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The exact global quantum atomic spectrum of lowest excitations states (fundamental and first excited
states) for Hydrogen atom with typical rational spherical potential like singular one-fraction power
(s.o0.f.p.) potential were reported by using both Boopp's shift method and stationary perturbation theory, at
Planck's and Nano scales, in both non commutative 2-dimensional space and phase. We have also found
the deformed anisotropic Hamiltonian for studied potential.
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1. INTRODUCTION

The study of bound-state solutions of the three fun-
damental equations: relativistic Klein-Gordon equation
(for scalar bosonic particles like pions with spin zero)
and (Dirac and it’s adjoint) equations for the electron
and positron with spin 1/2 for negative and positive
charge and the same mass and non-relativistic Schro-
dinger equation (for the electron) are played crucial
roles for describing physics phenomena in gauge theo-
ry, standard model, and quantum mechanics at high
and low energy, in the case commutative and non
commutative spaces, respectively. The exact solutions
for a Colombian and for an Harmonic oscillator as well
as in an arbitrary number of spherical and non spheri-
cal potentials represent a typical models in quantum
mechanics and Dirac theory, in two and three dimen-
sions spaces, like (s.o.fp.) potential [1-31]. In 1947,
H. Snyder, who introduce the notions of an increasing
interest in noncommutative geometry both in mathe-
matics and in physics, which represent a hop to obtain
new and profound interpretations at Planck's and Nano
scales [12]. The rich mathematical structure of the
noncommutative theory gives a rise to the hop to get a
better understanding of physics phenomena at small-
ness distances like Planck's and Nano scales. The phys-
ical idea of a noncommutative space satisfied by a new
mathematical product, we replace the ordinary product
by star product and the new noncommutative operators
will be functions of the old operators and its derivative.
From the references [9-26], we can deduce the new star
product between two functions f(x) and g(x) modified by
(c=h=1):

O(F(x)* g (x)) =2 0™ (03 (+) (02 ) -
_ééw (8ﬁf(x))(8fg (x))

The above relation valid in the first order of the an-
tisymmetric parameters (0“ and 6-“") matrixes, here
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5(F(x) ()= £ (¥)&(x) £ (x)2(x) .y =L and
N denote to the dimensions of the space. As an immedi-
ately consequence of the above star product is the satis-
faction of the important two commutators, which are
playing a crucial role in noncommutative space-phase,
as:
[xi,le =if; and [i)i,ﬁj]* =1i0; 2)

The objective of this paper is to study of the effect of
the noncommutativity of space and phase on Hydrogen
atom with typical rational spherical potential like
(s.0.f.p.) potential, in both noncommutative two dimen-
sional real spaces and phases (NC-2D spaces and phas-
es). The physical importance of the (s.o.f.p.) potential ap-
pears in many quantum physics and chemical phenome-
na [2]. A Boopp's shift method will be used in present
article, instead of solving the (NC-2D spaces and phases)
Schrédinger equation by using star product procedure:

[£,%;|=i0,and [ B, b, |=i0y 3)

The star product replaced by usual product together
with a Boopp's shift [14, 15, 20-26]:

X =X _% 2D = D _éxj
[xi,ij:O 4)
[pp;]=0

It’s clearly that, the noncommutativity applied in
present work concerned both the spatial operators and
the impulsions operators. The rest of present article is
organized as follows: In newt section, we briefly review
the Hydrogen atom in ordinary 2 D spaces with (s.o.f.p.)
potential. The Section 3, reserved to derive the de-
formed Hamiltonians of the Hydrogen atom with
(s.0.f.p.) potential and by applying the perturbation the-
ory we find the quantum spectrum of the lowest excita-
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tions in (NC-2D spaces and phases) for (s.o.f.p.) poten-
tial. In section 4, we examine the obtained results. Fi-
nally, the important found results and the conclusions
are discussed in last section.

