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The paper investigates the antiferromagnetic vector distribution in an antiferromagnetic film with a
system of antidots. A static distribution of the antiferromagnetic vector is written and a method — based on
the minimization of the antiferromagnet energy — that allows reducing the number of boundary conditions
required for finding the constants of this distribution is proposed. Equations for the distribution constants
are obtained for the both cases of minimizing the antiferromagnet energy by one and by two distribution
constants that enter the expression for the antiferromagnet energy. The method is illustrated on a system
of one isolated antidot. For such system, one additional condition — for the case when two boundary condi-
tions on the surface of the antidot are given — and two additional conditions — for the case when one
boundary condition on the surface of the antidot is given — on the distribution constants are written.

Keywords: Antiferromagnet, Magnetic thin film, Magnetic antidot, Magnetic energy, Antiferromagnetic

vector.

1. INTRODUCTION

Magnetic nanosystems of different configurations —
magnetic quantum dots [1], thin magnetic films [2],
magnetic nanospheres [3], nanowires [4], nanotubes [5]
magnetophotonic crystals [6] and others — are a popular
and actual topic of research in the last decades. These
nanostructures are prospective, in particular, for a va-
riety of technical applications — in information storage
and transmission devices [7], in magnetic resonance
tomography [8] and so on. In particular, systems of
magnetic dots [1] and antidots [10] are prospective for a
variety of practical applications.

While systems of magnetic dots, both ferromagnetic
[11, 12] and antiferromagnetic [13, 14], are studied in-
tensively during last years, systems of magnetic antidots
— ferromagnetic [15, 16] and especially antiferromagnetic
[17] — still remain poorly researched (and known papers
on the subject are dedicated mostly to the problem of
exchange bias of antiferromagnetic antidots). At the
same time, systems of magnetic antidots are prospective
for a variety of technical applications — for creating new
information storage devices [18] and magnon wave-
guides [19], as two-dimensional magnonic crystals [20],
as a basis for magnetic metamaterials [21] and so on.
Therefore, investigation of magnetic properties of antidot
systems, particularly in antiferromagnetic films, repre-
sents an actual topic of research.

In the study of the distribution of the antiferromag-
netic vector in a system of antidots, the task of finding
the constants of this distribution arises. In the previous
papers [22, 23] the task was solved by imposing three
(in accordance with the number of constants) boundary
conditions for the antiferromagnetic vector. However,
using an energy minimum condition for the antiferro-
magnet allows reducing the number of boundary condi-
tions required for finding these distribution constants.

The presented paper continues the investigation of
the antiferromagnetic vector distribution for a system
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for circular antidots in a film composed of a two-
sublattice antiferromagnet started in the earlier papers
of the authors [22, 23]. For such an antidot system, the
antiferromagnetic vector distribution is written and an
energy method (based on the condition of minimum of
the antiferromagnet energy) of obtaining the constants
of this distribution is proposed. The corresponding
equations for the distribution constants are found. The
method is illustrated on the case of a system consisting
of one isolated antidot an in antiferromagnetic film; an
expression for the antiferromagnetic vector distribution
and equations for the distribution constants for this
case are found.

2. SETTING OF THE PROBLEM

Let us consider a film (with a thickness d) composed
of a two-sublattice antiferromagnet, and assume that
for the magn?tization (Iiensity of the antiferromagnet

sublattices (M, and M, , respectively) the condition
I I
M, =M, |M|=|M,| = M, 0= const) fulfils. Thus,

1
the total magnetization vector M =0 , and the antifer-

romagnetic vector is constant in magnitude:

i
‘L‘:Lozconst. Let us denote the non-uniform ex-

change parameters of the antiferromagnet as a1 and as
(a1 > 0) and the uniform exchange constant as A. Let us
consider an uniaxial or uniform antiferromagnet, so the
uniaxial anisotropy constants are equal to /1 and f. An
Oz axis of the Cartesian coordinate system is directed
normally to the film.

Let us consider a system of antidots — with the radii
R;i and planar radius-vectors of the centers {Vr‘Oi} — pre-
sent in the film, see Fig. 1. A distribution of the antifer-
romagnetic vector for such system found in the previous

articles of the authors [22, 23] requires finding the dis-
tribution constants as a separate task. In these articles
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Fig. 1 — Antiferromagnetic film considered in the paper

the task was solved by imposing boundary conditions
on the antiferromagnetic vector; in this approach, ex-
cept for “natural” boundary conditions, additional ones
(for example, on the outer border of the film) are neces-
sary to obtain a complete set of the above-mentioned
constants. In order to reduce the required number of
boundary conditions, let us find condition on the distri-
bution constants that imply from the condition of the
magnetic energy minimum.

