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1. INTRODUCTION 
 

The major of physics applications of quantum me-

chanics is based on the Schrödinger equation, it was 

most successful in describing physics phenomena’s in 2 

and 3 dimensional spaces and in a particular in the cen-

tral potentials at week energy to study the atoms nuclei, 

molecules and their spectral behaviours, this theory will 

correctly described phenomena only when the velocities 

are small compared to the light [1-19]. The second revo-

lution in the last century it was the standard model, in 

where the three fundamental forces in nature: electro-

magnetic, week and strong, are successful unfitted in the 

framework of gauge field theories. But the last forth 

forces, gravitation, its out of this model of unification. 

The hop to get a new gauge theory, in which the four 

forces at include in this theory, is possible, when the 

symmetries will be huge, which satisfied by the notion of 

the noncommutativity of space-time, which is extended 

to the canonical commutation relations between position 

coordinates and their momentums themselves. This new 

concept considers a new revolution in the modern phys-

ics, and plays a crucial role in quantum mechanics par-

ticularly. The physics idea of a noncommutative space 

satisfied by anew mathematical product, which replaces 

the old ordinary product by a new one, known by star 

product, noted by  *  [20-37]: 

 

 
*

,i j ijx x i     (1) 

 

Throughout this paper the natural unites are em-

ployed. The star product between two arbitrary func-

tions  f x  and  g x  in the first order of  defined as 

follow: 
 

              * .
2

ij
i j

i
f x g x f x g x f x g x     (2) 

 

It’s possible to apply the notion of the star product 

to obtain the new NC commutator represented by 

equation (1). Much effort has been put in to find the 

approximation bound state solution in recent years to 

the study of noncommutative canonical type quantum 

mechanics, quantum field theory and string theory. We 

apply those notions to a mixed harmonic potential 

which the importance of this study appears in the field 

of fiber and also applicable to molecular physics [9]. A 

Boopp's shift method will be used in our paper, Instead 

of solving the non commutative Schrödinger equation 

by using star product procedure: 
 

 ˆ ˆ,i j ijx x i     (3) 

 

We replace the star product with usual product to-

gether with a Boopp's shift: 
 

 ˆ and 
2 j

ij

i i i ix x p p p


    (4) 

 

The parameters ij   are an antisymmetric real ma-

trix of dimension square length in the noncommutative 

canonical-type space. The main aim of this article is to 

give a new physics contribution in the context of the 

non-commutativity of mixed harmonic potential in NC 

2D space. This paper is organized as follows. In section 

2, we present the notions of Boopp’s shift method. In 

section 3, we present the Hydrogen atom in ordinary 

2D space with mixed harmonic potential. In section 4 

we derive the deformed Hydrogen atom Hamiltonian 

with mixed harmonic potential. We apply the perturba-

tion theory to obtain the non-commutative modification 

of the energy levels. Finally, in section 5, we draw our 

conclusions. 

 

2. THE BRIEFLY REVIEW OF BOOPP'S SHIFT 

METHOD 
 

As it is mentioned in the introduction, a Boopp's shift 

method will be used in our paper, instead of solving the 

non commutative Schrödinger equation by using star 

product procedure; we replace the star product with usual 

product together with a Boopp's shift [20, 36, 37, 40]: 
 

 2

12 21

ˆ ˆ 1,2

and

ij

ji i i ix x p p p i

   

   

  
 (5) 

 

Then, we can show that, the commutator ˆ ˆ,x y   , in 

NC 2D real space  2R , will be written as follows: 

 

 ˆ ˆ,x y i    (6) 

 

Furthermore, the eq. (5) follows to write the two oper-
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ators x̂  and ŷ  as a function to old positions, as follows: 
 

 ˆ ˆ      and    
2 2

y xx x p y y p
 

     (7) 

 

Then, one can deduce the square 2x̂  and 2ŷ respec-

tively: 
 

 2 2 2 2ˆ ˆ    and    y xx x xp y y yp      (8) 

 

Which allow obtaining the operator 2r̂ , in NC 2D 

real space  2defR , as follows [37, 40]: 

 

 2 2ˆ
zr r L   (9) 

 

Based, on the eq. (9), one can obtain, after a 

straightforward calculation, the 3-important terms 

which will be use to obtain the NC deformed Hamilto-

nian, in the next 4th section: 
 

