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It is established that magnetic soliton – Bloch point – has quantum properties which are manifested in
the effects of tunneling and above-barrier reflection in a subhelium temperature range. The conditions of
the given phenomena are determined.
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1. INTRODUCTION

Mesoscopic systems realized in uniaxial ferromagnets
with a strong uniaxial magnetic anisotropy are the sub-
ject of scrutiny (see, for example, [1, 2] and references
therein). Among these systems, one can single out the
domain boundaries (DB) and elements of their internal
structure, namely, vertical Bloch lines (VBL) and Bloch
points (BP) [3]. VBL and BP are stable local inhomoge-
neities of DB with the typical size of ~ 102 nm and con-
sidered as the element base in magnetic storage devices
[4]. Moreover, structures like VBL and BP take place in
ferromagnetic nanowires and nanoribbons [5-8], i.e. in
materials promising for application in spintronics.

We should note that from the mathematical point of
view DB, VBL and BP are nonlinear wave formations –
solitons with a certain topology. As a result, state of the
given structures is characterized by the so-called topo-
logical charge (chirality) [3], which determines the turn
of the magnetization vector M

r

 in the system center. It
is obvious that because of the nature, this parameter is
degenerate. However, in the low-temperature range, i.e.
T < 1 K, splitting along the directions of the vector M

r

is possible using the under-barrier quantum tunneling.
Quantum fluctuations of this type in DB of different
ferro- and antiferromagnetic materials were considered
in the works [9-12]. Tunneling of a topological charge of
VBL in ultrathin magnetic film was studied in [13].

We  note  that  quantum  depinning  of  DB  and  VBL
takes place in a subhelium temperature range [14, 15].
At the same time, the aspects conditioned by the point
soliton (BP) nucleation processes [16-18] definitely in-
dicate the presence of quantum properties of the given
element of the DB internal structure. Investigation of
this question for BP in DB of ferromagnets with the
material quality factor (ratio of the magnetic anisotropy
energy to the magnetostatic one) Q >> 1 is the aim of our
work. We will study the quantum effects conditioned by
the interaction of BP with a defect: quantum tunneling
and above-barrier reflection. We will also establish the
realization conditions of these phenomena.

2. QUANTUM TUNNELING OF THE BLOCH
POINT

We will consider the domain boundary, in which VBL
and Bloch point dividing a Bloch line into two regions
with different signs of a topological charge are the ele-
ments of the internal structure. We will introduce the
Cartesian coordinate system with the origin in the BP
center and direct the OZ-axis along the anisotropy axis,
the OY-axis – along the normal to the DB plane. Based
on the Slonchevsky equations [3], one can show that in
the area of the domain boundary D < r £ L, where D is
the DB width, 2 2r x z= + , QL = D  is the typical size
of VBL, distortion of the magnetic structure of the last
BP takes place, and the following “vortex solution” cor-
responds to this distortion [19]:

tg z xj = , (1)

where j = arctg(My/Mx), Mx,y are the components of M
r

.
At the same time, distribution of magnetization along
the OY-axis has a Bloch view: sinq = ch–1(y/D), where q
is the polar angle in the chosen coordinate system.

We note that the above indicated area is supposed to
be a characteristic scale of BP, since exactly this area of
DB conditions the main contribution into mBP = D g2 (g
is the gyromagnetic ratio) – the effective BP mass [19].

Taking  into  account  (1)  and  assuming  that  the  BP
motion along the DB is self-similar (j = j(z – z0, x), z0 is
the coordinate of the BP center), after some transfor-
mations, the interaction energy between the Bloch point
WH and the external magnetic field y yH He= -

r r  can be
written as follows
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MS is the saturation magnetization of the material.
For the description of the BP dynamic behavior in

the defect field Hd we will use the Lagrangian formal-
ism. Then, based on (2), “potential energy” W(z0) in the
Lagrange function ( )2

0 02BPm z W z= -&L  will be rep-
resented in the form
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( ) ( )( )
02 2

0
0

z

S dW z M dz H H zp ¢ ¢= - LD -ò . (3)

Expanding Hd(z0) into series near the defect position,
the defect field can be written as

( ) ( )( )2 2
0 01 2d cH z H z d D= - - , (4)

where Hc is the coercive force of the defect; d is the co-

ordinate of the defect center;
0

2
2

2
0

1 d

c z d

HD
H z

-

=

¶
=

¶
; D is

the barrier width.
It is natural to assume that the characteristic change

of the defect field is determined by the size factor of
interacting with it magnetic irregularity. In our case,

2 2 2
0 ~d cH z H¶ ¶ L  and, correspondingly, D ~ L. We note

that the above stated proposition about the defect field
also correlates with the results of the work [20] which
imply the dependence of Hc on the characteristic size of
DB, VBL or BP.

