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The power of the elliptically polarized electromagnetic radiation absorbed by band-gap graphene in 

presence of constant magnetic field is calculated. The linewidth of cyclotron absorption is shown to be non-

zero even if the scattering is absent. The calculations are performed analytically with the Boltzmann kinet-

ic equation and confirmed numerically with the Monte Carlo method. The dependence of the linewidth of 

the cyclotron absorption on temperature applicable for a band-gap graphene in the absence of collisions is 

determined analytically. 
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1. INTRODUCTION 
 

The possibilities of using of graphene structures in 

optoelectronics explain the high interest among re-

searchers in studying of non-linear electromagnetic 

(EM) response of such materials [1-12]. Investigations 

of magnetic field effect on the kinetics properties of 

graphene give the information about effective mass, 

concentration and mobility of charge carriers of gra-

phene structures [1, 13, 14]. The effect of magnetic field 

on the dc-conductivity of graphene was studied in Refs. 

[15-17]. The influence of high-frequency radiation on 

the Shubnikov-de Haas oscillations in graphene was 

investigated in Ref. [18]. 

The adequacy of relaxation time approximation  

(-approximation) for quasiclassical describing the 

magnetotransport in graphene was shown in Ref. [17] 

in the numerical experiment. The simulation performed 

in Ref. [17] used the Monte-Carlo method taking into 

account the scattering processes on the acoustic and 

optical phonons. 

Investigations of cyclotron resonance are also im-

portant for diagnostic of kinetic properties of 2D-

electron systems [19]. In Refs. [20-27] the magneto-

optical conductivity of graphene and its cyclotron re-

sponse were investigated within the linear response 

theory. The theory of magneto-optical conductivity of 

graphene taking into account the electron-phonon cou-

pling was developed in Ref. [25]. In Ref. [27] the tem-

perature dependence of high-frequency magnetocon-

ductivity of gapless graphene was calculated. For non-

quantizing magnetic field the calculations in Ref. [27] 

were based on the Boltzmann equation which was writ-

ten in -approximation and in linear approximation 

over the electric field intensity E. 

Experimental results on the cyclotron resonance in 

single-layered graphene were published in Refs. 

[14, 28-30], where the linewidth of the cyclotron reso-

nance was shown to be very broad even in a perfectly 

pure graphene. This fact was discussed theoretically in 

Ref. [31] where linear response theory of cyclotron absorp-

tion was shown to be not applicable for describing the EM 

response of gapless graphene in finite magnetic fields. 

In Ref. [31] the analysis of equation of motion of 

single electron with linear dispersion in constant mag-

netic field with intensity 0H  and in sinusoidal elec-

tric field was performed. The scattering processes were 

neglected in Ref. [31]. Such situation corresponds to the 

electron motion in gapless pure graphene. The calcula-

tions showed that EM response of gapless graphene 

was essentially nonlinear even in a weak external elec-

tric field ( cHE F , F  is the velocity on the Fermi 

surface). Mathematically, this result was the conse-

quence of singularity of Lorentz-force term in the equa-

tion of motion in the case of non-zero magnetic field. 

According Ref. [31] the width of cyclotron line has a 

non-zero width even if all scattering processes are ne-

glected. This fact differs graphene from 2D-systems 

with parabolic dispersion law [19]. As follows from re-

sult of Ref. [31] the non-zero width of cyclotron line is 

not necessarily related to scattering processes but is 

due to the linear dispersion of graphene. 

Analysis of equation of motion of number electrons 

in non-zero magnetic field with intensity 0H  was 

performed in Ref. [31] also (48 particles). However in a 

real graphene system one deals with macroscopic en-

semble of electrons with different initial phases and 

initial momenta. Hence the theory must be based on 

the kinetic equation taking into account scattering pro-

cesses and the action of EM fields on the electron sub-

system as whole. Moreover, according to the theory of 

transport phenomena [32, 33], the presence of the band 

gap in graphene leads to the next situation. Firstly if   

and gap semiwidth   satisfy the next inequality: 

 Ee F , then the electron dynamics can be consid-
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ered as linear. Secondly, as will be shown below, for 

band-gap graphene linear response theory also shows 

the non-zero width of cyclotron line if scattering frequen-

cy 1    decreases to zero (although, in contradistinc-

tion to Refs. [27, 31], the Lorentz-force term in the equa-

tion of motion is not singular at low electric fields). Note 

that the possibility of gap appearance in band structure 

of graphene was investigated in Refs. [2, 3]. 

 

2. LINEWIDTH OF CYCLOTRON ABSORPTION 

OF EM RADIATION BY BAND-GAP GRA-

PHENE 
 

Let the graphene layer is located on the substrate 

(SiC or h-BN, for instance). Intensity of magnetic field 

H  is orthogonal to the graphene plane xy  which is 

subjected by the EM radiation polarized elliptically so that 

intensity of the ac-electric field E  oscillates in the plane 

xy  with frequency  :   0 cos , cosE t t   E . The 

presence of the substrate leads to a gap arising in the 

electronic spectrum of graphene [2, 3]: 
 

   2 2 2
Fp p    . (1) 

 

where   is the semiwidth of gap in the band structure 

of graphene. 