 

2 2

4 4 2

6 6 4

ˆ

ˆ 2

ˆ 3

z

z

z

r r L

r r r L

r r r L







  


 


 

 (10) 

 

3. THE MIXED HARMONIC POTENTIAL IN  

ORDINARY TWO DIMENSIONAL SPACES 
 

We represent the Schrödinger equation with the 

sextic potential (   2 4 6V r ar br cr   ), which compa-

nied with 3-terms, the first describe the usual vibration 

of electron, while the rest 2-terms are represents dou-

bly vibration of electron [9]. The best formulation is to 

work on the polar coordinate  , ,r r    in which we have 

the general form of Schrödinger equation: 
 

    2 4 6

0

1

2
ar br cr r E r

m

 
        
 

 (11) 

 

Where   represent the Laplacienne operator in po-

lar coordinate and  r   obtain by the method of sepa-

ration of coordinates as follows: 
 

  
 

 mR r
r

r
    (12) 

 

Where  mR r  and    are the radial functions 

and the angler function satisfied the two equations, 

respectively: 
 

 

 
   

 
 

2
2

2 2

2
2

2

1

4 0

0

m
m

md R r
E V r R r

dr r

d Ф
m Ф

d






 
 

    
  
 

 

 (13) 

Where m and E denote the two values of momen-

tum and energy, respectively. The standard solution of 

   is given by [9]: 

 

    exp  where 0;1,2...im m      (14) 

 

And  mR r determine from the equation: 

 

      2

0

exp n
m m n

n

R r p r a r 



   (15) 

 

Where: 
 

 
  2 41 1

2 2

1

2 2
and 

m

b

p r r r

c m


 

  

  


    

 (16) 

 

The radial functions of the (stationary state  0

mR  

and first excited states  1

mR ) and corresponding ener-

gies ( 0E , 1E ) are determined from the relation, respec-

tively [9]: 
 

 

 

 

 
 

      2

0

0 0

2 4

2
1 1 2

2
0 1

2 4 1 2 2 2
2 4

3

2
exp

44

exp
44

m

b m

c
m

b m c m c m

c

R b
a r E

cb c
r r
c

E
R

a a r r
b c
r r
c







    


 

 
    
 


 

  
 

    
  

(17) 

 

Then, the complete normalized wave functions 

(    0
,r

   1
r ) and corresponding energies ( 0E , 1E ), 

respectively [9]: 
 

 

     
       

 

      

1
2

1
2

2

0 2 4 3
0 044 2

1 2 2 4
0 1 44

2

1 2

2 4 1 2 2 2

exp

exp

cb b

c c

cb

c

b m

c

b m c m c m

c

r a r r r E

r a a r r r r

E











    




    


    

  





(18) 

 

And the generalized normalized wave function [9]: 
 

 

     
1

2 2 2
0 1

2 4

  ...

exp  
44

p p
pr a a r a r r

b c
r r
c

 

    

 
    

 

 (19) 

 

4. THE MIXED HARMONIC (SEXTIC) POTEN-

TIAL IN NC TWO DIMENSIONAL SPACES 

 2defR  

 

By applying the Boopp's shift method, the deformed 

Hamiltonian operator, associated with sextic potential 

NC sextH  , in the NC 2D space, determined from the 

relation: 

  
0

ˆ
2

NC sext NC SH V r
m

 


    (20) 

 

Where 0m   is the rest masses, r̂  is the operator po-
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sition in NC 2D space. The operator of sextic potential 

in NC 2D space  ˆNC SV r , take the form: 

 

   2 4 6ˆ ˆ ˆ ˆ
NC SV r ar br cr     (21) 

 

Using the two equations (20) and (21) to write the 

Schrödinger equation in NC 2D space as follows: 
 

      
0

ˆ
2

NC S NCV r r E r
m



 
     
 

 (22) 

 

Where NCE  is the eigenvalues of energy in NC 2D 

space associated with mixed harmonic potential. The 

separation variable method to equation (22) gives: 
 

  
 

 mR r
r

r
    (23) 

 

The radial function  mR r  and the angler function 

   in NC 2D space satisfied, respectively: 

 

 

 
   

 
 

