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In the paper, spin waves in an arbitrary translational-symmetry composite nanosystem containing an
“easy axis” ferromagnet are studied. For such a system, equation for the magnetic potential in magneto-
static approximation is obtained taking into account the magnetic dipole-dipole interaction, the exchange
interaction and the anisotropy effects. The theory that allows to obtain the dispersion relation and the
transverse wavenumber spectrum for a particular system of this type is proposed; dispersion relation for a
system with small transverse size is obtained. The dispersion relation and the transverse wavenumber
spectrum are written for nanotubes with round and elliptic cross-sections.
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1. INTRODUCTION

Spin waves in nanosystems of different configurations
are an actual topic of research during the last years.
Such waves are promising for engineering applications,
namely, creation of new data storage and transmission
devices [1, 2], new computing devices [3], etc.

It is known that pattern of spin excitations in a na-
nosystem substantially depends on its shape and size.
Therefore, spin waves are investigated in different types
of nanosystems, in particular, thin ferromagnetic films
[4, 5], nanowires [6, 7], micron-sized magnetic quantum
dots [8] and other nanosystems, separately both theore-
tically and experimentally.

Development of nanotechnologies in the last decades
led to the synthesis and application of composite nano-
structures. It is known that nanocomposites containing
ferromagnet exhibit a number of anomalous properties
[9-13]. Spin waves in nanocomposites of different confi-
gurations are intensively investigated [14, 15], but spin
waves in composite nanoparticles remain comparatively
poorly-studied.

Metal nanotubes, which find more and more practical
applications, occupy a special place among composite na-
noparticles [16, 17]. Nanowires and nanotubes of a non-
circular cross-section (see, for example, [18]) are synthe-
sized and studied during the last years, and their prop-
erties differ from the properties of round nanowires and
nanotubes (see, for example, [19]). Among such nanosys-
tems a special attention is devoted to the synthesis and
investigation of nanowires and nanotubes of an elliptic
cross-section [20-22]. Therefore, magnetic nanowires [23]
and magnetic nanotubes [24-26], in particular, of a non-
circular cross-section are of a great interest for the re-
searches of spin waves. (We particularly note that typical
synthesized magnetic nanowires and, especially, nano-
tubes often have a cross-section which considerably dif-
fers from a round one, see, for example, [26].) However,
spin waves in such nanostructures (except spin waves
in nanowires of a round cross-section, see, for example,
[6, 7]) remain comparatively poorly-studied that makes
their investigation actual.

In the present work we study spin waves in a trans-
lational-symmetry ferromagnetic nanosystem (nanowire
of an arbitrary cross-section, in general, non-continuous;
single-layer nanotubes of an arbitrary profile and solid
nanowires of an arbitrary profile enter this class of nano-
systems as a particular case). The theory which allows to
obtain the dispersion relation and transverse wavenu-
mber spectrum in such nanosystems is proposed and the
dispersion relation for the case of a nanosystem with
small transverse sizes of continuous regions of a ferro-
magnet (thin nanowire, thin nanotube, etc.) is written.
We have written the dispersion relation and transverse
wavenumber spectrum for the cases of a nanotube of a
round and an elliptic cross-sections.

2. STATEMENT OF THE PROBLEM

We consider a translational-symmetry ferromagnetic
nanosystem (nanotube of an arbitrary profile, continuous
nanowire of an arbitrary profile, etc.).

Let us assume that the ferromagnet from which the
system consists of is a single-axis crystal, whose axis is
directed along the system translational direction, and has
the type “easy axis”, so that its equilibrium magnetiza-
tion 0M

r

 is  also  directed  along  this  direction.  We  as-
sume that the ferromagnet is characterized by the fol-
lowing parameters: constant of uniaxial anisotropy b (is
considered persistent); constant of exchange energy α.
Gyromagnetic ratio of the ferromagnet g is assumed to
be  fixed  and  known.  Damping  for  spin  waves  is  as-
sumed to be insignificant neglecting the relaxation
term in the Landau-Lifshitz equation.