Then, substituting (4) into (3) and taking into acco-
unt that in the point z0 = 0 potential W has a local met-
astable minimum (see Fig. 1), we obtain the following
expression:

( )
2 1 2 3

20
0 02 3

S cQ M H zW z dzp - æ ö
= - +ç ÷ç ÷

è ø
, (5)

where 2d e= L , e = 1 – H/Hc << 1 (we consider the va-
lues of the magnetic fields H near Hc that substantially
decreases the potential barrier height).

Here, potential W(z0) satisfies the normalization con-
dition W(z0,1, z0,2) = 0, where z0,1 = 0 and 0,2 3 2z e= L

are the barrier coordinates. We should also note that
expression (5) corresponds to the model potential used
in the works [14,  15]  in  the  study of  the  quantum de-
pinning of DB and VBL.

Following the VBL approximation formalism, the BP
tunneling amplitude P will be defined by the formula

P ~ exp(– B),

where
0,2

0,1

2 z

BP
z

B zm dz= ò &

h
, h  is the Plank constant.

Fig. 1 – Interaction potential W(z0) of the Bloch point with the
external magnetic field H and defect field Hd

After variation of the Lagrange function L  and in-
tegration of the obtained differential equation with the
boundary condition in the point z0 = 0, 0 0z ®& , t ® – ¥
that corresponds to the BP pinning on the defect in the
field xH

r

 absence, we determine the BP pulse and, cor-
respondingly, the tunneling exponent

( )
0,2

0,1

2 2
z

BP
z

B m W z dz= ò
h

. (6)

Taking into consideration (5), expression (6) can be
rewritten as follows

( )
3 1 2 5 4

28 4c
S

M

QhB Me
p

w
D

=
h

, (7)

where hc = Hc/8MS, wM = 4pgMS.
Temperature Tcr, at which quantum BP motion mode

is actual, follows from the relation Tcr = Wmax/kBB, where
Wmax is the maximum value of the potential barrier; kB
is the Boltzmann constant. Then, according to (5) and (7),
we obtain

1 4 1 22
12

c M
cr

B

hT
k

e w
=

h . (8)

Substituting into (7) and (8) parameters correspond-
ing to the uniaxial magnetic films, namely, Q ~ 5-10,
D ~ 10–6 cm, 4pMS ~ (102-103) Gs, Hc ~ (10-102) Oe [20],
g ~ 107 Oe−1s−1, for e ~ 10–4-10–2 we obtain B » 1-30 and
Tcr ~ (10–3-10–2) K.

The obtained estimate B £ 30 agrees with the corre-
sponding values of the tunneling exponent for magnetic
nanostructures [21] which indicate the possibility of rea-
lization of the given quantum effect. Here, as seen from
the definition of the BP effective mass, in contrast to
the tunneling through the DB defect and VBL, the BP
tunneling is implemented by the “transfer” through the
potential barrier of the whole BP effective mass at once.
The given feature is the consequence of the size factor
of quasi-particles. Thus, the characteristic size of BP is
~ L3. At the same time, the characteristic scales of DB
and VBL are DLyh (Ly is the film length along the OY-
axis; h is the film thickness) and LDh, respectively. It is
clear that in this case overcoming of the potential bar-
rier of DB or VBL requires successive quantum displa-
cements of small regions of the area (for DB) or length
(VBL) of the given nano-objects.