For electron with momentum 1p  which is in the 

field of EM wave of frequency   the condition of cyclo-

tron resonance is  c 1p  . If we deal with ensemble 

of electrons with different momenta the EM energy is 

absorbed most intensively by those electrons which 

momenta locate near the magnitude 1p . Thus for gra-

phene the linewidth of cyclotron absorption H  can be 

rated with the formula:   2
1 F~H c p e   . Here 

T     is energy uncertainty, ~   is ener-

gy uncertainty related with the scattering processes, 

~T T  is energy broadening related with the thermal 

distribution at finite temperature T . So we have: 
 

 
2
F

~
c

H T
e






 
 

 
. (2) 

 

It is seen from (2) that linewidth of cyclotron ab-

sorption H  is not zero even if the scattering processes 

are absent:    . 

Now we turn to the quantitative study. The power 

absorbed by the unit of graphene surface is calculated 

with the formula: Q  j E , where averaging is taken 

over the period of the oscillations of the vector E . The 

quasiclassical approach based on the Boltzmann kinetic 

equation gives the next formula for current density j  

aroused under the action of pointed fields: 
 

       0 0 , , d

t tte
t e f t t t








   
p

j v p p p , (3) 

 

where  pv  is the charge carriers velocity,  0f p  is 

the equilibrium state function, momentum  tp  is the 

solution of the classical equation of motion of charged 

carrier in the EM field with the initial condition: 

  0t p p . Linear theory of EM response describes ad-

equately electron dynamics in EM field if graphene has 

the gap  0   and the next inequality is performed: 

F 0e E    . In this case the solution of equation of 

motion is found in the linear approximation in variable 

E . As a result we obtain: 
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Here: x yP p ip  , 0 0 0x yP p ip  , c 0eH c  , 

 0 0p  ,  0 0p  , 1
pp   ,  

1
2 2

pp   


   . 

After substitution (4)-(6) in (3) we derive: J J J   , 

where x yJ j ij  , 
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Thus the power absorbed by the unit of graphene 

surface is: Q Q Q   , where 
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Quasiclassical approach is applicable for the descrip-

tion of electron motion in magnetic field if Larmor ra-

dius much more then de Broglie wavelength: 

Bc eH  . In graphene for the charge carriers de 
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Broglie wavelength has the order [14]: B F~   . 

Substrates SiC and h-BN induce the band gap whose 

semiwidth is equal 0.13 eV and 0.053 eV correspond-

ingly [2, 3]. In this case quasiclassical approach is ade-

quate if magnetic field intensity satisfy the inequality: 

H 20 T. 

Using (1) we define for graphene: 2
F   , 

2 2
F    . Notice that formula for the absorbed power 

(8) is applicable for all 2D-electron structures whose dis-

persion laws determined by the absolute value of momen-

tum p . For instance, for the semiconductor with parabol-

ic dispersion law formula (8) gives the well known result 

[34]. For the graphene subjected to the linear polarized 

EM radiation and for temperatures close to absolute zero 

formula (8) leads to the result [26, 27]. In the case of con-

stant electric field (  0) the result [17] follows from (7). 

If the temperature satisfies the next inequality 
2 2

0 FT n    ( 0n  1010 cm – 2 is the surface concen-

tration of charge carriers in graphene4) then electron 

gas is nondegenerate. For the numerical values of the 

parameters   and 0n  pointed above temperature of 

nondegenerate gas should satisfy the inequality: 

T  10 K. In this case the equilibrium state function 

 0f   is the Boltzmann function. So we have: 
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where  2 2 2
0 0 F 0 1 sin 2Q e n E     . 

For definiteness we consider the EM wave polarized 

circularly  2  . Calculation of the integral in (9) 

at     gives: 
 

  
c2 2 1

0 c
c c

c2

TQ
Q e  

 


 
  

 
  

       
. (10) 

 

where  x  is the step function. Let us introduce the 

next definition: 
2
Fe H c    

, where H  is the cyclo-

tron linewidth. Cyclotron linewidth determined as the 

deference between magnetic field intensities at which the 

value of  Q H  in two times less, than resonance value. 

Using formula (10) we find that   is the solution of 

the next equation: 
 

 
2

ln 3 3 0
1

T
 



 
    
  

, (11) 

 

The solution of (11) is easy to find as the series ex-

pansion in powers of T  : 
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. (12) 

 
 

Fig. 1 – Cyclotron linewidth vs. time between collisions 
 

The cyclotron linewidth is seen from (12) is not zero 

in pure graphene     . In the first-order approxi-

mation with respect to the temperature T  result (12) 

is in agreement with the qualitative estimation (2). 