Now we consider a spin wave propagating in the
above described nanosystem (parallel to its axis) with
small perturbations of the magnetic moment density and,
correspondingly, magnetic field. Thus, we assume devi-
ations of the magnetic moment mr  density and field h

r

inside the ferromagnet from their equilibrium values
0M
r

 and ( )
0
iH

r

, respectively, negligible in comparison

with these equilibrium values: 0m M<<
rr , ( )

0
ih H<<

r r

.
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We introduce the coordinate axis Oz directed along the
nanosystem axis (translational direction). Taking into
account the typical sizes of nanotubes and nanowires
and the corresponding restrictions to the wavenumber,
in the description of a spin wave in such nanosystem
we, in general, should take into consideration both the
magnetic dipole-dipole and the exchange interactions in
the Landau-Lifshitz equation. Since we consider a uni-
axial ferromagnet, we should also leave the term descri-
bing anisotropy.

Our aim is to obtain the dispersion relation and the
radial wavenumber spectrum for a such spin wave.

3. AN ARBITRARY FERROMAGNETIC SYSTEM
WITH THE TRANSLATIONALSYMMETRY

3.1 Equation for magnetic potential

We will write the linearized Landau-Lifshitz equa-
tion for a spin wave described in the previous section. In
order to make the system of equations complete, we use
the magnetostatic approximation (see, for example, [27])
assuming  field  of  a  spin  wave h

r

 potential h = -ÑF
r

,
where Φ is the magnetic potential. Such system of equ-
ations will have the following form [27]:

( )( )( )w g a b

p

ì = ´ -ÑF + D - +ï
í
ï DF =î

r r r r

r

( )
0 0 0 0 0 0 0

0 04 div

i
zi m M e m H M m

m
(1)

and ( ) ( )
0 0 0

ˆ4i eH H NMp= -
r r r

, where ( )
0
eH

r

 is  the  external

field in which a nanotube is situated, N̂  is the tensor
of demagnetizing coefficients (for many configurations
of the system one can assume 0

ˆ4 0NMp =
r

, ( ) ( )
0 0
i eH H=

r r

).
Here we have taken into account that magnetization
and wave field are periodically changed with time, i.e.

( ) ( ) ( )0, expm r t m r i tw=
r r rv , ( ) ( ) ( )0, exph r t h r i tw=

r rr r ;  Φ0 is

the disturbance amplitude potential of the field 0h
r

, so
that 0 0h = -ÑF

r

 and ( ) ( )0, i tr t r e wF = F
r r .

We will suppose that symmetry of the nanosystem,
which we consider, admits the introduction of the cor-
responding orthogonal cylindrical (not necessarily of a
circular cylinder) coordinate system (x1, x2, z),  so  that
each ferromagnet/non-magnetic medium interface is
specified by the equation of the form x1 = ai, where i is
the interface number (is changed from 1 to N, where N
is the general amount of such surfaces), ai are the cons-
tants. (Here we note that for an arbitrary translational-
symmetry system we can introduce, for example, the co-
ordinates of a circular cylinder (ρ, θ, z) and perform the
following transformations to obtain the dispersion rela-
tion; however, when finding the wavenumber spectrum
using the boundary conditions at these interfaces, we
should use the coordinate system which corresponds to
the nanosystem symmetry.)

At first we will obtain the equation for the magnetic
potential excluding perturbations of the magnetic mo-
ment 0mr  density from this system of equations. We will
use the above introduced coordinate system (x1, x2, z).
Rewriting the first equation of the system (1) in the
form of

( )( )w
a b

g
= ´ -ÑF + D - +

r r r r( )
0 0 0 0 0 0

0

i
z

i m e m H M m
M

,(2)

we multiply vectorially both sides from left by the unit
vector zer  and take divergence from both sides of the
equation. Taking into account that m0z = 0 and from the
second equation of the system (1) p= DF

r

0 0div 4m  we
will obtain

( )w
g

- ´ =
r r

0
0

div z
i e m
M

( )( )a b
p

¶ F
= -DF + + D - + DF

¶

2
( )0

0 0 0 02
1

4
iH M

z
. (3)

For the transformation of the left side of the equa-
tion (3), we will use operator ( )a bD - + ( )

0 0
iH M  to both

sides. Using equation (2), vectorially multiplied by the
unit vector zer  from left, we derive