3. DISTRIBUTION OF THE ANTIFERROMAG-
NETIC VECTOR IN THE ANTIFERROMAG-
NETIC FILM IN THE PRESENCE OF THE
ANTIDOT SYSTEM

First, let us consider an antiferromagnetic film (de-
scribed in the previous section) without specifying the
presence of the antidot system in it and find the distri-
bution of the antiferromagnetic vector in such a film.

Let us use the spherical C(I)ordinate system (r, 6, @), so

the antiferromagnetic vector L can be written as follows:
! ro. r. . r
L=L, (ex sing; cos¢g;, +e sindy sing; +e, cos HL) ,(1)

r

r v .
here e, , e, , e, are unit vectors of the axes Ox, Oy and

s
Oz of the Cartesian coordinate system, respectively
(therefore, 6L and @L are an azimuthal and polar angle
of the antiferromagnetic vector, respectively). Let us
use the system of equations for the static distribution of
the antiferromagnetic vector that originates form the
Landau-Lifshitz equation:

ct div(sin2 HLV¢L) =0
, (2
cIAG, +((gHO)2 —ciAg, — aig)sin 0, cos6, =0

1
(see, e.g., [24,25]), here H, is the external magnetic

field, ¢, = 4u,M, A, [h, @, =4u,M, JAB /h.
Let us use the solution of (2) obtained in [24] and
used in the previous papers of the authors [22, 23]:

{tg<eL/z>=H<P<x,Y,z>>

®3)
¢, :Q(X’Y’Z)

here X =x/l,, Y =y/l,, Z=2z/l, and

l() :{’\/al/ﬂl ’ ﬂl ;tO. (4)

1, B =0

The function H of this solution can be written in the
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following form:

+dH
,¢H2 +C1(1+H2)2

here Ci is a constant. For the cases —1/4<C; <0 and

P(X,Y,Z)=] ®)

C1>0 this form of the function H can be expressed
through dJacobi elliptic functions sn, dn. For
-1/4 < C, <0 we obtain

0 b
t ij:
g[z dn(e|[CP(X.Y.2).h), @
¢L:Q(X’Y’Z)

here c:\](1+2cl+«i1+4cl)/2\q , b:\/(1+2clf1ﬁ+4cl)/2\cl\

and 0 <k, <1 is the elliptic function modulus:

o = 21/ +4C, o
1+2C1+1¢’1+401 '

For C1 > 0 we obtain

[l-sn(P(X,Y,2).k,)

tg(6,/2)=
B0 am(Px Y 2)0k).  ®
¢L:Q(X7Y7Z)
where 0<k,<1 is the elliptic function modulus:

ky =1/, fl +4C; . Functions P and @ of the solution satisfy

the conditions

2 2 2 2 2 2
(8] (5] () im0 (2
oX oY oz X oY o7z
AP=0, AQ=0, )

P oQ oPQ 0P OQ _
0X 0X 0YoY oZoZ

bl

and for an uniaxial or isotropic antiferromagnet can be
written, for instance, as follows:

7

P :E®(ﬁ1)+zni ln[ioi‘}rgk'K(k)zﬁi“i +C,
i T i

] I L

0 0 oL ,(10)
Q- %@(7@) ~2h K(k)Sh, h{@j +Yan +C,

0 i 0 i

ro(x). . .
here r :( j is a planar radius vector of an observation

. r Xo; . .
pomnt, ry; = [ Ol] are planar radius vectors of a certain set

0i
of points, n; and A are certain (arbitrary) integer num-
bers, ai is an azimuthal angle relative to the point ’[Oi
(therefore, o, =arctg [( =i )/ (% —in)]) and the func-

tions
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0, £<0
@(5)—{1 :‘:O, (11)
5 ae
K(k): £ 1-k%sin? & 42

(complete elliptic integral of the first kind), & = k2.
Now, let us consider the presence of the antidot sys-

tem described in previous section. In this case, the pla-

nar vectors {ir"Oi} in (10) correspond to the antidots’ cen-

ters. After putting =0 for all i, let us rewrite the
distribution (10) as follows:

iz =
P-= l—@(ﬂl)-i—;ni ln[lJ-i—Cz

0 0 (13)

Q= ?@(—ﬁ1)+§aini +C,

0

The system (13) together with the expressions (6) or
(8) (depending on the value of the constant Ci1) gives the
required distribution of the antiferromagnetic vector for
the above-described film with the antidot system.

