTION 
 

Cadmium sulfide finds wide application in the produ-

ction of thin-film solar energy converters [1, 2]. Further 

progress in the optimization of devices based on CdS re-

quires more careful modeling of its physical parameters. 

The charge carrier mobility is one of the important para-

meters of this material. Experimental data on the study 

of the temperature dependence of the electron mobility 

in CdS are presented in [3]. As a rule, theoretical anal-

ysis of these dependences is performed in the relaxation 

time approximation or by the variational method. The 

use of the long-range models of carrier scattering for the 

description of the transport phenomena in this material 

is a common feature of all these methods. It was assumed 

in these models that the carrier interacts with the entire 

crystal (electron-phonon interaction) or the carrier inter-

acts with the charged impurity potential, whose radius 

of action is  20-100a0 (a0 is the lattice constant). How-

ever, such approximation contains the following contra-

dictions: a) it contradicts the special relativity theory, 

according to which the carrier interacts only with the 

adjacent crystal regions; b) it contradicts the atomistic 

principle, according to which the carrier interacts (re-

turns energy) only with one atom, not with many atoms 

simultaneously. Moreover, for defects with the interac-

tion potential of U  1/rn (n  1, 2) at distances of  10a0 

potential becomes the second-order infinitesimal, while 

the above mentioned models are considered in the first 

(Born) order of the perturbation theory. On the other 

hand, the authors of [4-7] have proposed the short-range 

models of charge carrier scattering in the AIIBVІ and 

AIIІBV compounds with the structure of zinc blende and 

wurtzite, in which the above stated disadvantages were 

absent. At that, it was assumed that the carrier interacts 

with the defect potential only within a single unit cell. 

Along with this, the authors of [7] have taken into ac-

count the complex structure of optical vibrations of the 

crystal lattice when considering the electron scattering 

in the semiconductor with the wurtzite structure. The aim 

of the present work is the application of this approach 

for the description of the electron scattering by different 

types of defects of the crystal lattice in CdS. 
 

2. THEORY 
 

The wurtzite structure of the CdS crystal lattice con-
tains 4 atoms in the unit cell that leads to the existence 
of 12 vibrational modes. According to the group theory, 
atomic vibrations of the unit cell can be represented as a 

sum of irreducible images [8]: Г  2A1 + 2B1 + 2E1 + 2E2. 

One A1 mode and one couple of the E1 mode represent the 

acoustic vibrational branches. Correspondingly, the sum 

Гopt  A1 + 2B1 + E1 + 2E2 represents the optical vibratio-

nal modes. Optical vibrations are classified by the shift 
of atoms along the c0-axis and direction perpendicular to 

the c0-axis. As a result we obtain: A1 and E1 modes repre-

sent the polar optical vibrations and B1
(1), B1

(2), E2
(1), E2

(2) 

modes are the nonpolar optical vibrations. 
The probability of electron transition from k state to 

k state, caused by the interaction with a polar optical 
phonon of the vibrational mode A1, has the view of [7] 
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where 0 is the dielectric constant of vacuum; γPO is the 

adjustable parameter determining the radius of action of 

the short-range potential  2  2
0 0

1
3

2
POR a c   (0 < γPO ≤ 1; 

a0,c0 are the constants of the unit cell of the wurtzite stru-

cture); G is the number of unit cells in the bulk crystal; 

MCd, MS are the masses of atoms; Nq is the number of 

phonons with the corresponding frequency of the longi-

tudinal (ω(q)  ωLO) and the transverse (ω(q)  ωTO) vib-

rations at q  0. 
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For the polar optical mode E1, the unit polarization 

vector (in the direction of vibrations of Cd atom) takes 

two values 1  (1, 0, 0) and 1  (0, 1, 0). For the first 

case, the transition probability has the view of [7]: 
 

 

     

         

11

7   10 4
 2  2
0 02 4  2

LO0 0 0

 2
0

 2
TO 0

8 1
, 3  

675  

1
 1 1 , 

PO Cd S
E LO LO

Cd S

LO LO TO TO TO TO

e M M
W a c N

M Ma c G

c
N N N

a

 
   



           


 
      




                 



k k

 (2) 

 

and for the second case 
 

 
   

     

12

7   10 4  2
 2  2 0
0 02 4  2  2

TO0 0 0 0

2 c4 1
, 3 1

3 675  

 1  .