( )( ) ( )( )

w w
g g

a b a b
p

æ öæ ö¶F
- ´ - ´ + ÑF - =ç ÷ç ÷ç ÷¶è øè ø

æ ö= D - + - + D - + DF +ç ÷
è ø

r r r r0
0 0

0 0

( ) ( )
0 0 0 0 0

div

11
4

r r z

i i

i ie e m e
M M z

H M H M

a b
æ öæ ö ¶ F

+ D - +ç ÷ç ÷ç ÷ç ÷ ¶è øè ø

( ) 2
0 0

2
0

iH
M z

, (4)

and since

æ ö¶Fæ ö´ ÑF - =ç ÷ç ÷¶è øè ø

r r0
0div 0z ze e

z
,

( )( )
p

DF
´ ´ = -

r r r 0
0div

4z ze e m ,

then the desired differential equation for the magnetic
potential will be finally rewritten as

( ) ( )( )w
b a b p a

g

æ ö
- + - D + + - D DF +ç ÷ç ÷

è ø

2
( ) ( )
0 0 0 0 02 2

0
4i iH M H M

M

( )p b a
¶ F

+ + - D =
¶

2
( ) 0
0 0 24 0iH M

z
. (5)

As one can see, the obtained equation is similar to
the known equation for a cylindrical nanowire (see, for
example, [7]). This dispersion equation is the same for
all translational-symmetry ferromagnetic systems, and,
as we see, equation (5) does not contain the geometric
parameters of the system.

3.2 Dispersion relation, general case

Now we will obtain the relation between spin wave
frequency and wave number using equation (5) for the
magnetic potential of spin waves.

Let function F(x1, x2, k^) to be a general solution of
two-dimensional Helmholtz equation in (x1, x2) coordina-
tes, so that 2 0F k F^ ^D - = , here k^ is the transverse wave-
number (it describes wave propagation in the direction
perpendicular to the system symmetry axis). Then, the
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potential of the following form is the solution of the
equation (5) for a nanotube

( ) ( )^F =
P0 1 2, , expF x x k ik z , (6)

where k|| is the longitudinal wavenumber. Substitution
of the solution (6) into the equation (5) allows to obtain
the following dispersion equation:

( ) ( ) ( )

( ) ( )

3 22 2 2 2 2

2
2 2 2 2

2 2
0

2 2

4 4 4 0,

k k k k

k k k k
M

a a b p

w
b b p pa pb

g

^ ^

^

+ + + + +

æ ö
+ + - - + - =ç ÷ç ÷è ø

P P

P P P

%

% % %

 (7)

from which we find the dispersion relation

( ) ( ) bw g a a p b b p b p a
æ ö

= + + + + - +ç ÷
è ø

P

%
% % %2 4 2 2

0 22 2 4 4M k k k
k

,(8)

here ^= +
P

2 2 2k k k , b b= +% ( )
0 0
iH M  (and for the system

configurations, at which 0
ˆ4 0NMp =
r

, b b= +% ( )
0 0
eH M

holds).
We should note that obtained dispersion equation (8)

contains two components of the wave vector. Under the
condition of a sufficiently long tube, component k|| can
be considered such that is changed continuously; there-
fore, for the description of spin waves in the system one
have to specify the spectrum of k^.

If transverse sizes of continuous regions of the fer-
romagnetic in the nanosystem are small enough (of the
order or less than the length of the exchange interac-
tion), we can neglect the transverse oscillations assum-
ing k^ = 0, k = k||, and the dispersion equation will be
rewritten as follows:

( ) ( )2 4 2 2
0 22 2 4 4M k k k

k
bw g a a p b b p b p a

æ ö
= + + + + - +ç ÷

è ø

%
% % % .(9)

In the case, when one cannot neglect the transverse
oscillations in a spin wave, in order to obtain the dis-
persion equation it is necessary to concretize the system
profile and write the boundary conditions at its surface.

3.3 Transverse wavenumber spectrum

If system transverse sizes are not small enough in
order to assume k^ = 0, then dispersion relation (8), in
general, should be supplemented by the transverse wa-
venumber spectrum. To obtain it, we will write the bo-
undary conditions for the magnetic potential at the fer-
romagnet boundary.

In the general case, we should solve equation (5) in
both ferromagnet and external space, and join these so-
lutions using boundary conditions. However, the prob-
lem is considerably simplified in the case, when ferro-
magnetic nanosystem is limited by metal non-magnetic
surfaces, and metal conductivity is sufficiently high, so
we can consider it perfect when writing the boundary
conditions. In this case, boundary condition is reduced
to the nulling condition of the normal derivative of the
magnetic potential on the surface of the ferromagnet,
see, for example, [28]

0 0nÑF =
r , (10)

where 0nr  is the unit vector of the normal to the inter-
face. This boundary condition in the introduced earlier
coordinate system (x1, x2, z) will be written as

1
1

0
ix ax

=

¶F
=

¶
,

i.e., taking into account the view of magnetic potential,

( )
1

1 2

1

, ,
0

ix a

F x x k
x

^

=

¶
=

¶
(11)

for all i. Such system of boundary conditions specifies
the desired wavenumber spectrum {k^j}.