After integration of the equation of BP motion ob-
tained by the variation of the Lagrange function, we
find the instanton trajectories zBP and frequency w0 of a
Bloch point which characterize its motion in the space
with the “imagine” time (t = it): from the point z1 = 0 at
t = – ¥ to the point 2 3 2z e= L  at t = 0; and back to
the point z1 at t = + ¥

( )
( )

2

1 41 2
0

3 2 ,

2 2.
BP in

M c

z ch

h

e w t

w w e

= L

=
(9)

Having determined the BP instanton frequency, we
will consider a question about the correctness of the use
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of the VBL formalism. As known, according to [22], the
usability condition of the VBL method is the fulfillment
of the following inequality:

3 1m F p <<h , (10)

where p is the pulse; m is the quasi-particle mass; F is
the force acting on the quasi-particle.

It is obvious that in our case 2
0BPF m w x= , p = mBPw0x,

~ 2x eL . Taking into account (9), formula (10) can be
rewritten in the form

( ) 5 42 1 1 2 1 32 1M ch Qg w e -- - - D <<h . (11)

Substituting into (11) the above specified parameters
(see estimation of expressions (7), (7)), it is easy to make
sure in fulfillment of the given relation that, in turn,
implies the legitimacy of the application of the quasi-
classical approximation to the considered problem.

Now we will evaluate the influence of the dissipation
on the BP tunneling. To this end, we compare the force
F acting on the quasi-particle with the braking force Fr,
which in our case is equal to ~ 0 2M BPmaw w eL , where
a ~ 10–3-10–2 is the damping parameter of the magneti-
zation. Then, taking into account the explicit view of F,
we find the following expression:

( )1 41 22 2r cF F ha e= .

Analysis of the last expression shows that Fr/F << 1
at 10–2 £ hc £ 10–1 and e ~ 10–4-10–2. The obtained result
indicates that in the consideration of the BP quantum
tunneling we can neglect the influence of the braking
force in the given materials.

We note  that  nature  of  the  force Fr was studied in
the  work  [23]  and  is  conditioned  by  accounting  of  the
terms of the exchange nature in the Landau-Lifshitz
equation for the ferromagnet magnetization [24].

3. ABOVE-BARRIER REFLECTION OF THE
BLOCH POINT

We have established in the previous Section that
quantum depinning of BP, in contrast to DB and VBL,
is realized by the under-barrier transition at once of the
whole effective mass of the quasi-particle. The given re-
sult implies that the presence of a metastable minimum
in the interaction potential of BP and defect is not nec-
essary. The latter indicates that there is a principal pos-
sibility of realization of the quantum effect of BP above-
barrier reflection. In this case, velocity of BP fall on the
barrier can be conditioned by the pulse of the magnetic
field applied to BP (velocity with which). Obviously, the
effect is most noticeable when the BP energy does not
much exceed the potential barrier height U0.

Based on formula (2), we write equation of the BP dy-
namics in the pulsed magnetic field Hy(t) = H0c(1 – t/T)
in the following form:

( )2
BP r S ym v t F M H tp¶ ¶ + = LD , (12)

n = ¶z0/¶t is the BP velocity; c(1 – t/T) is the Heaviside
function; H0 is the amplitude; T is the pulse duration.

Integrating equation (12) at 1 1
MT t a w- -£ << , we find

n(t) = p2MSLDH0T/mBP – the BP velocity upon termina-
tion of the pulse. Correspondingly, the BP energy EBP
in the considered time interval has the view

2 2 2 2 2 2
02 32BP BP ME m v T Hp w= = L D . (13)

We note that investigation carried out for the time
1 1

Mt a w- -<<  (or taking into account the value of the mag-
netization damping wMt << (102-103) allows us to neg-
lect the influence on the process of the braking force Fr,
which in the given case is ~ awMmBPn.

Assuming that defect is located in the point z0 = 0,
by analogy with [25] we write its potential Ud in the form

( ) ( )2
0 0 0dU z U ch z-= L , (14)

where according to (2) U0 = p2L2DMSHc.
Such a view of the potential is not only general but

also agrees with the approach expressed by the formulas
(3)-(5). Indeed, having supplemented (14) with the term

2 2
0H SW M z Hp= - LD , after series expansion of the final

expression in the point ( )0 sinh 1 2z Ar= L% , inflection

point of the function ch–2(z0/L) and potential normaliza-
tion (in the coordinate system with the center at 0z% ), we
obtain (5). It is clear that just at 0 0z z= %  the defect field
is maximum. Therefore, if quasi-particle overcomes the
barrier in the given point, then the tunneling process
in whole takes place for it. Consideration of the quan-
tum depinning of DB and VBL in the works [14, 15] was
based, in essence, on this fact. Asymptotic of the poten-
tial near its maximum value is actual in our case.