PO Cd S
E

Cd S

TO TO TO TO

e M M
W a c

M Ma c G a

N N

 



       

 
      

 

         

k k
 (3) 

 

Then, the transition probability for the polar optical 
mode E1 is determined from the expression 
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and the total transition probability at polar optical (PO) 
vibrations can be written as 

 

       
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Condition q  (0, 0, q),   (0, 0, 1) holds for the non-

polar optical vibrational mode B1
(1). For this LO- mode, 

one sublattice (S) is at rest, while in another sublattice 

(Cd) the neighboring atoms move in the opposite direc-

tions. Then, the transition probability for this vibrational 

type is determined from the expression [7] 
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where d0 is the constant of the optical strain potential; 

A  1.137; M  2MCd + 2MS is the mass of the unit cell. 

The longitudinal vibrations in the S sublattice are 

dominant for the nonpolar optical vibrational mode B1
(2). 

For this mode, the carrier transition probability  (2)
1

,
B

W k k  

looks similar to the relation (6) with the corresponding 

values of ωLO and A  – 6.299. 

For the nonpolar optical vibrational mode E2
(1), the fol-

lowing conditions are true: 
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For these two TO-modes, the dominant vibrations are 

observed in the Cd sublattice. For this mode, the carrier 

transition probability  (1)
2

,
E

W k k  looks similar to (6) with 

the corresponding values of ωLO and A  – 0.583. 

Vibrations of the E2
(2) mode satisfy the condition (7) 

with the difference that the dominant vibrations occur in 

the S sublattice. As in the previous case, the carrier tran-

sition probability  (2)
2

,
E

W k k  has the view of (6) with the 

corresponding values of ωLO and A  3.41. 

The resulting carrier transition probability at scat-

tering by nonpolar optical (NPO) phonons is determined 

from the expression 
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The carrier transition probability from k state to k 

state, caused by the interaction with acoustic vibrations 

(AV) of the crystal lattice, is defined from relation [7] 
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where the elastic behavior of the scattering process is 

taken into account; EAC is the constant of the acoustic 

strain potential; c  and c are the longitudinal and the 

transverse velocities of sound, respectively. 

When considering the interaction of an electron with 

piezoelectric vibrations, it is necessary to determine the 

components of the piezoelectric tensor e and macroscopic 

strain tensor S. For the wurtzite structure, the tensor e 

components are the following: 
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where the Voigt notations are used for the tensor com-

ponents, in the coordinate notations these components 

are expressed as follows: e13  e133, e33  e333, e15  e113, 

and the rest – e,,  0. 

Components of the tensor S are determined from the 

relation 
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where Q is the vector of displacement of atoms in the 

unit cell, which is a function of the discrete variables 

Q  Qi(n1, n2, n3). 

Using the technique for calculation of the derivatives 

Q

x







 described in [7], we will obtain the following ex-

pression: 
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where bq,  and b


q ,  are the phonon annihilation and pro-

duction operators, respectively; B, are some quantities, 

among which, as it will be shown below, B13 and B33 are 

essential ones. 
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Polarization of the crystal is determined from the expression P  eS, correspondingly, we have 
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i.e. it is necessary to know only two components of the 

macroscopic strain tensor (S13 and S33). 