2. THE (S.0.F.P.) POTENTIAL IN ORDINARY 2D
REAL SPACE

As it’s mentioned in the previously section, the
(s.0.f.p.), represent a good example of a central typical
rational spherical potential V(r), the important of this
potential appears in many quantum physics and chem-
ical phenomena, which proportional on the inverse of
two terms r¥2 and r¥2 as [2]:

a b

V(r)=—5+—5 5
()= * 3 (5)

Where a and b are two both real constants character-
ized the nature of studied subject. It is known that the
nonrelativistic Schrédinger equation describing a fer-
mionic particle moving in (s.o.f.p.) central potential, in

polar coordinates ;(r,¢) , can be defined by the follow-

ing equation (c=h =1)[2]:

— 1 lﬁ ri +iﬁ +i+i \Il(;:)_
2my\ror\ or r? 6¢2 ptz o 82

= E\P(?)

(6)

Where mo and E are the ordinary mass of a fermionic
particle and the energy, respectively. The complex

wave function ‘1—’(;) is written as follows:

‘{’(;) = Rj;) exp(iim¢) @)

Where m denote to the eigenvalue of the operator L..
The radial function R(r) satisfied the following equa-
tion [2]:

1
~ T 24]R(’”):0~ ®)

The complete complex wave function and the quan-
tum spectrum of the lowest excitations corresponding

to (stationary state: ‘{’53)(;) andE,(,?), first excited
states: ‘PE}) (;) and E,(i)) and P order excited states:

., are, respectively [2]:

7\1153) (;) = a,r™ exp[—Wr 2 r”z]

exp(£img)

‘{‘Efl’) (;) and E\)
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(7]
_ = (ao +a1r‘1/2)7‘m X
exp(ximg)
xexp| — —ES) S r'’? 9.2)
_ES)
2
3
2
and E',(;) =— 5a
4(— + m]
2
and:
wlo) (7
( ) = (ao 4—(117"1/2 +...aprp/2)><
exp(*img)
o112 exp| — _EWP) . _ a ri/2 9.3
m ?_E(p)
2
2 3
and BV --| ¢
4(1+p+2m)

3. THE (S.0.F.P.) POTENTIAL IN NC 2D SPACES
3.1 The Perturbative (S.O.F.P.) Potential

To obtain, the Schrodinger equation on NC quan-
tum mechanics, we replace: ordinary Hamiltoni-

an ﬁ(pi,xi) , ordinary complex wave function ‘I‘(;) ,

E

wpp and the old product by:

NC Hamiltonian
ﬁ(ﬁi,ﬁi) , NC complex wave function ‘i’(;) , NC energy
E

ne—sofp

and star product * , respectively [20-26]:

H (p2)* V(1) = By ¥ () - (10)

Know, we apply the Boopp’s shift method on the
equation (10) to obtain, the reduced Schrédinger equa-
tion:

H(ﬁl’j&l)‘//(?) = Enc—so/an(?) (11)

Where the two operators in (NC-2D) %, and p, are
given by:

N o, 0,
& =%, D and p, =p; 5N (12)

Which allow us to obtaining, in (NC-2D) space and
phase, the four new operators x =%, ,y=%,, p, and
D, respectively as:

N 4
y=y+ pr
_ (13)

R 0 .
Pe=De+ ¥ by =Py

.0
x—x—gpy,
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- -2

Here 0 =60 and0=0 , as a direct result of the

above equations, the two operators 72 and p? in (NC-
2D spaces and phases) can be written as follows [21-24]:

_: (14)

Here (LZ =xp, - ypx), furthermore, one can show
that, the only none null, the two commutators [32, 5/]

and [f)x,i)y] are written as follows [21-25]:

[£,5]=i60
A - (15)
[ Dy» pyJ =-i0
On based, on the eq. (14), to obtain, after a straight-
forward calculation, the three important terms, which
use to determine the (NC-2D spaces and phases)
(s.0.f.p.) potential:

a _a Ba I b b 0b I
ﬁ—rlﬁ+74r5/z zfgﬁ—rw*frm 2
A9 9 g (16)
P __P , 7 L,
2m, 2m, 2m,