2
2

2 2

2
2

2

1

4ˆ 0

0

m
m

md R r
E V r R r

dr r

d Ф
m Ф

d






 
 

    
  
 

 

 (24) 

 

As a direct result to the eq. (9), the different terms 

of sextic potential  ˆV r  will be: 

 

 

2 2

4 4 2

6 6 4

ˆ

ˆ 2

ˆ 3

z

z

z

ar ar a L

br br b r L

cr cr c r L







  


 


 

 (25) 

 

Which allow writing the sextic potential in NC 2D 

space as follows: 
 

      ˆ
NC S sex pertV r V r V r    (26) 

 

Where  V r   is ordinary potential and the modified 

term  pertV r  is determined by the following equation: 

 

    2 42 3sex pert zV r a br cr L      (27) 

 

We observe, that the term  sex pertV r  is propor-

tional to the smallness parameter , then we considers 

as a perturbation term. A straightforward calculation, 

lead to get the radial function in NC 2D space corre-

sponding  sex pertV r : 

 

 
 

     

2
2

2 2

1

4 0m
sex pert m

md R r
E V r V r R r

dr r


 
 

     
  
 

(28) 

 

We apply the perturbation theory to obtain the 

modification to the energy: 
 

          p p

p sex pertE r V r r ds


    (29) 

 

Where ds rdrd , the non-commutative modifica-

tion of the energy levels, in the first order of  corre-

sponding the stationary state 0NCE , determined by 

using the equations (18), (27) and (29) to obtain: 
 

 
3

2
0 0

1

2NCE ma T



 


    (30) 

 

Where m is eigenvalues of the operator of angular 

momentum zL , and the three terms 1T , 2T  and 3T are 

given by: 
 

 

 

 

1 2 2 4

22
0

2 2 2 2 4

22
0

3 2 4 2 4

22
0

exp

2 exp

3 exp

cb

c

cb

c

cb

c

T a r r r dr

T b r r r dr

T c r r r dr
















  




  



  








 (31) 

 

We change the variable by introduces 2r X , and 

then eq. (31) will be to the form: 
 

 

   
   
   

1 11 2

22
0

2 12 2

22
0

3 13 3

2 22
0

exp

exp

exp

cb

c

cb

c

cb

c

T a X X X dX

T b X X X dX

T c X X X dX








 


 


 


  




  



  








 (32) 

 

Now using the special integral [38]: 
 

 

 

   2

1 2

0

2

exp

2 exp
8 2

v

v

v

x x x dx

v D

 

 


 








  

  
       

   



 (33) 

 

To obtain the following results: 
 

 

     

     

     

1
22

3 1
82

2
22

3 1
82

3
22

3 1
82

1

1
16 2

2

2
16 2

3 3
32

16 2

1 exp

2 exp

3 exp

b b

c c

b b

c c

b b

c c

T a c D

T b c D

T c c D



























 



 



 

    
      

   
    

      
   

    
      

   

 (34) 

 

Which allow writing the non-commutative modifica-

tion of the energy levels 10E  as follows 

 

  10 , ,E m S a b c   (35) 

 

Where, the factor  , ,S a b c  given by: 
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1
2

2

1 1
2

8

1
2

2

1 1
2

8

3
2

2

3 1
2

8

3

2

1

2

2

2 1
0 2

2

3 3

2 2
2

2

, ,

exp

16

b

c

b

c

b

c

a c D

S a b c a b c D

c c D

b

c



























 



 



 

  
    

   
 
  

      
  
 

  
     
  
 

 
 
 
 

(36) 

 

The non-commutative modification of the energy 

levels 1NCE   associated with the first order of , corre-

sponding the first excited states, determined by using 

equations (18), (27) and (29) to obtain: 
 

 
5

1
1

2NCE m A



 


   (37) 

 

Where A are determined from: 
 

 

 

 

 

 

 

2

1 2 1 2 4
1 22

0

2 2 3 2 4

2 22
0

3 2 5 2 4
3 22

0

4 2 7 2 4
4 22

0

5 2 9 2 4
5 22

0

exp

exp

exp

exp

exp

cb

c

A cb

c

cb

c

cb

c

cb

c

A A r r r dr

A r r r dr

A A r r r dr

A A r r r dr

A A r r r dr



























  




  



  



  


   












 (38) 

 