Firstly, we consider propagation of the longitudinal 

acoustic wave along the c0 crystal axis: q  (0, 0, q) and 

  (1, 0, 0). In this case, components of the tensor S can 

be written as 
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Using the calculation technique presented in [4], we 

obtain the expression for the carrier transition probabi-

lity in the case of propagation of the longitudinal acoustic 

wave along the c0 crystal axis 
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where PZ is the adjustable parameter which determines the radius of action of the short-range potential. 
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For propagation of the transverse acoustic wave along the c0 crystal axis, we have two cases: 

1) 
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Calculation of the electron transition probability is similar to the previous case and gives 
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where EPZ
  2e15(c0/a0). 

Let us consider propagation of the longitudinal optical 

wave along the c0 crystal axis: q  (0, 0, q),   (1, 0, 0). 

A1 vibrations of the PO mode and B1
(1), B1

(2) NPO modes 

satisfy these conditions. As a result, one can obtain the 

carrier transition probabilities when interacting with 

these vibrational branches 
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Propagation of the transverse optical wave along the 

c0 crystal axis is similar to the previous case. Here, E1 

vibrations of the PO mode and E2
(1), E2

(2) vibrations of the 

NPO mode give the corresponding contribution. And the 

corresponding expressions for the carrier transition pro-

bability can be written as follows: 
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According to the short-range scattering models in 

semiconductors with the wurtzite structure, the carrier 

transition probabilities from k state to k state, caused 

by the interaction with the static strain (SS) potential, 

ionized (II) and neutral (NI) impurity, have view of [7] 
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where NSS, NII, NNI are the concentrations of the static 

strain centers, ionized and neutral impurities, respec-
tively; Zi is the degree of ionization of defects; m* is the 

effective carrier mass; q  │k – k│; C ≈ 0.1; II is the 

adjustable parameter determining the radius of action 

of the short-range potential of the ionized impurity 

 2  2
1 0 0

1
3 ,

2
R a c   0 < γII ≤ 1; EPZ is the piezoelectric 

constant, which has the form of EPZ  and EPZ. We note 

that it was assumed in (23) that the radius of action of 

the short-range potential of the neutral impurity is 
equal to a half of the radius of action of the short-range 
potential of the ionized impurity (multiplier γIIR1/2). 

 
3. COMPARISON OF THE THEORY AND THE 

EXPERIMENT 
 

Calculation of the conductivity tensor components is 

performed based on the exact solution formalism of the 

stationary Boltzmann equation [9]. Using this formalism, 

we obtain an additional adjustable parameter SSNSS (it 

was assumed that SS  1) for the SS-scattering mecha-

nism. The material parameters used for the calculation 

are presented in Table 1. 

Comparison of the theoretical temperature depend-

ences of the electron mobility was carried out with the 

experimental data shown in the work [3] for three sam-

ples (samples 2, 9, 10) of cadmium sulfide. Fermi level 

was determined from the equation of electroneutrality 

for the wide-band-gap semiconductor with n-type conduc-

tivity (intrinsic conductivity was neglected) with donors 

and compensated acceptors 

  

1 2exp

D
A

D

B

N
n N

F E

k T

 
 

  
 

, (24) 

 

where ND, NA, ED are the concentrations of donors and ac-

ceptors and donor ionization energy, respectively, whose 

values were chosen according to the results of [3]. 

Theoretical curves (T) for CdS are shown in Fig. 1. 

The solid lines represent the curves calculated based on 

the short-range models in the context of the exact solu-

tion of the Boltzmann equation. In Table 2 we present the 

obtained values of the scattering parameter γ for differ-

ent scattering mechanisms. The dashed lines denote the 

curves calculated based on the long-range scattering mo-

dels in the relaxation time approximation. We note that 

the same scattering mechanisms of charge carriers were 

used when calculating these curves. As seen, in the whole 

considered temperature range the short-range scattering 

models give a good enough agreement between the theory 

and the experiment, while the relaxation time approxi-

mation gives both the qualitative (samples 2 and 10) and 

the quantitative 2÷5-fold deviation of the theory from the 

experiment. This indicates that the short-range models 

describe more adequately the electron scattering process-

es in cadmium sulfide compared with the relaxation time 

approximation. 