The operator of (s.o.f.p.) potential V, . (7#) and NC

A9
kinetic term —2— in (NC-2D spaces and phases) are
my

determined from the projection equation:

R a b
Vsofp(’)iﬁwﬂgsﬁ

p? 1 (1 a( a}
=- ——lr—|+
2m,, 2my\ror\ or

The eq. (17) allows us to obtaining, the potential op-
erator H,,, (7) as:

E]

an

z

1a2j 7
+

er ?f 2m,,

N a b ad 3b0 0
H,, (r) = 7,1/2+r3/2+{4r5/2 + 4772 + 2m, ]Lz (18)

It’s clearly, the two first terms are given the ordi-
nary (s.o.f.p.) potential, we note to the rest terms by

Heoppop (1)

ad 3O 0 ]Lz 19

H, , (r)= [47‘5/2 + 4772 + 2m,

After a straightforward calculation, one can prove
that the noncommutative modified radial function sat-
isfied the following equation:

@Jr _a b
dr2 r1/2 r3/2
ya) _1
_[ ad_ 3b0 +6JLz—m 4]R(r)20

4r®? 4™ 2m,
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It’s clearly that the modified potential H,,, ,(r) is

proportional to two parameters 6 and @ .

3.2 The Exact N.C. Modification of the Energy
Levels for Stationary State

The exact NC modification of the energy levels, in
the first order of & and @, for the stationary
state £, ,, can be determined by applying the pertur-
bation theory and using Eqgs. (9.1) and (19):

a j2m=312
+o0
2E¢20=6’j exp(—2Ar—Br”2) 43b dr+
ragm o +22 2m-5/2 @1)
+ [ rem exp(—2Ar —Brm)dr
2m0 0
Where(A=\-E” and B=—2%_), the above rela-

¢_ E(O)
tion, reduced to the form:

2 1 2 0 3
E, = Zﬁaom[H(Lsofp +L, )+%Lsofp (22)

Where, the three terms Lsafpl, L(S,Ofp2 and Lsofp3 are de-

termined from the two relations, respectively:
a +00 o
Lsoz‘p1 = g eXp(—ZAr —Br”z);ﬁ 8127
‘= %b [ eXp(—ZAr—Brl/z)er—5/2dr 23)
0

'sofp

Lsofp3 = EO exp (fZAr - Brt? ) rimdr

If we change the variable r by new variable X2,
then the above two equations are reducing to the form:

Lsofp1 _ %"E[:c eXp(—2AX2 —BX) X(4m—1)_1dX
sofp2 = 372b+£° exp(—2AX2 _BX) X(4m—3)—1dX 24)
Ls()fp3 = 2'?0 exp(—2AX2 _BX)X(m+2)—1dX
0

Now, using the special integral [32]:

e a2 _
;;x exp( Bx yx)dx

Where D

—v

condition (Rel(fB) > 0and Rel(v) - 0), F(v) is gamma

is the parabolic cylinder function, as a

function, which allow us to obtaining the factors: Lsofp1
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,L. .2 and L

respectively as

'sofp sofp ’

L 1

'sofp _

1
aexp[ B* J(ﬁl —Er(r?)) 2
2 16A

B? a
=r (4m - 1) exp [1614} D—(4m—1) [E(O)J

2
Ls0fp _
4m-3

5 _4m=3
3—bexp B (4 _E'(’(‘))j 2
2 16A

el o

3
sufp _
m+2

(16A](4 B ji

Then, the modified energy eigenvalues E, , can be

(26)

written as:

E = 2;m§mF(m,a,b, 9,5) 27)

Where the factor F(m,a,b) is given by:

F(m,a,b,&,&)z[H(Lsofp + Ly’ )+ oLy, j (28)