And: 
 

 

 2 2
1 0 2 0 1 0

2
4 1 0 12 2

3 0 1 0 1 2
5 1

, 2 2

6 2
3 4 ,

3

A a a A ba a a a

A ca a ba
A ca ba a a a

A ca

   

  

  


(39) 

 

If we change the variable, similarly to above correc-

tion, we can rewrite the eq. (39) as follow: 
 

 

   
   
   
   
   

3
1 2

2

3

4

11
5 2

11 2

2 22
0

2 12 2

2 22
0

3 13 2

2 22
0

4 14 2

2 22
0

15 2

2 22
0

exp

exp

exp

exp

exp

A cb

c

A cb

c

A cb

c

A cb

c

A cb

c

A X X X dX

A X X X dX

A X X X dX

A X X X dX

A X X X dX












 


 


 


 


 

  

  

  

  

  











 (40) 

 

We apply the above one get: 

 
 

   

 
 

   

 
 

   

 
 

   

3
2

22
1

33 1
2 82

2

22
2

3 1
82

3

22
3

3 1
82

4

22
4

3 1
82

5

1 3

2 2
16 2

2

22
16 2

3

32
16 2

4

42
16 2

5

exp

2 exp

3 exp

4 exp

A b b

c c

A b b

c c

A b b

c c

A b b

c c

A

A c D

A c D

A c D

A c D

A



































 



 



 



 

   
      

   

   
      

   

   
      

   

   
      

   

      

11
2

22

113 1
2 82

11

2 2
16 2

exp b b

c c

c D










 

   
     

   

 (41) 

 

Which allow to gives the non-commutative modifi-

cation of the energy levels 1NCE .  

Now, the non-commutative modification of the en-

ergy levels NCpE , in the first order of , corresponding 

the pth order excited states, using eqs. (19), (27) and 

(29) to get: 
 

 2NCpE m A    (42) 

 

Where: 
 

 

 

  

2
2 2 2 1

0 1
0

2 4 2 4

...

exp 2 3
22

p
pA a a r a r r

b c
r r a br cr dr
c




    
 

 
      

 



 (43) 

 

We summarize the obtained results of energies lev-

els ( 0 1, ,NC m NC m NCp mE E E   ) corresponding first order 

of  to the stationary state, the first existed states and 

the pth excited states respectively: 
 

 

pmpmNCp

mmNC

mmNC

EEE

EEE

EEE













111

000

 (44) 

 

Then, we have, the explicitly obtained results: 
 

 

 
      

3
0 2

2

2

1 2

5

1

, ,

2 4 1 2 2 2

2

2

b
NC m c

b m

NC m c

NCp m p

E m S a b c

b m c m c m
E

c

A m

E E m A









 











 

    
  

 
  

 

 



(45) 

 

Now, in order to construct the NC Hamiltonian, this 

will be realized by two principal’s parts, the first de-

formed NC Hamiltonian NC SH  , will be construct on 

based to eqs. (11), (20) and (27), we can write: 
 

 

 

2 4 6

0

2 4

1

2

2 3

NC S

z

H ar br cr
m

a br cr L



 
       
 

    
 

 (46) 

 

For a better understanding of the physics content to 

the operator NC SH  , we dives it to 2- operators, 0SextH  
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and sext mH    as follows: 

 

 1 0hlc Sext sext mH H H    (47) 

 

Where the first operator is given by: 
 

 2 4 6
0

0

1

2
sextH ar br cr

m
       (48) 

 

While the second operator sext mH   is given by: 

 

  2 42 3sext m zH a br cr L      (49) 

 

Furthermore, if we choices, the parameter   and 

the vector of a magnetic field, which oriented with (Oz.) 

axes, as follows [38]: 
 

         and    B B Bk    (50) 
 

Where   is a proportional constant, and the mag-

netic moment S  , after a straightforward calcula-

tion, we have the following important results [38]: 
 

 zL JB SB     (51) 

 

Where  J L s  , using two eqs. (49) and (51), we 

can write the operator sext mH   as follows: 

 

    2 42 3sext m ZH a br cr JB H      (52) 

 

Where ZH , determined from [39]: 

 

 ZH SB   (53) 

1 (1 / 2)  

Physically, the operator (48), as it is mentioned in 

the section 3, represented a particle with spin  inter-

acted with sextic potential in ordinary 2D space, while 

the operator (52) represented two interactions between 

a particle with spin (1/2) and a external magnetic field, 

the first one represent the ordinary Zeeman effect and 

the new interaction represent a coupling between the 

total monument J  and external magnetic field B . 