4. ENERGY OF THE ANTIFERROMAGNETIC
FILM WITH THE ANTIDOT SYSTEM

In the previous papers of the authors [22, 23] in order
to find the distribution constants (13) Ci, C2 and Cs,
three boundary conditions were imposed on the antifer-
romagnetic vector. Therefore, the distribution of the an-
tiferromagnetic vector was found depending on these
boundary conditions. However, it is possible to reduce
the number of required boundary conditions by imposing
the condition of minimum of the antiferromagnet energy.

First, let us analyze a physical sense of the con-
stants C2 and Cs. As it can be seen from (13), change of
the constant Cs by the value AC3 corresponds to a rota-
tion of the antiferromagnetic vector on the angle AC3 in
each point in the system. Change of the constant Cs
corresponds to scaling of the antidot system (of each
antidot, to be exact):

N rr
P="20(8)+Tn, h{r eri]wz -
0 i 0

ror (14)

:E®(ﬂl)+zni 1n[r_rOij

ly Gl

here ¢, = exp (—C2 / anj .

W = 212ha,b? | as

S(dnz(c\/‘Czlu,kl)+b2)

R R Y (B R

ZCZQkf[Z
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Then, let us find the energy of the antiferromagnet-
ic film with the antidot system described in the previ-
ous section, for which the distribution of the antiferro-
magnetic vector is described by the equations (13) and
(6) or (8). Let us consider an isotropic antiferromagnet
(B1 =0). Therefore, the functions P and @ can be writ-
ten as follows:

‘r r
p:th{rl%J+@
12

0

Q= Zaini +C,

(15)

The energy density of an antiferromagnet

r.2
w= 10:12(%J (16)

(see, e.g., [25]) in our case (the antiferromagnetic vector
does not depend on the coordinate z and the antiferro-
magnet is isotropic) can be written as follows:

d .2 .2
WAl [0k 1O gg an
2 S or r 6¢
here the integration is performed over the surface of
the film. For the antiferromagnetic vector in the form

(1) the integrand expression can be transformed as fol-
lows:

2 2
(&) +{%)
2 2 2 2
GG BRI
or or r 0¢ o¢p

18)

As partial derivatives of the function gL

oy _
or _lz-nl or

460@, %:Zni oa; (19)
o T " O¢
do not depend on constant Cs, the energy of the consid-
ered system also does not depend on this constant.
Therefore, the energy (16) should be minimized only by
the constants C1 and Ce: that enter the function 6. The
constant Cs can be found if a value of the function ¢r is
given in one point (for unknown n; — in two or more
points, depending on the specific values) of the film.
After substituting the solution (6), (8) and (15) into
the expression (18) and integrating in accordance with
(17) using properties of elliptic functions, after some
transformations we obtain

f ofr —1u| Y
e n; —Toi
]+r2[zi:r—r0i ¢ J *

n, ofF 1y

ilr-n,] or
(20)

i
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for -1/4<C, <0,

2
W :Mj'dS(l—snz(u,kz)) ‘

6‘1[—7"(”-
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2 3

n* (u,ky)dn® (u,k,) n
(l—an(u,laz))2 [[ZI l

for C1 > 0, here

rr
u(r,g)=n, ln£w
i N

. ro. .
Let us write down the vectors r,; in the polar coordinates as (

rr .
for ai; and ‘r - rOi‘ we obtain

W =2Lha,b” |

; ‘rfrol.‘ or

r—ry; cos(d—dy;)

RV 1(< o of-n) oo ¥ 1(c oa)
i —Toi i
] +r2[lzrr0i o¢ ]]Jr[(;”l ar] + [Zn a¢j] (21)

(22)

r‘J+Cz.

To; . . .
0‘] . After writing down geometrical expressions
0i

ds [{
z||| %
n2(c\/‘?u,kl)+b2) '
xc? G| klsn? (C\I‘Czlu,kl)cn?‘ (c

for -1/4<C, <0,

2
1
n . + — Zn.
lr2+r(fi—2rr0icos(¢—¢0i)] rz{i '

I A (G

) 2
Ty s1n(¢ — ¢0i)
r’ 415 —2rry; cos (¢ — ;)

(23)
) ! — o0, )’

W:7L%halfd3(1—sn2(u,k2)) an(u’k2)dn2(u’2k2) [ n r—7;c0s(4— ¢y;)
2 5 (l—snz(u,kQ))

2
ITy; sin (¢ — dy; ) (
s + 15— 2rr, COS(¢_¢0L‘)J J*{ Zi:(in

+12(Z
r i

for C1 > 0, here
PG )

2
\//1 + % rO‘ + 200 2n; cos(¢ ¢0l)
r

(25)

Thus, we found energy of the antiferromagnetic film
described in the “Setting of the problem” section. Let us
find an energy minimum condition for this energy.