3.3 The Exact N.C. Modification of the Energy
Levels for First Excited State

Furthermore, the exact NC modification of the en-

ergy levels for first excited state E_, , in the first order

nel
of @, can be determined by using perturbation theory
and Egs. (9.2) and (19):

2
E - o “
—27’;2 =6 g [(ao + alr”z)r exp[«’Eg)r 5500 r“zﬂ x

a
4r%? + N+ 9
x dr+ | (ao + alr”z) " x (29)
3b d 2my o
+ 4772 r
xexp[ 2,/ - (]) ] r
The above integral can be written as follows:
E, —ZHm(HZS ﬂ+—zs ] (30)
u=1 2m0 u=7
Where (A' = «,/—E,(i) and B's= 2a ), the sixes

_gW

m
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terms of S0 (u = 1,79) are given by:

2 4o
1 :% j r2m’5/2exp( -2A'r-B' 1/Z)dr
0

ofp

2 aa; ** 2m-3/2 1/2
e exp(—ZA'r—B'r )dr
0

ofp 4

2 4o

Sofp3 = La;al [ o2 exp(—Z'Ar—B'rllz dr
0

(31.1)
4 3b% 2m=12 v 1/2

S, |r exp( -2A'r-B'r )dr
0

S 5 _ 3ba J- 2m-5/2 exp(—2A'r—B'r1/2)dr
0

6 3a0a1b 3ayab " 2m-6/2 , 1/2
Sop :T#jr xp(—ZA r—B'r )dr

0

and

S 7:a02+fcr2”‘exp( 2A'r—-B'r 1/Z)dr
0

ofp

f=aq’ T Zm+l exp( 2A'rfB'r1/2)dr
0

S (31.2)

ofp

9 o ameg 172
S,.° =2a,a, [r 2eXp(—2A'r—B'r )dr
0

ofp
similarly to previous integrals, we introduce also, new

variabler = X?. After a straightforward calculation we
can obtain:

2 too
Sup' = ({ XU exp(-24' X* - B'X)dX
2 4o
S,,% = % [ X" exp(-24' X* - B' X )dX
S, = aaa, [ X" exp(-24' X* - B'X)dX
o2 ° (32.1)
] [ X7 exp(-24' X" - B' X)X
o = 3b“1 J X exp(-24' X* - B' X )dX

S’ =Bagaib | XU exp(-24' X - B'X)dX
0
and
8,7 =2a;> | XU exp(-24'X* - B'X)dX
0
4m+4 " v2 ,
X exp(-24'X*-B'X)dX (32.2)

0

S,” = 4aya T xtames) " exp(-24' X* - B'X)dX
0

By applying the special integral represented by eq.
(25), we obtain the exact values of S, *, as follows:
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S 1 ,ﬁ
o _ (4" <1>j 2 _
=|44-FE I'(4m—-3)x
e =[FET) 7 r(am-g)
2
2 a
X ex -
Y 4( E'(l))z ~(4m-3) E,(i)

S, —5 2

ofp _ 1] 2 a a
—£_=|44-E I'(4m-1 —— D -
aalz ( m ) ( m )EXP{ZL(_E;:))z] —(4m—1)[ Eg)]

(33.1)

- 4m-3
N - 2
o _ (1)} 2 a a
P _ =1 4,-FE T'(4m—-3)ex D -
36 ( m ( ) p{4< o )2 ~(4m-3) ( E® ]

a
]D<4m4> [*W]

2
I(dm+2 a D .
( m+ )exp[z;(Eﬁ) )zJ —(4m+2)( E:;)]

—(m+2) 9
Ly = 4B a e
20:2 *(4 E'"J l"(4m+4)eXpL(E(1>)2}D(4”,+4)[ ES)] (33.2)

E: 2
ofp (1) 2 a a
—L =\ 44-E (4 3 —— D -—
4a,a ( '") (4 )exp[4(‘E“))2} 7(4%3)[ E,‘,P]

Which allow us to obtaining the energy corrections

E . to first excited state for (s.o.f.p.) potential in (NC-

ncl

2D spaces and phases).