In the framework of the VBL approximation, using
the formalism proposed in [26], we determine the coef-
ficient of the BP above-barrier reflection by the formula

R e b-= , (15)

where ( )( )
0,2

0,1

2 Im 2
z

BP BP d
z

dz m E U zb
*

*

= - -ò
h

, 0,1z* , 0,2z*

are the roots of the equation EBP – Ud(Z0) = 0.
Expanding into series expression (14) and taking in-

to account (15), we obtain

02 BP BPm E Ub p e¢= D h , (16)

here parameter e¢ = (EBP – U0)/EBP << 1 (we remind that
the case of close values of EBP and U0 is considered).

Using (13), formula (16) can be rewritten in the form

( )1 2 1 3 1 22 S cM H Qb p e g -¢= D h . (17)

Substituting into expressions (15) and (17) the corre-
sponding numerical parameters, at e¢ ³ 5×10–5 we obtain
R £ 0.1 that agrees with the criterion of applicability of
formula (15) (see in [22, 26]).

We should note that it follows from expressions (15)
and (17) that R ® 0 at U0 ® 0, i.e. we obtain physically
consistent conclusion about disappearance of the above-
barrier reflection effect of the quasi-particle in the po-
tential barrier absence.
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Based on ( ) ( )1 2 1 2 1 2 1
0~ 4BP S c Mm U M H Qt w- -D =  and

the above stated parameters, we determine the charac-
teristic interaction time t between the BP and defect as
0.6 £ wMt £ 2.3. It is easy to see that t satisfies relation
wMt < wMt ~ 10-102, which in conjunction with the esti-
mate for R indicates the principal possibility of realiza-
tion of the considered quantum effect.

Now we will investigate the question about the cor-
rectness of applicability of the VBL formalism. Since in
our case EBP » U0, then conditions of the quasi-classica-
lity of BP and potential barrier coincide, and according
to the work [22] they are reduced to the fulfillment of the
following inequality:

0 0 1BPz m Ud >>h , (18)

where ( )0 0 02 2BPz E U Ud e ¢= D - » D .
Taking into account the explicit form of U0, condi-

tion (18) can be re-written as follows

( ) ( )1 2 1 21 3 1 2
S cM H Qpg e- ¢D >> h .

Evaluation of the last expression shows its fulfill-
ment at e¢ ³ 10 – 4 that, in fact, is the estimate from be-
low for this parameter.

Critical temperature crT ¢  corresponding to the studied
effect can be defined from simple qualitative considera-
tions. Indeed, process of the BP above-barrier reflection
is equivalent to the quasi-particle fluctuations with the
frequency of 1

02 BPU mn -= D  along the imagine iz-

axis between the points 0,1,2z i e* = ± D . Since BP motion

occurs in the absence of external fields, we have one un-
excited quantum level (n = 0).  In  this  case,  BP  energy
EBP is not changed and is equal to 2n ph . Then, equating
EBP to the relation B crk T ¢  (kB is the Boltzmann constant),
we obtain

( )
1 2

1 20

2 2cr S c
B BP B

UT M H
k m k

g
p

¢ = =
D

h h . (19)

Evaluation of (19) shows that ( )3 2~ 10 10crT - -¢ -  K.

These values of crT ¢  are in the same range with the crit-
ical temperatures of quantum depinning of DB and ele-
ments  of  its  internal  structure,  namely,  VBL  and  BP.
The given fact indicates the importance of accounting
of the quantum properties of BP in the study of the low-
temperature dynamics of DB with the complex internal
structure in ferromagnetic materials. Here, since tun-
neling of BP and its above-barrier reflection occurs in
different magnetic fields, then there is a practical pos-
sibility of the separate study of these effects.

4. CONCLUSIONS

It is established that Bloch point (magnetic soliton)
in the uniaxial ferromagnets in subhelium temperature
range has quantum properties. A principal possibility of
the quantum depinning and above-barrier reflection of
the Bloch point from the defect potential is shown.

Experimental realization of the considered effects can
be the basis for the development of new precision meth-
ods of diagnostics of the internal structure of domain
boundaries in ferromagnetic materials.
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