2
lr2+r2.—2r7"«COS(¢_¢')J '
o 0i 0i (24)

700, 1 — o0, )’
)1- @ arj +r2(§(ini) 1-®; 6¢J D

5. OBTAINING DISTRIBUTION CONSTANTS
FROM THE CONDITION OF THE ANTIFER-
ROMAGNET ENERGY MINIMUM

Let us write down the condition of the antiferro-
magnet energy minimum. When two boundary condi-
tions are given, minimizing the antiferromagnet energy
by only one constant is sufficient. (As the expression for
the function H depend on the constant Ci, it is more
convenient to minimize by C2).

Thus, after minimizing the antiferromagnet energy
given by expressions (23) and (24) by the constant Co,
the following system of conditions can be obtained:

for -1/4<C; <0, and

Z‘C‘kl sn ( |, Ry )cnz(c Clu,ky )F(r¢ )+dn? ( s Ry )F (r,¢) JS -0

aCZS (dnz(c C, u,k1)+b2) 6
CZ‘Cl‘kfsnz(c Clu.k, )cn ( e By ) (r,4)+dn? ( \/_ k1) 4S50

oC; 5 (dn2(c Clu,k1)+b2)
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kz)an (w,ky)
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aCy s

IdS(l sn® (u,k )) en” (u,

(1 —sn? (R, ))2

F,(r,¢)+Fy(r,¢) |=0

C22 idS(l sn (u k ))

for Ci > 0. Here we have denoted

r—Ty; cos(¢—dy;) 2+
)

24 rozi —2rry; cos (¢ = ;i
' 2
I'Ty; sin (¢ = fo; )
ip2 702i —2rry, COS(¢ - ¢oi) ,

oo, Y
F2(r,¢)=(zi:(ini) o ;] .

1 = 00,
W(;( N a¢j

F (’"’4’5) = [an

. (28)

If only one boundary condition for the antiferro-
magnetic vector is given, the antiferromagnet energy
should be minimized by the both constants C: and Co.
Therefore, two additional conditions for finding the
distribution constants are obtained.

Let us write the energy minimum condition by two
constants. For —1/4 <C, <0 we obtain

0
6702]1(CI7C2):
0
511(01,02):
a; (29)
S h(€C)>0
® 1c.0) 21 (e, *_ e
s - —1 , 0
602 1( ) C1 1( 1 z) [6C16C2 1( 1 2)] >
here
dsS
II(CI,C2):j 5 X
S(dnz(c @ u,k1)+b2)

(el s e o (G ) 5 (9) (30
+dn? (c\/‘au,kl)Fg (7“,¢))

and for C1 >0

6‘22 ,(C.C,) =0
aZI (C,C,) =0
C (GG, >0 o
oz A
P o P 2
2 h(C G - (cl,cz)_[mzz(q,cz)] >0

(27)
9 2
cn” (u,ky)dn (“’fz)ﬂ(r,¢)+Fz (r.4)|>0
(1—3112 (u,kz ))
here
1, (C17C2) = J’dS(l—STLQ (u,kz))x
S
) , . (32)
cn (u,k2)dn (u’kz)lq(r,(ﬁ)*‘Fz (r,¢)

(1 —sn? (R, ))2

Note that method is applicable (for a given set of ni)
only when the resulting value of C: lie in the corre-
sponding range, Ci1>0 for the conditions (31) or
-1/4<C; <0 for the conditions (29). The existence of

such solution for at least one case is shown in the chap-
ter “Discussion”.

Thus, we have written down a system of equations
for the constants Ci, C2 of the distribution (3)-(9), (13)
that implies from the condition of the antiferromagnet
energy minimum. During the study of a specific system
one may use the system (29) or (31) together with one
boundary condition on the function @z (or more, if the
values of n; are unknown) that allows to find the con-
stant Cs, or use the system (26) or (27) together with two
boundary conditions for the antiferromagnetic vector.

Let us illustrate the above-given method on the case
of an isolated antidot.