3.4 The Atomic Quantum Spectrum of Lowest
Excitations States for the Magnetic Effect

Now, we summarize the obtained results of the
quantum spectrum of the lowest excitations corre-
sponding to (stationary state and first excited states),
(E,oand E, ), corresponding to the first order of

6 and é,respectively:

Ench = Er(r(t)) + EncO Encf() = Er(i) + Encl (34)

Evidently, eq. (34) is the sum of ordinary energy
and the obtained corrections. Thus, on based on equa-
tions (9.1), (9.2) and (33), we have obtained the explicit-
ly results for the quantum spectrum of the lowest exci-
tations in (NC-2D spaces and phases):

2/3
_|_a® 2 6
E, = [(4+2m)J +27a0 mF(m,a,bﬁﬂ)
35
9\ L (35)
E,. = _[aj + 27[m6’S(a,b,E,(i),9,9)
(4+2m)

J. NANO- ELECTRON. PHYS. 7, 03047 (2015)

HereS(abE(l) 0§)= 035 1y 0 3 g s
YUy Loy 5 Yy = 1 ofp 2m0 pu’ ofp .
Furthermore, we can construct the deformed (NC-2D

spaces and phases) Hamiltonian H, . as a sum of two

and H

sofp—m

fundamental operators H the first one

sofp
is only the ordinary Hamiltonian operator for (s.o.f.p.)
potential in 2D space, while the second operator, which
determined on based to eq. (19) as follows:

H —_L 13 ri +iﬁ +i+i
sofp 2my\ror\ or) rtog?) rM% 32

H o _q b §§+[fw o }71‘;

sofp—m 47772 4702 2m0

(36)

We replaced [6’f(r)+20]L2 by [af(r)+2g JEZ,

mg m,

(H:aB, d=¢B and TB:BIE) , here @ and ¢ are
infinitesimal real

a 3b
f(r) = 47572 + 4772

proportional constants,

the magnetic moment; = y s J

the global angular momentum and (—gﬁ) denote to

the ordinary Hamiltonian of Zeeman Effect H, [9]:
H,=-SB (37)

The operator H denote to the modified Zee-

sofp—m
man effect, in (NC-2D) real space. It’'s important to
notice that(—/ <m < +I), and then we have (2/+1) pos-

sible values for m , thus every state will be (21 +1) sub-

states under the magnetic effect.

3.5 The Atomic Quantum Spectrum of Lowest
Excitations States for Spin-orbital Effect

On another hand, it’s possible to rewriting eq. (19), as:

a 3b 0 | oo
H, , (r)= {9(275/2 + 27,7/2) }SL 38)

+7
m,

We oriented the direction of spin parallel of the (Oz)

axes, let us write the spin-orbital interaction SL as
follows [9]:

co 1 (=2 o2 o2
SL:E(J -7 —S) (39)

This allows us to obtaining the modified potential op-
erator for (s.o.f.p.) potential:

1 a 3b 0 |(=2 <2 2
Hsafpp(r)zz{g(zrslz +2r7/2j+mo}(J -L -8 j(40)

A similarly calculation of previously section gives
the modified recent quantum spectrum of the lowest
excitations  Eyen o (/,0,8) and Eyegp o (J,1,8), corre-
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sponding spin-orbital interaction, respectively:

2 LF(a,b,,0)
a 5| for -spin- up,

+27a’ ~7(41.1)
L'F(a,b,@, 9)

for -spin- down.