Note that formula (12) is obtained for the first time and 

is applicable only for band-gap graphene and for EM 

wave with amplitude 0 FE e   . 

 

3. NUMERICAL ANALYSIS OF THE CYCLO-

TRON ABSORPTION IN BAND-GAP  

GRAPHENE 
 

In this section we determine the dependence of EM 

wave power absorbed by graphene on the magnetic 

field intensity without using of  -approximation. To 

this end we use the direct numerical simulation of a 

Monte Carlo [35, 36]. Charge carriers are supposed to 

scatter on the phonons (acoustic and optical). Between 

the acts of scattering the electrons are supposed to 

move in the magnetic field and in the field of EM wave 

according to the classical equation of motion. The time 

it  to the i-th collision is determined from the equation: 

 

   
0

1 exp
it

r W t dt
 

    
 
 p . (13) 

 

where r is a random variable with the uniform distri-

bution in the interval (0, 1),  W p  is the total scatter-

ing probability for an electron with momentum p . The 

duration of a run is divided into small intervals of  

duration t , and the integral in (13) is replaced by the 

integral sum according to the trapezium method. Next 

this integral sum, the increment in the electron mo-

mentum, and the electron displacement are calculated 

for each step t  in a cycle until the following condition 

is valid: 
 

       1ln
2

i i
i

t
r W W 


   p p . (14) 

 

The instant it  when condition (14) is satisfied for 

the first time is the collision instant. The numerical 

value of it  is stored for further averaging. Averaged 

time is necessary for further comparison of the analyti-

cal and numerical results. The scattering mechanism is 
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Fig. 2 – Cyclotron linewidth of pure band-gap graphene vs. 

temperature 
 

determined with the help of the random variable s  

uniformly distributed in the interval (0, 1) according to 

the following rule: 
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where  acW p  and  optW p  are the probabilities of opti-

cal- and acoustic-phonon scattering, correspondingly [17]: 
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acD  is the deformation-potential constant,   is the 

surface density of the material, s  is the sound velocity 

in graphene, optD  is the electron-optical phonon inter-

action constant, 0  is frequency of optical phonon. 

As a result, the average value of v E  is calculated. 

Then the dependence of EM power Q  absorbed by sur-

face unit of graphene on the magnetic field intensity 

H  and the cyclotron linewidth are found. 

In the numerical experiment the next values of pa-

rameters are used [37]:  7.7  10 – 8 g/cm2, s  106 

cm/s, T  300 K, 0  2.56  1014 s – 1. To find the de-

pendence of the cyclotron linewidth on the average 

time between collisions the constants acD , optD  are 

changed within the next values 5-30 eV and 109-5  109 

eV/cm correspondingly. 

 

4. DISCUSSIONS 
 

Dependence of linewidth of cyclotron absorption on 

the relaxation time   is shown in Fig. 1 (T  300 K, 

value min  corresponds to the linewidth expressed in 

dimensionless units in the absence of collisions). Solid 

line corresponds to calculation performed in  -

approximation. Dashed line corresponds to the numeri-

cal simulation with Monte-Carlo method. The cyclotron 

linewidth is seen from Fig. 1 to differ from zero even in 

the case even of rare collisions  min 0  . The devia-

tion between values of cyclotron width in the absence of 

collisions  1  , which are found by  -

approximation and by Monte-Carlo method, is of 5 %. 

Such divergence coincides with error of the numerical 

calculation approximately. Also deviation of the analyt-

ical calculation from the numerical results can be ex-

plained by the fact that in theoretical calculation the 

dependence of the collision frequency on the magnetic 

field was not taken into account. In the case of constant 

electric field  0   the error due to this approxima-

tion was shown to be of 5-10 % by analysis performed 

in Ref. [17]. 

The dependence of cyclotron linewidth H  on the 

temperature in the absence of collisions is shown in 

Fig. 2. The solid line corresponds to the analytical cal-

culation (formula (12)). Dashed line corresponds to the 

numerical simulation. It is seen from Fig. 2 that the 

behavior of H  with temperature changing obtained 

analytically in the limit     is confirmed by numer-

ical experiment also. 

Thus the linear response theory based on the kinet-

ic equation was shown above to explain the broadening 

of cyclotron line H  for band-gap graphene. This 

broadening is related not only with scattering process-

es. It is related also with non-parabolic spectrum of 

graphene (1). The value of linewidth H  of cyclotron 

absorption is determined not only by the parameter 

 . Therefore at finite temperature  0T   the Drude 

formula is not applicable for description the cyclotron 

resonance in quasiclassical limit. In this case the power 

absorbed by band-gap graphene is given by the formula 

(9). At zero-temperature  0T   formula (9) coincides 

with Drude formula if the cyclotron mass is considered 

as the value 2
F . 
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