6. DISTRIBUTION OF THE ANTIFERROMAG-
NETIC VECTOR IN AN ANTIFERROMAG-
NETIC FILM WITH AN ISOLATED ANTIDOT

Let us consider a system investigated in previous
work of the authors [23] — an isolated antidot in a large
antiferromagnetic film — and apply the above-described
method of finding the distribution constants. In order
to determine the limits of integration let us consider an
antidot with the radius R in the center of antiferro-
magnetic disk with the radius R. (Re>> R). In [23],
three boundary conditions were imposed to find the
three constants Ci, Ce and C3. In addition to two
boundary conditions for the antiferromagnetic vector
on the antidot boundary (vortex distribution), a third —
“artificial” — boundary condition was necessary to com-
plete the system of equations for the sought constants
(for example, boundary condition on the edge of the
film: R = R.). This approach allows obtaining a com-
plete distribution; however, it narrows the limits of
applicability of the results. Let us apply the method
described in the previous section — first, let us replace
the third boundary condition with the energy minimum
condition (therefore, only two boundary conditions —
vortex distribution of the antiferromagnetic vector on
the antidot surface — are required) and find a complete
system of equations for the distribution constants, and
second, let us use only one boundary condition — vortex

02027-5
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distribution of the antiferromagnetic vector projection
on the xOy plane on the antidot surface — together with
both conditions ((29) or (31)) that imply from the ener-
gy minimum condition by the constants C1 and Ca.

The functions P and @ for an isolated antidot in an
isotropic antiferronmagnet have the following form:

P:nln(r/lo)+C2. 33)
Q=¢n+C,
Let us choose boundary conditions for the
antiferromagnetic vector as follows:
0, =x/2
ilron : (34)
#| _p=9+mi2%x

The expression (34) defines a “positive vortex” dis-
tribution of the antiferromagnetic vector (in the plane
x0y) on the antidot surface. From the second boundary
condition in (34) we obtain n=1, C;=7/2t7x. After
substituting (33) and (34) into the solutions (6) and (8),
one can obtain the following distributions:

b
o(3)-
2) an(efClm(ri)+Cok)  @39)

b =¢+ml2%7

with the constants C1 and C2 related by the equation

c\/Czlln[f]+C2 :F[arcsin llk_lbz ,k1]+4K(k1)N(36)

for -1/4<C; <0 (here N is an integer, F({k) is an in-
complete elliptic integral of the first kind

dp

4
F(&k)= , (37)
( ) gl—kzsinzp
and
tg(g—Lj: [L=sn(In(r/4,)+C, k,)
2) \1+sn(In(r/f)+Cyky)» (38

¢ =p+ml2+m

; ln[ : ]c

9 ln[ < ]+C2
a 0
2

for -1/4<C; <0 and

J. NANO- ELECTRON. PHYS. 7, 02027 (2015)

with for the constants C1 and C: related by the equa-
tion

C, = 4NK[ (39)

o) ()

for C1 > 0.

In order to obtain a complete set of constants —
and,therefore, a complete distribution — one more rela-
tion between the constants C1 and C2 should be found.
In [23] authors used a boundary condition on the outer
surface of the disc-shaped film, thus narrowing essen-
tially the range of the applicability of the results. In-
stead, let us use the energy minimum condition in a
form obtained in the previous section.

The equation (35) for the considered system can be
rewritten as follows:

r\2 r\2
ha, % oL| ,1foL
Ay

After substitution of the solutions (6) and (8) and the
expression for the function @ into (40) and considera-
tion of the system symmetry, with account for the
properties of the elliptic functions, one can obtain

In % C,
W = dna k126 du _x
nfE ), (an (cyC: u,k1)+b2)

(e T o)
+dn? (c\ﬁu,kl))

for -1/4<C,; <0, and

(41)

In
W = e h L

In|

/N
==

]+cz en® (u,ky ) dn® (u, ky) + (1 -sn®(u, k,z))2
1-sn”(u,ky)

[

NG

+C,

—

0

(42)

for C1> 0. Thus, the condition (26) for the constant Co
in this case can be written

o, [j' l(kfczClcn2(c\/au,kl)sn2(c\/au,kl)+dn2(c\/au,kl))/(bz+dn2(c\/au,kl))2du=0

(43)

( 1?|Cy|en® (C\IJI‘Czlu,kl)sn2 (c\/‘Czlu,kl)+dn2 (c\ﬁu,kl))/ (b2 +dn® (c\/‘Czlu,kl))2 du >0

02027-6
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for C1 > 0.