Dispersion relation (8) together with the wavenum-
ber spectrum {k^j} obtained from the system of equa-
tions (11) solve the assigned task for an arbitrary ferro-
magnetic translational-symmetry nanosystem that ad-
mits the introduction of the corresponding orthogonal
coordinate system. We concretize geometry of the con-
sidered nanosystem using the developed above theory
to the cases of a single-layer nanotube with a circular
cross-section and a single-layer nanotube with an ellip-
tic cross-section. We will find the transverse wavenum-
ber spectrum in each case.

4. APPLICATION TO NANOSYSTEMS OF
SPECIFIC CONFIGURATIONS

4.1 Nanotube in the form of a circular cylinder

We consider a ferromagnetic nanotube of a circular
cross-section (circular cylinder) with internal radius a
and external radius b. Cylindrical coordinate system
(r, θ, z) corresponds to the symmetry of such problem.
Here, magnetostatic potential (5) has the following form:

( ) ( )( ) ( )( )0 1 2 ||expn nA J k A N k i n k zr r q^ ^F = + + ,(12)

so that function

( ) ( ) ( )( ) ( )1 2, , expn nF k A J k A N k inr q r r q^ ^ ^= + .(13)

Boundary conditions (11) for such nanotube will be
reduced to the following conditions on the internal and
external surfaces of a nanotube:

,
0

a b

F
rr =

¶
=

¶
. (14)

We will substitute function F in the above written
form into the boundary condition (14). Three unknowns
– A1, A2 and k^ – enter the obtained system of two equ-
ations. However, we can exclude one unknown dividing
both equations of the system, for example, by constant A1
and, thus, we obtain the total system of equations with
respect to the variables k^ and A2/A1

( ) ( )

( ) ( )

2

1

2

1

' ' 0,

' ' 0.

n n

n n

AJ k a N k a
A
AJ k b N k b
A

^ ^

^ ^

ì + =ï
ï
í
ï + =
ïî

(15)
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For the case of a wide nanotube, so that k^a >> 1, we
can  obtain  the  simplest  expression  for  the  transverse
wavenumber spectrum using asymptotics of the Bessel
functions. Indeed, at k^a >> 1 we have

( ) ( )( )r d q
r ^F » + +

P0 sin expC k i n k z , (16)

where C is the normalization constant, δ is the initial
phase. We will write the radial derivative from magnet-
ic potential as

( ) ( ) ( )( )r d r r d
r r

-^
^ ^ ^

¶F
» + - + ´

¶
10 cos 2 sink C k k k

( )( )q´ +
P

exp i n k z . (17)

For our approximation of a wide nanotube 2k^r >> 1
everywhere inside a nanotube. Because of the fact that
cos(k^r + d), sin(k^r + d) are rapidly oscillating functions,
we cannot directly neglect the term (2k^r)–1sin(k^r + d).
However, we can write with the accuracy to the second-
order smallness

( ) ( )1 1cos sin cos
2 2

k k k
k k

r d r d r d
r r^ ^ ^

^ ^

æ ö
+ - + » + +ç ÷

è ø
,(18)

so that condition (14) will be approximately executed at

1 1cos cos 0
2 2

k a k b
k a k b

d d^ ^
^ ^

æ ö æ ö
+ + = + + =ç ÷ ç ÷

è ø è ø
. (19)

Hence ( )( ) ( )( ) p- -
^ ^ ^ ^+ - + =

1 12 2k b k b k a k a n , where n

is an arbitrary integer. Rewriting this expression as

( ) ( ) p
-

^ ^
æ ö- - =ç ÷
è ø

121 2k b a k ab n (20)

and neglecting the term ( )-^

122k ab  in comparison with 1,
we finally have the wavenumber spectrum in the form

nk
b a
p

^ =
-

. (21)

Thus, we have obtained in an implicit form the wave-
number spectrum for a ferromagnetic nanotube of a cir-
cular cross-section and written the spectrum in an exp-
licit form for the case of a wide nanotube. We note that
in the latter case, as seen from the relation (21), wave-
number spectrum becomes quasi-one-dimensional; and
when the condition k^a >> 1 holds, the pattern of spin
waves in a nanotube becomes similar to the pattern of
spin wave in a thin film.