In order to estimate the roles of different scattering 

mechanisms, in Fig. 2 we illustrate the corresponding 

dependences by the dashed lines. It is seen that at low 

temperatures (T  150 K), the electron scattering by the 

static strain potential (curve 7) is the main scattering me-

chanism. At higher temperatures (T  150 K), the scatter-

ing by polar optical (curve 5) and piezo-optical (curve 6) 

phonons becomes the dominant one. Other scattering me-

chanisms, such as scattering by nonpolar optical phonons, 

scattering by acoustic and piezo-acoustic phonons, neutral 

and ionized impurities, give a negligible contribution. 

The temperature dependence of the Hall factor of 

electrons, shown in Fig. 3, was calculated based on the 

obtained scattering parameters. As seen, the minima on 

these curves correspond to the transition from one scat-

tering mechanism at low temperatures (SS-scattering) 

to another mechanism at higher temperatures (PO and 

POP-scattering). This transition is observed under the 

following condition: the higher temperature, the larger 

concentration of the static strain centers. 
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Table 1 – CdS parameters used in the calculation 
 

Semiconductor parameter Value 

Lattice constant, a0 (m) 4.1365  10 – 10 a 

c0 (m) 6.716  10-10 a 

Band gap, Eg (eV) 2.579-4.7  10 –4 T2/(T + 230) b 

Density, 0 (kg/m3) 4.82  103 с,d 

Velocity of sound, (m/s)  

v 1.76  103  e 

v 4.25  103  e 

Optical strain potential, d0 (eV) 6.9 f 

Acoustic strain potential, EAC (eV) 3.3 g 

Energy equivalent of the matrix element, EP (eVВ) 21 h 

Spin-orbit splitting,  (eV) 0.062 i 

Frequency of optical vibrations (rad/s):  

vibrations along the c0 axis  

A1 (LO), ωLO 5.71  1013  j 

A1 (TO), ωTO 4.37  1013 j 

B1
(1) (LO), ωLO 2.46  1013 j 

B1
(2) (LO), ωLO 5.51  1013 j 

Vibrations perpendicular to the c0 axis  

E1 (LO), ωLO 5.77  1013 j 

E1 (TO), ωTO 4.56  1013 j 

E2
(1) (TO), ωTO 7.33  1012 j 

E2
(2) (TO), ωLO 4.77  1013 j 

piezoelectric tensor components, (C/m2)  

e13 – 0.262 k 

e33 0.385 k 

e15 – 0.183 k 

a – [10]; b – [11]; с – [12]; d – [13]; e – [14]; f – [15]; g – [16]; h – [17]; i – [18]; j – [19]; k – [20]; 
 

 

 

Table 2 – Parameters  for different scattering mechanisms 
 

Sample  PO  PZ  II γ SS,  10 – 14 cm – 3 

2 0.58 0.50 1.0 27.0 

9 0.72 0.52 1.0 12.0 

10 0.70 0.53 1.0 1.3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 – Temperature dependences of the electron mobility in CdS with different impurity concentrations. 1 – the short-range scat-

tering models; 2 – the long-range scattering models (relaxation time approximation) 
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Fig. 2 – Contribution of different scattering mechanisms to 

the electron mobility in CdS. Solid curve – mixed scattering 

mechanism, 1, 2, 3, 4, 5, 6, 7, 8 – AC, II, NPO, PAC, PO, POP, 

SS, NI scattering mechanisms, respectively 

 
 

Fig. 3 – Temperature dependence of the Hall factor of electrons 

in CdS 

 

4. CONCLUSIONS 
 

The processes of electron scattering by different types 

of lattice defects in cadmium sulfide crystals are consi-

dered based on the short-range principle. A sufficiently 

good agreement between the theory and the experimen-

tal data in the studied temperature range is established. 

It is shown that the short-range models describe more 

adequately the electron scattering processes in cadmium 

sulfide compared with the long-range models. 
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