In order to simplify the system (43), let us analyze
the dependence of the energy given by (41) on the con-
stant C2. Integrand expression in (41) is a periodic

function of u, with a period 2K (k)/(c|[C}]). This
means, in particular, that the energy W does not de-

pend on the constants Csz in the case when the interval
[R, Rc] contain an integer number of periods, so that

,f In(R,/R)=2qK (k) (here q is an arbitrary inte-

ger). The system (43) does not become an identity when
c, NCl‘ In(R,/R)+2qK (k,); in this case after differen-

tiating the expressions that enter the system of equa-
tions (43) one can obtain

f[h{R J+cz,q] f( (R]Jrcz,clJ_o
Iy I . 45)

o _ I

ou u=In(R, 11,)+C, ou

>0
u=In(R/1,)+C,

here

f(w.C)= : z\dn (ey[Clua (€))+
(82 +dn eg[Clu (c,)) o ) (46)

+k'c*|C)| en® (c\ﬂczlu,k1 (Cl))sn2 (c\/‘Czlu,k1 (01)))

For C1> 0 we obtain a similar periodicity condition
In(R,/R)#2qK(k,) and the same system of equa-

tions; however, in this case

f(u,Cl) ) en? (u,k2 (Cl))dn2 (u,k2 (01)) +(1 —sn? (u,k2 (01))) )

—snz(u,kz(Cl))
Note that for C1> 0 we can use the explicit expres-

sion (39) for the constant C2 and, therefore, rewrite (45)
into a system of equations for one variable:

f[ln(llz j+4NK[ﬁ]—ln[§:],cl]_
_f[ln[f:J+4NK[\/1:T]—InU:J,ClJ ~0.(48)

o i

ou u=ANK(1\fT+3C; J+In(R,/R) ou

>0
u= 4NK(1/ +4c)

Solutions (35) and (38) together with the conditions
(36), (45), (46) or (39), (45), (47), correspondingly, de-
scribe the sought distribution in this case.

P h{%}cz )dn (u,k2)+(1—sn2 (u,k2 ))2
ﬁh{ﬁj 1-sn® (u,kz) du=0
I (44)
ln[ij ' 9 2
L) *cen? uk )dn (uk )+(1—sn (u,kz))
6’Cz [RI] 1-sn (u,kz) du>0
L)

Now, let us use the condition of energy minimiza-
tion by both constants C1 and C: ((29) and (31)) togeth-
er with one boundary condition on the antiferromagnet-
ic vector (the second boundary condition of the pair
(34), as it allows to find the constant C3 that cannot be
obtained from the energy minimum condition). Thus,
the boundary condition

4 r:R:¢+%iﬂ', (49)

from which we obtain n =1, Cs = 7/ 2 + 7, must be sup-
plemented by the following system of relations:

f{ln@i}tC cJ f[ U:j+c2,c1]_

of ;2
+a—clb jdu—O , (50)

ln(7]+C aCl
o _o >0
ou u=In(R,/1))+C, ou u=In(R/1,)+C,

_o

u=In(R, /,)+C, ou

o x
ou u=In(R/1,)+C,

lnli .c, ) (50)
(l] 9 (ab f(w, 1)+afb2}iu

x
oC aC,
2
>0
u=In(R/l,)+C,

ln[lﬁ}r(?z aC
_o
f(In(R,/l))+Cy.C)~f(In(R,/l,)+C,,C, ) =

u=In(R, /1,)+C, ou

1 of
“»?|oc, ou

for -1/4<C, <0 and

In(R, /,)+C,
of du=0
(R, Ji,)+¢, 0C;
g I >0 (51)
ou u=In(R, /1,)+C, ou u=In(R/1)+C,

if 7% 11'1(R,/jl(,)+C2 62f dum
Otlyoin(m it )ve,  OUlumin(mit,)rc, )In(BJL)+Cy Gley

“ 2
o >0
GC ou u=In(R/1,)+C,

for C1>0. Note that for the applicability of the pre-
sented method the solution of (50) or (51) should exist

o

u=In(R,/1,)+C, ou
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and the constant Ci of this solution should lie in the
appropriate range. If these conditions does not fulfill,
another boundary condition for the function 6z should
be imposed and, therefore, the equations (35), (45), (46)
or (39), (45), (47) should be used.

The systems (50) and (51) together with the
boundary condition p=p+ /2%t (vortex
distribution of the antiferromagnetic vector projection
on the plane xOy on the antidot surface), from which
the equalities n =1, C3= 7/ 2 £ x follow, provide necec-
cary values of the constants Ci, Co: and C3 and,
therefore, defines the sought distribution completely.

7. DISCUSSION

Let us show the existence of a solution of the above-
described type — and, therefore, applicability of the meth-
od — for the case of an isolated antidot. For such case, let
us find a value of the constant Co that corresponds to the
energy minimum for a given value of the constant Ci.