4.2 Nanotube in the form of an elliptic cylinder

Now we consider a ferromagnetic nanotube with an
elliptic cross-section (elliptic cylinder), whose semi-axes
are equal to a2, b2 (for the external surface) and a1, b1
(for the internal surface). For such nanosystem we will
introduce the coordinates of elliptic cylinder

( ) ( )
0.5 ch( )cos( ),
0.5 sh sin ,

.

x d u v
y d u v

z z

=ì
ï =í
ï =î

(22)

Equation u = const in these coordinates describes an
elliptic cylinder with semi-axes 0.5dch(u) and 0.5dsh(u).
Thus, we can specify the surfaces which restrict the nano-
tube by equations u = u1, u = u2,  at  that  ch(u1) = 2b1/d,
sh(u1) = 2a1/d, ch(u2) = 2b2/d, sh(u2) = 2a2/d.

As known, the Mathieu functions are the solution of
two-dimensional Helmholtz equation 2 0F k F^ ^D - =  in
the elliptic coordinates

( ) ( ) ( )
( ) ( )

, , ,
, ,

, , ,
m m

m m

Ce u ce v
F u v k

Se u se v
a a
a a^

ìï= í
ïî

(23)

where a ^= 2 2 16k d . Thus, general solution of (5) in this
case has the following form:

( ) ( ) ( ) ( )( )a a a aF = + ´0 1 2, , , ,m m m mC Ce u ce v C Se u se v

( )´
P

exp ik z , (24)

so that function
( ) ( ) ( )a a^ = +1, , , ,m mF u v k C Ce u ce v

( ) ( )a a+ 2 , ,m mC Se u se v . (25)

Boundary conditions (11) for an elliptic nanotube will
be written as follows:

1 2,
0

u u u

F
u =

¶
=

¶
, (26)

hence we have

( ) ( ) ( ) ( )a a a a+ =1 1 2 1' , , ' , ,m m m mC Ce u ce v C Se u se v

( ) ( ) ( ) ( )a a a a= + =1 2 2 2' , , ' , , 0m m m mC Ce u ce v C Se u se v .(27)

In order to satisfy condition (27) at any v, obviously,
it is necessary to take C1 = 0 or C2 = 0. Thus, we obtain
two classes of the solutions

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 2 2 2
1

2 2 2 2
1 2

2 2 2 2
2

2 2 2 2
1 2

16 16
16 16 0

16 16
16 16 0

m m

m m

m m

m m

F u,v,k CCe u,k d ce v,k d ,
Ce' u ,k d Ce' u ,k d ,

F u,v,k C Se u,k d se v,k d ,
Se ' u ,k d Se ' u ,k d .

^ ^ ^

^ ^

^ ^ ^

^ ^

éì =ï
êí = =ïêî
ê
ì =ïê
íê = =ïîë

 (28)

System (28) determines the desired transverse wave-
number spectrum for spin waves in a ferromagnetic na-
notube of an elliptic cross-section.

5. CONCLUSIONS

Thus, we have developed the theory allowing to ob-
tain the dispersion relation and transverse wavenumber
spectrum for spin waves in a ferromagnetic cylindrical
nanosystem of an arbitrary cross-section (subject to the
possibility of introducing the corresponding orthogonal
coordinate system). We have written the dispersion re-
lation and system of equations for the transverse wave-
number spectrum in this case. The obtained dispersion
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relation has the same form for all nanosystems of the
above stated type and coincides with the known equa-
tion for a cylindrical nanowire. We have also written the
dispersion relation for the case when transverse sizes of
continuous regions of the ferromagnet are small (less or
of the order of magnitude of the exchange length), so that
one can neglect the transverse oscillations (and, there-
fore, in order to describe a spin wave it is not necessary
to solve the system of equations for the transverse wave-
numbers). We have applied the above described theory
to the cases of a nanotube of a circular cross-section and

a nanotube of an elliptic cross-section and have obtained
the wavenumber spectrum for each of these cases. Wave-
number spectrum for a wide circular nanotube is also
derived in the explicit form.
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