Ls(a,b,E,(j),e,é)

w0t

a for -spin- up,
NCsofp-1 — — 57 +2r (412)
4 [— + mj

. : L's(a,b,E,(j),e,é)

for -spin- down.
Where the two important factors L[ j=1 +%,sj and

L'[j = l+%,sj are determined from the following rela-

tions:
L j:l+l, £and L' _l+l :—ﬂ(42)
2 2 2’
Then, we can construct a diagonal matrix of or-
der (2 x 2) , with elements (anfsofp )11 , (anfsofp )22 ,

(an—sofp )12 and(anfsofp)21 , as it has been constructed

in our four references, respectively [21-24]:
1 (14(. 08 L
2mO r 6r 6;" r? 6
6b 33 aa
ta 47772 SB+[4r5/2 + JJB { (2 5/2
and
1 (16( 0 108 a b
(H"”'S"fp )22 - 2m0 {r or ( 5] i ﬁ?f} i Pz " 732 i
6b <o aa & \os a 3b 0
o SB+ [74;"5/2 + I ]JB - {0(72#”2 w j + ”To} x (43.2)
[+1
X (e ), =

It’s clearly, from the obtained results for states of
energy (40) are degenerated and different with ordi-
nary energy (9), it is depended with three quantum

( Hﬂc -sofp )1 1

(43.1)

E !
27/2 my | 2

(H"C*SDfP )21 -

numbers ( j,l,s), furthermore it describes two fermion-

ic particles, the first with spin up and spin down as it
has been observed in Dirac theory at high energy. It’s

. . 1 .
worth to notice that j=1+ 5 and then we have 2 possi-

ble values for j, thus every state will be 2 sub- states
under the effect of spin-orbital interaction.

4. EXAMINATIONS OF OBTAINED RESULTS

As a typical application, let us consider an electron

AENc o, = -a" [ (1

E

J. NANO- ELECTRON. PHYS. 7, 03047 (2015)

with spin down transition from first excited state to the
stationary one; after a straightforward calculation, we

can obtain the expression of produced energy
(AENC_SDfp E, .- EWO) and the modified ionization
energy K, . as:

1

1 () g
—— - ——— |+2205(a,b,E
ay’ (4)} ( )
3
2

(44)

ion-sofp =| 77 —27za§m9F(m,a,b,9,6).

The first terms are the ordinary produced energy
and ionization energy, while the add parts are the con-
tributions of the physics proprieties of (NC-2D spaces
and phases). The obtained results were proportional to
the infinitesimal parameter 6. Finally, when the pa-

rameters (fand 6 —0), in the obtained results for
(NC-2D) spaces: ((10), (15), (19), (35), (36), (38), (40),
(41), (43) and (44)) we obtain all ordinary 2D space re-
sults for (s.o.f.p.) potential, which prove the correct
obtained recent results. Regarding, two obtained spec-
ters for the magnetic and spin-orbital interaction, one
can deduce that every state degenerated to2(2/+1)

sub states, as it has been obtained in our reference
[22]. Know, the global quantum spectrum of lowest
excitations states (fundamental Eyq,(m,j,l,s) and

first excited states Ey, (m,j,l,s)) for Hydrogen atom
with (s.o.f.p.) potential:

o | w

ENCO(m,j,l,S):— 17 +
(3]

(45.1)

27ra§ (m + éj F(a,b, 6’,5)

for - spin -up,

27r(m —[THJ F(a,bﬁﬁ)

for- spin -down.

and

Wl

ENC'l (m,j,l,s) = — 57
4(—+mj
2
2ﬂ(m+£j8(a,m,E$))
2
for- spin -up,

27[(771 —%)S(a,m,ES))

for -spin -down.

(45.2)
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Finally, it’s important to notice that, the using of
complex coordinates, which indicted in reference [25],
permitted to obtain two terms of perturbations; this is
deferent totally for our present work and [22-24], based
on real coordinates, which allow us to obtaining only
one term of perturbation.

5. CONCLUSIONS

We have used the Boopp's shift method and pertur-
bation theory to study the effect of the non commuta-
tivity on the central typical rational spherical potential
like (s.o.f.p.) potential in (NC-2D spaces and phases).
The exact global atomic quantum spectrum of lowest
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