Let us consider an isolated antidot described in the
previous section. Considering the fact that for a typical
synthesized antiferromagnetic nanosystems the exchange
constant a1 ~ 1012 cm~1, for a typical antidot diameter
(several nanometers), we can put R/lo=1. Let us choose
the value C1=1 and use the boundary condition (49), so
for the distribution (33) we obtain n=1, C3=7/2+ 7
(planar distribution of the antiferromagnetic vector). For

such values of Ci1, C3 and n the distribution form is given
8
0.57

0.4n
0.3n
0.2n

0ln

z E: [ 8 10 e

Fig. 2 — Distribution of the azimuthal angle of the antiferro-
magnetic vector for R/lo=1, Ci=1, Co = 1.32

by (38). For example, for R/R =100 the expressions
f(In(R,/l,)+C,,C,)~f (In(R/l,)+C,,C,) and
(of 1 ou) of 1 ou)
condition (45) (with the function f that in this case is
given by (47)) depend on C: in a periodic way. In this

case energy minimum condition given by (45) fulfils for
values of Cz approximately -2.30, 1.32, 4.94 and so on

that enter the

u=In(R, /1, }+C, 7( u=In(R/,)+C,

J. NANO- ELECTRON. PHYS. 7, 02027 (2015)

(for these values of C: f(In(R,/l)+ CQ,CI)— ,
~f(In(R,/1,)+C,,C;) =0, (of lou), ———
—(of lou), (riyec, 002> 0.

Let us illustrate graphically the obtained results.
The distribution of the azimuthal angle 6L of the anti-
ferromagnetic vector for the second of the above-
mentioned values of Cz (C2= 1.32) is presented on the
Fig. 2. As we can see, the antiferromagnetic vector has
a planar distribution (6L =0) for /R = 1.65 and then,
with increasing the distance r from the antidot center,
tends to orthogonal (6= 7/2). Further investigation
shows that the distribution becomes orthogonal for
r/R~10 and with further increase of the distance r
tends to planar which is reached for r/R = 61.2.

8. CONCLUSIONS

Thus, we have investigated the distribution of the
antiferromagnetic vector in the film composed of a two-
sublattice antiferromagnet with a set of circular anti-
dots. We have complemented a distribution obtained in
the previous papers of the authors with a method of
finding the constants of this distribution that allows
reducing the number of required boundary conditions
imposed on the antiferromagnetic vector. The method
allows obtaining the necessary relations on the distri-
bution constants from the condition of minimum of the
antiferromagnet energy.

From the above-mentioned condition of antiferro-
magnet energy minimum, equations for the distribu-
tion constants have been written. The method proposed
in the paper allows obtaining two out of three neces-
sary relations between the three constants of the dis-
tribution (13) of the antiferromagnetic vector; there-
fore, one boundary condition for this vector is sufficient
for obtaining a complete distribution. (In the previous
papers on the subject the authors had to impose three
boundary conditions in order to obtain all three con-
stants.)

The method is illustrated via application on the sys-
tem comprised of one isolated antidot in an antiferro-
magnetic film. For this case, a distribution of the anti-
ferromagnetic vector and a system of equations for the
constants of this distribution are found. Graphical rep-
resentation of the obtained result for specific antidot
parameters is given.
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Enepreruunuii MmeToq NOmyKy KOHCTAHT PO3IIO/A1/Iy BEKTOpA aHTU(PEePOMardHeTu3my IJid

CHCTEMHU AHTUTOYOK y JBOIMiArPATKOBOMY aHTU(EPOMATHETUKY
B.B. Kyurim, O.1O. I'opo6ers

Hauionanvruii mexnuiunuii ynisepcumem Yrpainu «Kuiscoruii Ilonimexuiunuii Incmumymn,
npocn. Ilepemoeu, 37, 03056 Kuis, Yikpaina