Now, regarding to the relation (27), this can be rewrit-

ten to the form: 
 

    2 42 3sext pertV r a br cr SL      (54) 

 

Which allow writing, the perturbative term  sext pV r  

as follows: 
 

     2 2 22 42 3
2

sext pV r a br cr J L S


        (55) 

 

Furthermore, the operator  SL  traduced physical-

ly, the coupling between spin and orbital momentum, 

then, the modified energy levels  0 1,NC SO NC SOE E   pro-

duced, will be: 

 
 

 
      

13
0 2

2

2

2

1 2

5

1
1

5

2
1

, ,      spin up

, ,  spin down

2 4 1 2 2 2

2  spin up

                                   (56)

2  spin down

sb
NC SO c

s

b m

NC SO c

s

s

L S a b c
E

L S a b c

b m c m c m
E

c

L A

L A















 











 
  



    
  





 






 

Where 1L  and 2L  are given by: 

 

 
    

    

3 31
1 2 2 4

31 1
2 2 2 4

1

1

s

s

L l l l l

L l l l l

     

     
 (57) 

 

Then, the second part of NC Hamiltonian corre-

sponding noted by 2sextH  and given from the relation: 

 

 2 0sext sext sext soH H H    (58) 

 

Where the operator of spin-orbital interaction 

hlc soH   takes the form: 

 

    2 2 22 42 3sext soH a br cr J L S        (59) 

 

In another hand, it’s evidently to consider the infin-

itesimal parameter , the sum of 2- infinitesimal pa-

rameters  and 2 , then the complete NC Hamiltonian 

equal the sum of three fundamentals parts, the first 

one, it has been seen from eq. (42), the second part, it 

has been seen from eq. (43), while the last part, it has 

seen from the eq. (53). Thus, the final expression of 

deformed NC Hamiltonian NC sextH  , takes the following 

relation: 
 

 0NC sext sext sext m sext soH H H H      (60) 

 

It’s worth to mention, that the above obtained NC 

Hamiltonian, satisfied by applying the physical super-

position principal. Thus, the obtained NC Hamiltonian 

was extended to describing, in addition the usual inter-

action, in 2D space, 2-new physics phonemes, the modi-

fied Zeeman effect and the spin orbital interaction, 

which are introduced in the new theory automatically. 

Regarding the eq. (60), we can deduce the total NC 

quantum spectrum of Hydrogen atom with sextic po-

tential,  , , ,NCE j l s m , evidently equal the sum 3 values 

of energies (  0 1,E E ,  0 1,NC SO NC SOE E   

and  0 1,NC m NC mE E  ), corresponding ( 0sextH , sext mH   

and sext soH  ), respectively, as follows: 

 

 
  
  

1 2 1
0

1 2 2

, ,      spin up3

, ,  spin down2
NC

S a b c m Lb
E

S a b c m Lc

 

 

   
  

  
 (61) 

 

And 
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2

1

5

1 2 1
1

5

1 2 2
1

2 4 1 2 2 22

2

2  spin up

2  spin down

NC

b m c m c mb m
E

c c

A m L

A m L









  

  





    
  

  
  

  
 

      





 (62) 

 

5. CONCLUSION 
 

The deformation spectrum is studied for the sextic 

potential in NC 2D spaces in the case of low energy by 

applying the Boopp's shift method to first order in the 

non-commutativity parameter , the modified of the 

energies levels at the fundamental state and first ex-

cited states are established. The new spectrums of en-

ergy are changed radically; it depended with 3 new 

quantum numbers  1 2,j l l   and 1 2s  in addi-

tion to the quantum number m which was character-

ized the original commutative spectrum. We have seen 

that the Non commutative Hamiltonian was construct-

ed from 3-operators, the first it’s naturally to describ-

ing usual 0sextH , the second sub-Hamiltonian sext mH   

describing the new modified Zeeman effect while the 

last sub-Hamiltonian sext soH  correspond the spin-

orbital interaction. 
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