VY poGoTi FOCTiIeHO PO3IIOIi BeKTOpa aHTH(epPOMATHETH3MYy B aHTH(QEPOMATHITHIN ILTIBIN 3 CHCTe-
MO0 aHTUTOYOK. 3AIMCAHO CTATUYHUN PO3MOLT BEKTOPA aHTHU(EpOMArHETH3MY, 3AIIPOIIOHOBAHO MeTOo I (110
ba3yeTbcst HA MiHIMI3AITl eHeprii aHTU(EPOMATHETHKY), AKUH JI03BOJISIE 3HU3UTH UYHCJI0O TPAHUYHUX YMOB,
HEOOXITHUX JIJIA 3HAXO/PKEHH KOHCTAHT ITHOTO PO3IMMOLTy. PIBHSHHS JIJIsT KOHCTAHT PO3MOILILY OTPUMAHI IK
JIJIS BUOAKY MiHIMI3armi eHeprii auTtrd)epoMarHeTUKy Mo OHIN 3 KOHCTAHT PO3MO/IITY, 10 BXOIATH ¥ BUPA3
JIJIS eHepril aHTU(ePOMAaTrHeTHKA, TaK 1 I BUMAIKY MIHIMI3aIll o JBOX KOHCTAHTaX. MeTo/1 mpoiTiocTpo-
BAHO HA TMPHUKJIAJI CHCTEMH 3 OJIHIi€l 130,160BaHOI aHTUTOUKH. J[J1sT Takoi cucreMu OTpUMAaHO OIHY J0IaTKOBY
YMOBY HaA KOHCTAHTH POIIIOILTY — JIJIsT BUIAKY, KOJIM HA TIOBEPXHI AHTUTOUYKU 3a[aHO JIBl TPAHWYHI YMOBH —
Ta Bl JI0IATKOBl YMOBH — JIJISI BUIIAIKY, KOJIH HA IOBEPXHI AHTUTOYKH 32TaHO OJHY TPDAHUYHY YMOBY.

Knrouoesi ciora: Aurudepomarmerur, Touka marnitHa wiieka, MaruitHa anturouka, MarHiTHa eHepris,
Bexrrop antudepomaruernamy.

AJIA CHCTEMBI AHTHUTOYEK B JIBYXIIOAPEIIE€TOIYHOM aHTI/I(i)epI)OMaI‘HeTI/IRe

B.B. Kyuum, O.10. T'opooerr,

Hauyuonanvnoii mexuuueckuil ynusepcumem Yrpaunwvt «Kuesckuii Ilonumexrnuueckuii Hnemumymn,

npocn. Ilo6eowt, 37, 03056 Kues, Ykpaura

B pabore uccrenyercst paciipesiesieHre BeKTopa aHTU(EPPOMATHEeTH3MA B aHTH(EPPOMATHUTHOH IIJIEHKE C
CHCTEMOM aHTUTOUEK. 3aIlMCaHO CTATUYECKOe PACIIpejeIeHre BEKTOPa aHTH(PeppOMATHEeTH3MA, IIPEeJIOIKEH
MeToZ, (OCHOBAHHBIN HA MUHHMH3AITUN 9HEPIHH aHTH(eppPOMarHeTUKa), KOTOPBIA I03BOJISIET CHU3UTH YKCJIO
TPAHUYHBIX YCJIOBUM, HEOOXOAMMBIX JIsI HAXOKIEHNsI KOHCTAHT 9TOI0 paCIpeseseHus . ¥ PaBHEHUs 1JIsI KOH-
CTaHT pacIpeesIeHUsI OIyIeHbl KaK U CJydas MUHIMHU3AIIUN 9HePIUH aHTH(epPOMarHeTUKA 110 OJHOM U3
KOHCTAHT pacIipe/esIeHUsi, BXOJAIINX B BRIpAKEHUe JJIS JHEPTUH aHTHU(EpPPOMAarHeTHKa, TaK U JJIA CIIydas
MUHUMUI3AINN 110 ABYM KOHCTaHTaM. MeTos MponyIIIoCTpUPOBAH Ha IIPUMepPe CUCTEMEI 3 OJHOM M30JIMPOBAH-
HOHM aHTHUTOYKH. J{JIsT TAKOM CHCTEMBI ITOJIyYEeHO OTHO JOIIOJIHUTEIHHOE YCIOBHE HA KOHCTAHTHI PACIIPEIeJIeHIS
— IJIs CJIydasi, KOTJAa Ha IIOBEePXHOCTH aHTUTOYKHU 3aJaHO JBA T'PAHUYHBIX YCJIOBHUS — U JIBA JIOIIOJIHUTEIHBHBIX
YCJIOBUS — JJIs CJIydasi, KOTZIa Ha ITI0BEPXHOCTH aHTUTOYKH 32TaHO OJHO I'PAHUYIHOE YCJIOBHE.

Kmiouessie cioBa: Aatudeppomaruernk, ToHKas MarHuTHas IUIeHKa, MarHutHast aHTuTOoYka, Maruur-

Has sHeprusa, Bexkrop aHTHdEppoMarHeTnama.
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